| 1 | 
dgoldberg | 
1.2 | 
C $Header: /u/gcmpack/MITgcm/pkg/streamice/streamice_init_phi.F,v 1.2 2013/06/21 20:49:50 jmc Exp $ | 
| 2 | 
  | 
  | 
C $Name:  $ | 
| 3 | 
  | 
  | 
 | 
| 4 | 
heimbach | 
1.1 | 
#include "STREAMICE_OPTIONS.h" | 
| 5 | 
  | 
  | 
 | 
| 6 | 
  | 
  | 
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| | 
| 7 | 
  | 
  | 
CBOP 0 | 
| 8 | 
  | 
  | 
C !ROUTINE: STREAMICE_INIT_FIXED | 
| 9 | 
  | 
  | 
 | 
| 10 | 
  | 
  | 
C !INTERFACE: | 
| 11 | 
  | 
  | 
      SUBROUTINE STREAMICE_INIT_PHI( myThid ) | 
| 12 | 
  | 
  | 
 | 
| 13 | 
  | 
  | 
C     !DESCRIPTION: | 
| 14 | 
  | 
  | 
C     Initialize STREAMICE nodal basis gradients for FEM solver | 
| 15 | 
  | 
  | 
 | 
| 16 | 
  | 
  | 
C     !USES: | 
| 17 | 
  | 
  | 
      IMPLICIT NONE | 
| 18 | 
  | 
  | 
#include "EEPARAMS.h" | 
| 19 | 
  | 
  | 
#include "SIZE.h" | 
| 20 | 
  | 
  | 
#include "PARAMS.h" | 
| 21 | 
  | 
  | 
#include "STREAMICE.h" | 
| 22 | 
  | 
  | 
#include "STREAMICE_CG.h" | 
| 23 | 
  | 
  | 
#include "GRID.h" | 
| 24 | 
  | 
  | 
 | 
| 25 | 
  | 
  | 
C     myThid ::  my Thread Id number | 
| 26 | 
  | 
  | 
      INTEGER myThid | 
| 27 | 
  | 
  | 
CEOP | 
| 28 | 
  | 
  | 
 | 
| 29 | 
  | 
  | 
C     !LOCAL VARIABLES: | 
| 30 | 
  | 
  | 
C     === Local variables === | 
| 31 | 
  | 
  | 
      INTEGER bi, bj, i, j, xnode, ynode, xq, yq, m, n, p, kx, ky | 
| 32 | 
  | 
  | 
      REAL gradx(2), grady(2)  ! gradients at quadrature points | 
| 33 | 
  | 
  | 
 | 
| 34 | 
dgoldberg | 
1.2 | 
C     here the terms used to calculate matrix terms in the | 
| 35 | 
heimbach | 
1.1 | 
C     velocity solve are initialized | 
| 36 | 
  | 
  | 
C | 
| 37 | 
  | 
  | 
C     this is a quasi-finite element method; the gradient | 
| 38 | 
  | 
  | 
C     of the basis functions are approximated based on knowledge | 
| 39 | 
  | 
  | 
C     of the grid | 
| 40 | 
  | 
  | 
C | 
| 41 | 
dgoldberg | 
1.2 | 
C     Dphi (i,j,bi,bj,m,n,p): | 
| 42 | 
  | 
  | 
C       gradient (in p-direction) of nodal basis function in | 
| 43 | 
  | 
  | 
C       cell (i,j) on thread (bi,bj) which is centered on node m, | 
| 44 | 
heimbach | 
1.1 | 
C       at quadrature point n | 
| 45 | 
  | 
  | 
C | 
| 46 | 
  | 
  | 
C    %  3 - 4 | 
| 47 | 
  | 
  | 
C    %  |   | | 
| 48 | 
  | 
  | 
C    %  1 - 2 | 
| 49 | 
  | 
  | 
C | 
| 50 | 
dgoldberg | 
1.2 | 
C     NOTE 2x2 quadrature is hardcoded - might make it specifiable through CPP | 
| 51 | 
heimbach | 
1.1 | 
C | 
| 52 | 
  | 
  | 
C     this will not be updated in overlap cells - so we extend it as far as we can | 
| 53 | 
dgoldberg | 
1.2 | 
 | 
| 54 | 
heimbach | 
1.1 | 
      DO bj = myByLo(myThid), myByHi(myThid) | 
| 55 | 
  | 
  | 
       DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 56 | 
  | 
  | 
        DO j=1-Oly,sNy+Oly-1 | 
| 57 | 
  | 
  | 
         DO i=1-Olx,sNx+Olx-1 | 
| 58 | 
  | 
  | 
 | 
| 59 | 
  | 
  | 
          DO xq = 1,2 | 
| 60 | 
dgoldberg | 
1.2 | 
           gradx(xq) = Xquad(3-xq) * recip_dxG (i,j,bi,bj) + | 
| 61 | 
heimbach | 
1.1 | 
     &                 Xquad(xq) * recip_dxG (i+1,j,bi,bj) | 
| 62 | 
dgoldberg | 
1.2 | 
           grady(xq) = Xquad(3-xq) * recip_dyG (i,j,bi,bj) + | 
| 63 | 
heimbach | 
1.1 | 
     &                 Xquad(xq) * recip_dyG (i,j+1,bi,bj) | 
| 64 | 
  | 
  | 
          ENDDO | 
| 65 | 
  | 
  | 
 | 
| 66 | 
dgoldberg | 
1.2 | 
          DO n = 1,4 | 
| 67 | 
  | 
  | 
 | 
| 68 | 
heimbach | 
1.1 | 
           xq = 2 - mod(n,2) | 
| 69 | 
  | 
  | 
           yq = floor ((n+1)/2.0) | 
| 70 | 
dgoldberg | 
1.2 | 
 | 
| 71 | 
heimbach | 
1.1 | 
           DO m = 1,4 | 
| 72 | 
  | 
  | 
 | 
| 73 | 
  | 
  | 
            xnode = 2 - mod(m,2) | 
| 74 | 
  | 
  | 
            ynode = floor ((m+1)/2.0) | 
| 75 | 
  | 
  | 
 | 
| 76 | 
  | 
  | 
            kx = 1 ; ky = 1 | 
| 77 | 
  | 
  | 
            if (xq.eq.xnode) kx = 2 | 
| 78 | 
  | 
  | 
            if (yq.eq.ynode) ky = 2 | 
| 79 | 
  | 
  | 
 | 
| 80 | 
dgoldberg | 
1.2 | 
 | 
| 81 | 
  | 
  | 
            Dphi (i,j,bi,bj,m,n,1) = | 
| 82 | 
heimbach | 
1.1 | 
     &       (2*xnode-3) * Xquad(ky) * gradx(yq) | 
| 83 | 
dgoldberg | 
1.2 | 
            Dphi (i,j,bi,bj,m,n,2) = | 
| 84 | 
heimbach | 
1.1 | 
     &       (2*ynode-3) * Xquad(kx) * grady(xq) | 
| 85 | 
dgoldberg | 
1.2 | 
 | 
| 86 | 
heimbach | 
1.1 | 
           ENDDO | 
| 87 | 
  | 
  | 
 | 
| 88 | 
dgoldberg | 
1.2 | 
           grid_jacq_streamice (i,j,bi,bj,n) = | 
| 89 | 
  | 
  | 
     &      (Xquad(3-xq)*dyG(i,j,bi,bj) + Xquad(xq)*dyG(i+1,j,bi,bj)) * | 
| 90 | 
  | 
  | 
     &      (Xquad(3-yq)*dxG(i,j,bi,bj) + Xquad(yq)*dxG(i,j+1,bi,bj)) | 
| 91 | 
heimbach | 
1.1 | 
 | 
| 92 | 
  | 
  | 
          ENDDO | 
| 93 | 
  | 
  | 
         ENDDO | 
| 94 | 
  | 
  | 
        ENDDO | 
| 95 | 
  | 
  | 
       ENDDO | 
| 96 | 
  | 
  | 
      ENDDO | 
| 97 | 
  | 
  | 
 | 
| 98 | 
  | 
  | 
      RETURN | 
| 99 | 
  | 
  | 
      END |