1 |
dgoldberg |
1.1 |
C $Header: /u/gcmpack/MITgcm_contrib/dgoldberg/streamice/streamice_driving_stress.F,v 1.2 2012/09/18 17:06:48 dgoldberg Exp $ |
2 |
|
|
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "STREAMICE_OPTIONS.h" |
5 |
|
|
|
6 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
7 |
|
|
|
8 |
|
|
CBOP |
9 |
|
|
SUBROUTINE STREAMICE_DRIVING_STRESS_PPM( myThid ) |
10 |
|
|
! O taudx, |
11 |
|
|
! O taudy ) |
12 |
|
|
|
13 |
|
|
C /============================================================\ |
14 |
|
|
C | SUBROUTINE | |
15 |
|
|
C | o | |
16 |
|
|
C |============================================================| |
17 |
|
|
C | | |
18 |
|
|
C \============================================================/ |
19 |
|
|
IMPLICIT NONE |
20 |
|
|
|
21 |
|
|
C === Global variables === |
22 |
|
|
#include "SIZE.h" |
23 |
|
|
#include "EEPARAMS.h" |
24 |
|
|
#include "PARAMS.h" |
25 |
|
|
#include "GRID.h" |
26 |
|
|
#include "STREAMICE.h" |
27 |
|
|
#include "STREAMICE_CG.h" |
28 |
|
|
|
29 |
|
|
C !INPUT/OUTPUT ARGUMENTS |
30 |
|
|
INTEGER myThid |
31 |
|
|
! _RL taudx (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
32 |
|
|
! _RL taudx (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
33 |
|
|
|
34 |
|
|
#ifdef ALLOW_STREAMICE |
35 |
|
|
|
36 |
|
|
|
37 |
|
|
C LOCAL VARIABLES |
38 |
|
|
INTEGER i, j, bi, bj, k, l, |
39 |
|
|
& Gi, Gj |
40 |
|
|
LOGICAL at_west_bdry, at_east_bdry, |
41 |
|
|
& at_north_bdry, at_south_bdry |
42 |
|
|
_RL sx, sy, diffx, diffy, neu_val |
43 |
|
|
|
44 |
|
|
IF (myXGlobalLo.eq.1) at_west_bdry = .true. |
45 |
|
|
IF (myYGlobalLo.eq.1) at_south_bdry = .true. |
46 |
|
|
IF (myXGlobalLo-1+sNx*nSx.eq.Nx) |
47 |
|
|
& at_east_bdry = .false. |
48 |
|
|
IF (myYGlobalLo-1+sNy*nSy.eq.Ny) |
49 |
|
|
& at_north_bdry = .false. |
50 |
|
|
|
51 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
52 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
53 |
|
|
DO j=1-OLy,sNy+OLy |
54 |
|
|
DO i=1-OLx,sNx+OLx |
55 |
|
|
taudx_SI(i,j,bi,bj) = 0. _d 0 |
56 |
|
|
taudy_SI(i,j,bi,bj) = 0. _d 0 |
57 |
|
|
ENDDO |
58 |
|
|
ENDDO |
59 |
|
|
ENDDO |
60 |
|
|
ENDDO |
61 |
|
|
|
62 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
63 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
64 |
|
|
|
65 |
|
|
DO i=0,sNx+1 |
66 |
|
|
DO j=0,sNy+1 |
67 |
|
|
|
68 |
|
|
diffx = 0. _d 0 |
69 |
|
|
diffy = 0. _d 0 |
70 |
|
|
sx = 0. _d 0 |
71 |
|
|
sy = 0. _d 0 |
72 |
|
|
|
73 |
|
|
Gi = (myXGlobalLo-1)+(bi-1)*sNx+i |
74 |
|
|
Gj = (myYGlobalLo-1)+(bj-1)*sNy+j |
75 |
|
|
|
76 |
|
|
IF (STREAMICE_hmask(i,j,bi,bj).eq.1.0) THEN |
77 |
|
|
|
78 |
|
|
! we are in an "active" cell |
79 |
|
|
|
80 |
|
|
IF (Gi.eq.1.AND..NOT.STREAMICE_EW_periodic) THEN |
81 |
|
|
|
82 |
|
|
! western boundary - only one sided possible |
83 |
|
|
|
84 |
|
|
IF (STREAMICE_hmask(i+1,j,bi,bj).eq.1.0) THEN |
85 |
|
|
|
86 |
|
|
! cell to east is active |
87 |
|
|
|
88 |
|
|
sx = (surf_el_streamice(i+1,j,bi,bj)- |
89 |
|
|
& surf_el_streamice(i,j,bi,bj))/dxC(i+1,j,bi,bj) |
90 |
|
|
ELSE |
91 |
|
|
|
92 |
|
|
! cell to east is empty |
93 |
|
|
|
94 |
|
|
sx = 0. _d 0 |
95 |
|
|
ENDIF |
96 |
|
|
|
97 |
|
|
DO k=0,1 |
98 |
|
|
DO l=0,1 |
99 |
|
|
IF (STREAMICE_umask(i+k,j+l,bi,bj).eq.1.0) THEN |
100 |
|
|
taudx_SI(i+k,j+l,bi,bj) = taudx_SI(i+k,j+l,bi,bj) - |
101 |
|
|
& 0.25 * streamice_density * gravity * |
102 |
|
|
& (streamice_bg_surf_slope_x+sx) * |
103 |
|
|
& H_streamice(i,j,bi,bj) * rA(i,j,bi,bj) |
104 |
|
|
ENDIF |
105 |
|
|
ENDDO |
106 |
|
|
ENDDO |
107 |
|
|
|
108 |
|
|
ELSEIF (Gi.eq.Nx.AND..NOT.STREAMICE_EW_periodic) THEN |
109 |
|
|
|
110 |
|
|
! eastern boundary - only one sided possible |
111 |
|
|
|
112 |
|
|
IF (STREAMICE_hmask(i-1,j,bi,bj).eq.1.0) THEN |
113 |
|
|
|
114 |
|
|
! cell to west is active |
115 |
|
|
|
116 |
|
|
sx = (surf_el_streamice(i,j,bi,bj)- |
117 |
|
|
& surf_el_streamice(i-1,j,bi,bj))/dxC(i,j,bi,bj) |
118 |
|
|
ELSE |
119 |
|
|
|
120 |
|
|
! cell to west is inactive |
121 |
|
|
|
122 |
|
|
sx = 0. _d 0 |
123 |
|
|
ENDIF |
124 |
|
|
|
125 |
|
|
DO k=0,1 |
126 |
|
|
DO l=0,1 |
127 |
|
|
IF (STREAMICE_umask(i+k,j+l,bi,bj).eq.1.0) THEN |
128 |
|
|
taudx_SI(i+k,j+l,bi,bj) = taudx_SI(i+k,j+l,bi,bj) - |
129 |
|
|
& 0.25 * streamice_density * gravity * |
130 |
|
|
& (streamice_bg_surf_slope_x+sx) * |
131 |
|
|
& H_streamice(i,j,bi,bj) * rA(i,j,bi,bj) |
132 |
|
|
ENDIF |
133 |
|
|
ENDDO |
134 |
|
|
ENDDO |
135 |
|
|
|
136 |
|
|
ELSE |
137 |
|
|
|
138 |
|
|
! interior (west-east) cell |
139 |
|
|
|
140 |
|
|
IF (STREAMICE_hmask(i+1,j,bi,bj).eq.1.0 .and. |
141 |
|
|
& STREAMICE_hmask(i-1,j,bi,bj).eq.1.0) THEN |
142 |
|
|
|
143 |
|
|
k = 0 |
144 |
|
|
DO l=0,1 |
145 |
|
|
IF (STREAMICE_umask(i+k,j+l,bi,bj).eq.1.0) THEN |
146 |
|
|
taudx_SI(i+k,j+l,bi,bj) = taudx_SI(i+k,j+l,bi,bj) - |
147 |
|
|
& streamice_density * gravity * (1./6.) * |
148 |
|
|
& (-2.*surf_el_streamice(i-1,j,bi,bj) + |
149 |
|
|
& surf_el_streamice(i,j,bi,bj) + |
150 |
|
|
& surf_el_streamice(i+1,j,bi,bj) + |
151 |
|
|
& 3.*streamice_bg_surf_slope_x * dxF(i,j,bi,bj)) * |
152 |
|
|
& H_streamice(i,j,bi,bj) * .5 * dyF(i,j,bi,bj) |
153 |
|
|
ENDIF |
154 |
|
|
ENDDO |
155 |
|
|
|
156 |
|
|
k = 1 |
157 |
|
|
DO l=0,1 |
158 |
|
|
IF (STREAMICE_umask(i+k,j+l,bi,bj).eq.1.0) THEN |
159 |
|
|
taudx_SI(i+k,j+l,bi,bj) = taudx_SI(i+k,j+l,bi,bj) - |
160 |
|
|
& streamice_density * gravity * (1./6.) * |
161 |
|
|
& (-surf_el_streamice(i-1,j,bi,bj) - |
162 |
|
|
& surf_el_streamice(i,j,bi,bj) + |
163 |
|
|
& 2*surf_el_streamice(i+1,j,bi,bj) + |
164 |
|
|
& 3.*streamice_bg_surf_slope_x * dxF(i,j,bi,bj)) * |
165 |
|
|
& H_streamice(i,j,bi,bj) * .5 * dyF(i,j,bi,bj) |
166 |
|
|
ENDIF |
167 |
|
|
ENDDO |
168 |
|
|
|
169 |
|
|
|
170 |
|
|
ELSE |
171 |
|
|
|
172 |
|
|
IF (STREAMICE_hmask(i+1,j,bi,bj).eq.1.0) THEN |
173 |
|
|
|
174 |
|
|
sx = (surf_el_streamice(i+1,j,bi,bj)- |
175 |
|
|
& surf_el_streamice(i,j,bi,bj))/dxC(i+1,j,bi,bj) |
176 |
|
|
|
177 |
|
|
ELSEIF (STREAMICE_hmask(i-1,j,bi,bj).eq.1.0) THEN |
178 |
|
|
|
179 |
|
|
sx = (surf_el_streamice(i,j,bi,bj)- |
180 |
|
|
& surf_el_streamice(i-1,j,bi,bj))/dxC(i,j,bi,bj) |
181 |
|
|
|
182 |
|
|
ELSE |
183 |
|
|
|
184 |
|
|
sx = 0. _d 0 |
185 |
|
|
|
186 |
|
|
ENDIF |
187 |
|
|
|
188 |
|
|
DO k=0,1 |
189 |
|
|
DO l=0,1 |
190 |
|
|
IF (STREAMICE_umask(i+k,j+l,bi,bj).eq.1.0) THEN |
191 |
|
|
taudx_SI(i+k,j+l,bi,bj) = taudx_SI(i+k,j+l,bi,bj) - |
192 |
|
|
& 0.25 * streamice_density * gravity * |
193 |
|
|
& (streamice_bg_surf_slope_x+sx) * |
194 |
|
|
& H_streamice(i,j,bi,bj) * rA(i,j,bi,bj) |
195 |
|
|
ENDIF |
196 |
|
|
ENDDO |
197 |
|
|
ENDDO |
198 |
|
|
|
199 |
|
|
ENDIF |
200 |
|
|
|
201 |
|
|
ENDIF |
202 |
|
|
|
203 |
|
|
!!!!!!!! DONE WITH X-GRADIENT |
204 |
|
|
|
205 |
|
|
IF (Gj.eq.1.AND..NOT.STREAMICE_NS_periodic) THEN |
206 |
|
|
|
207 |
|
|
! western boundary - only one sided possible |
208 |
|
|
|
209 |
|
|
IF (STREAMICE_hmask(i,j+1,bi,bj).eq.1.0) THEN |
210 |
|
|
|
211 |
|
|
! cell to east is active |
212 |
|
|
|
213 |
|
|
sy = (surf_el_streamice(i,j+1,bi,bj)- |
214 |
|
|
& surf_el_streamice(i,j,bi,bj))/dyC(i,j+1,bi,bj) |
215 |
|
|
ELSE |
216 |
|
|
|
217 |
|
|
! cell to east is empty |
218 |
|
|
|
219 |
|
|
sy = 0. _d 0 |
220 |
|
|
ENDIF |
221 |
|
|
|
222 |
|
|
DO k=0,1 |
223 |
|
|
DO l=0,1 |
224 |
|
|
IF (STREAMICE_umask(i+k,j+l,bi,bj).eq.1.0) THEN |
225 |
|
|
taudy_SI(i+k,j+l,bi,bj) = taudy_SI(i+k,j+l,bi,bj) - |
226 |
|
|
& 0.25 * streamice_density * gravity * |
227 |
|
|
& (streamice_bg_surf_slope_y+sy) * |
228 |
|
|
& H_streamice(i,j,bi,bj) * rA(i,j,bi,bj) |
229 |
|
|
ENDIF |
230 |
|
|
ENDDO |
231 |
|
|
ENDDO |
232 |
|
|
|
233 |
|
|
ELSEIF (Gj.eq.Ny.AND..NOT.STREAMICE_NS_periodic) THEN |
234 |
|
|
|
235 |
|
|
! eastern boundary - only one sided possible |
236 |
|
|
|
237 |
|
|
IF (STREAMICE_hmask(i,j-1,bi,bj).eq.1.0) THEN |
238 |
|
|
|
239 |
|
|
! cell to west is active |
240 |
|
|
|
241 |
|
|
sy = (surf_el_streamice(i,j,bi,bj)- |
242 |
|
|
& surf_el_streamice(i,j-1,bi,bj))/dyC(i,j,bi,bj) |
243 |
|
|
|
244 |
|
|
ELSE |
245 |
|
|
|
246 |
|
|
! cell to west is inactive |
247 |
|
|
|
248 |
|
|
sy = 0. _d 0 |
249 |
|
|
ENDIF |
250 |
|
|
|
251 |
|
|
DO k=0,1 |
252 |
|
|
DO l=0,1 |
253 |
|
|
IF (STREAMICE_umask(i+k,j+l,bi,bj).eq.1.0) THEN |
254 |
|
|
taudy_SI(i+k,j+l,bi,bj) = taudy_SI(i+k,j+l,bi,bj) - |
255 |
|
|
& 0.25 * streamice_density * gravity * |
256 |
|
|
& (streamice_bg_surf_slope_y+sy) * |
257 |
|
|
& H_streamice(i,j,bi,bj) * rA(i,j,bi,bj) |
258 |
|
|
ENDIF |
259 |
|
|
ENDDO |
260 |
|
|
ENDDO |
261 |
|
|
|
262 |
|
|
ELSE |
263 |
|
|
|
264 |
|
|
! interior (west-east) cell |
265 |
|
|
|
266 |
|
|
IF (STREAMICE_hmask(i,j+1,bi,bj).eq.1.0 .and. |
267 |
|
|
& STREAMICE_hmask(i,j-1,bi,bj).eq.1.0) THEN |
268 |
|
|
|
269 |
|
|
l = 0 |
270 |
|
|
DO k=0,1 |
271 |
|
|
IF (STREAMICE_umask(i+k,j+l,bi,bj).eq.1.0) THEN |
272 |
|
|
taudy_SI(i+k,j+l,bi,bj) = taudy_SI(i+k,j+l,bi,bj) - |
273 |
|
|
& streamice_density * gravity * (1./6.) * |
274 |
|
|
& (-2.*surf_el_streamice(i,j-1,bi,bj) + |
275 |
|
|
& surf_el_streamice(i,j,bi,bj) + |
276 |
|
|
& surf_el_streamice(i,j+1,bi,bj) + |
277 |
|
|
& 3.*streamice_bg_surf_slope_y * dyF(i,j,bi,bj)) * |
278 |
|
|
& H_streamice(i,j,bi,bj) * .5 * dxF(i,j,bi,bj) |
279 |
|
|
ENDIF |
280 |
|
|
ENDDO |
281 |
|
|
|
282 |
|
|
l = 1 |
283 |
|
|
DO k=0,1 |
284 |
|
|
IF (STREAMICE_umask(i+k,j+l,bi,bj).eq.1.0) THEN |
285 |
|
|
taudy_SI(i+k,j+l,bi,bj) = taudy_SI(i+k,j+l,bi,bj) - |
286 |
|
|
& streamice_density * gravity * (1./6.) * |
287 |
|
|
& (-surf_el_streamice(i,j-1,bi,bj) - |
288 |
|
|
& surf_el_streamice(i,j,bi,bj) + |
289 |
|
|
& 2*surf_el_streamice(i,j+1,bi,bj) + |
290 |
|
|
& 3.*streamice_bg_surf_slope_y * dyF(i,j,bi,bj)) * |
291 |
|
|
& H_streamice(i,j,bi,bj) * .5 * dxF(i,j,bi,bj) |
292 |
|
|
ENDIF |
293 |
|
|
ENDDO |
294 |
|
|
|
295 |
|
|
|
296 |
|
|
ELSE |
297 |
|
|
|
298 |
|
|
IF (STREAMICE_hmask(i,j+1,bi,bj).eq.1.0) THEN |
299 |
|
|
|
300 |
|
|
sy = (surf_el_streamice(i,j+1,bi,bj)- |
301 |
|
|
& surf_el_streamice(i,j,bi,bj))/dxC(i,j+1,bi,bj) |
302 |
|
|
|
303 |
|
|
ELSEIF (STREAMICE_hmask(i,j-1,bi,bj).eq.1.0) THEN |
304 |
|
|
|
305 |
|
|
sy = (surf_el_streamice(i,j,bi,bj)- |
306 |
|
|
& surf_el_streamice(i,j-1,bi,bj))/dxC(i,j,bi,bj) |
307 |
|
|
|
308 |
|
|
ELSE |
309 |
|
|
|
310 |
|
|
sy = 0. _d 0 |
311 |
|
|
|
312 |
|
|
ENDIF |
313 |
|
|
|
314 |
|
|
DO k=0,1 |
315 |
|
|
DO l=0,1 |
316 |
|
|
IF (STREAMICE_umask(i+k,j+l,bi,bj).eq.1.0) THEN |
317 |
|
|
taudy_SI(i+k,j+l,bi,bj) = taudy_SI(i+k,j+l,bi,bj) - |
318 |
|
|
& 0.25 * streamice_density * gravity * |
319 |
|
|
& (streamice_bg_surf_slope_y+sy) * |
320 |
|
|
& H_streamice(i,j,bi,bj) * rA(i,j,bi,bj) |
321 |
|
|
ENDIF |
322 |
|
|
ENDDO |
323 |
|
|
ENDDO |
324 |
|
|
|
325 |
|
|
ENDIF |
326 |
|
|
|
327 |
|
|
ENDIF |
328 |
|
|
|
329 |
|
|
! DO k=0,1 |
330 |
|
|
! DO l=0,1 |
331 |
|
|
! IF (STREAMICE_umask(i+k,j+l,bi,bj).eq.1.0) THEN |
332 |
|
|
! taudx_SI(i+k,j+l,bi,bj) = taudx_SI(i+k,j+l,bi,bj) - |
333 |
|
|
! & 0.25 * streamice_density * gravity * |
334 |
|
|
! & (streamice_bg_surf_slope_x+sx) * |
335 |
|
|
! & H_streamice(i,j,bi,bj) * rA(i,j,bi,bj) |
336 |
|
|
! taudy_SI(i+k,j+l,bi,bj) = taudy_SI(i+k,j+l,bi,bj) - |
337 |
|
|
! & 0.25 * streamice_density * gravity * |
338 |
|
|
! & (streamice_bg_surf_slope_y+sy) * |
339 |
|
|
! & H_streamice(i,j,bi,bj) * rA(i,j,bi,bj) |
340 |
|
|
! |
341 |
|
|
! ENDIF |
342 |
|
|
! ENDDO |
343 |
|
|
! ENDDO |
344 |
|
|
|
345 |
|
|
IF (float_frac_streamice(i,j,bi,bj) .eq. 1.0) then |
346 |
|
|
#ifdef USE_ALT_RLOW |
347 |
|
|
neu_val = .5 * gravity * |
348 |
|
|
& (streamice_density * H_streamice (i,j,bi,bj) ** 2 - |
349 |
|
|
& streamice_density_ocean_avg * R_low_si(i,j,bi,bj) ** 2) |
350 |
|
|
#else |
351 |
|
|
neu_val = .5 * gravity * |
352 |
|
|
& (streamice_density * H_streamice (i,j,bi,bj) ** 2 - |
353 |
|
|
& streamice_density_ocean_avg * R_low(i,j,bi,bj) ** 2 |
354 |
|
|
#endif |
355 |
|
|
ELSE |
356 |
|
|
neu_val = .5 * gravity * |
357 |
|
|
& (1-streamice_density/streamice_density_ocean_avg) * |
358 |
|
|
& streamice_density * H_streamice(i,j,bi,bj) ** 2 |
359 |
|
|
ENDIF |
360 |
|
|
|
361 |
|
|
IF ((STREAMICE_ufacemask(i,j,bi,bj) .eq. 2) |
362 |
|
|
& .OR. (STREAMICE_hmask(i-1,j,bi,bj) .eq. 0) |
363 |
|
|
& .OR. (STREAMICE_hmask(i-1,j,bi,bj) .eq. 2) ) THEN ! left face of the cell is at a stress boundary |
364 |
|
|
! the depth-integrated longitudinal stress is equal to the difference of depth-integrated pressure on either side of the face |
365 |
|
|
! on the ice side, it is rho g h^2 / 2 |
366 |
|
|
! on the ocean side, it is rhow g (delta OD)^2 / 2 |
367 |
|
|
! OD can be zero under the ice; but it is ASSUMED on the ice-free side of the face, topography elevation is not above the base of the |
368 |
|
|
! ice in the current cell |
369 |
|
|
|
370 |
|
|
taudx_SI(i,j,bi,bj) = taudx_SI(i,j,bi,bj) - |
371 |
|
|
& .5 * dyG(i,j,bi,bj) * neu_val ! note negative sign is due to direction of normal vector |
372 |
|
|
taudx_SI(i,j+1,bi,bj) = taudx_SI(i,j+1,bi,bj) - |
373 |
|
|
& .5 * dyG(i,j,bi,bj) * neu_val |
374 |
|
|
ENDIF |
375 |
|
|
|
376 |
|
|
IF ((STREAMICE_ufacemask(i+1,j,bi,bj) .eq. 2) |
377 |
|
|
& .OR. (STREAMICE_hmask(i+1,j,bi,bj) .eq. 0) |
378 |
|
|
& .OR. (STREAMICE_hmask(i+1,j,bi,bj) .eq. 2) ) THEN |
379 |
|
|
|
380 |
|
|
taudx_SI(i+1,j,bi,bj) = taudx_SI(i+1,j,bi,bj) + |
381 |
|
|
& .5 * dyG(i+1,j,bi,bj) * neu_val ! note negative sign is due to direction of normal vector |
382 |
|
|
taudx_SI(i+1,j+1,bi,bj) = taudx_SI(i+1,j+1,bi,bj) + |
383 |
|
|
& .5 * dyG(i+1,j,bi,bj) * neu_val |
384 |
|
|
ENDIF |
385 |
|
|
|
386 |
|
|
IF ((STREAMICE_vfacemask(i,j,bi,bj) .eq. 2) |
387 |
|
|
& .OR. (STREAMICE_hmask(i,j-1,bi,bj) .eq. 0) |
388 |
|
|
& .OR. (STREAMICE_hmask(i,j-1,bi,bj) .eq. 2) ) THEN |
389 |
|
|
|
390 |
|
|
taudy_SI(i,j,bi,bj) = taudy_SI(i,j,bi,bj) - |
391 |
|
|
& .5 * dxG(i,j,bi,bj) * neu_val ! note negative sign is due to direction of normal vector |
392 |
|
|
taudy_SI(i+1,j,bi,bj) = taudy_SI(i+1,j,bi,bj) - |
393 |
|
|
& .5 * dxG(i,j,bi,bj) * neu_val |
394 |
|
|
ENDIF |
395 |
|
|
|
396 |
|
|
IF ((STREAMICE_vfacemask(i,j+1,bi,bj) .eq. 2) |
397 |
|
|
& .OR. (STREAMICE_hmask(i,j+1,bi,bj) .eq. 0) |
398 |
|
|
& .OR. (STREAMICE_hmask(i,j+1,bi,bj) .eq. 2) ) THEN |
399 |
|
|
|
400 |
|
|
taudy_SI(i,j+1,bi,bj) = taudy_SI(i,j+1,bi,bj) + |
401 |
|
|
& .5 * dxG(i,j+1,bi,bj) * neu_val ! note negative sign is due to direction of normal vector |
402 |
|
|
taudy_SI(i+1,j+1,bi,bj) = taudy_SI(i+1,j+1,bi,bj) + |
403 |
|
|
& .5 * dxG(i,j+1,bi,bj) * neu_val |
404 |
|
|
ENDIF |
405 |
|
|
|
406 |
|
|
ENDIF |
407 |
|
|
ENDDO |
408 |
|
|
ENDDO |
409 |
|
|
ENDDO |
410 |
|
|
ENDDO |
411 |
|
|
|
412 |
|
|
|
413 |
|
|
|
414 |
|
|
#endif |
415 |
|
|
RETURN |
416 |
|
|
END |
417 |
|
|
|
418 |
|
|
|