1 |
heimbach |
1.1 |
C $Header: /u/gcmpack/MITgcm/pkg/streamice/streamice_init_varia.F,v 1.6 2011/06/29 16:24:10 dng Exp $ |
2 |
|
|
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "STREAMICE_OPTIONS.h" |
5 |
|
|
|
6 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
7 |
|
|
|
8 |
|
|
CBOP |
9 |
|
|
SUBROUTINE STREAMICE_DRIVING_STRESS( myThid ) |
10 |
|
|
! O taudx, |
11 |
|
|
! O taudy ) |
12 |
|
|
|
13 |
|
|
C /============================================================\ |
14 |
|
|
C | SUBROUTINE | |
15 |
|
|
C | o | |
16 |
|
|
C |============================================================| |
17 |
|
|
C | | |
18 |
|
|
C \============================================================/ |
19 |
|
|
IMPLICIT NONE |
20 |
|
|
|
21 |
|
|
C === Global variables === |
22 |
|
|
#include "SIZE.h" |
23 |
|
|
#include "EEPARAMS.h" |
24 |
|
|
#include "PARAMS.h" |
25 |
|
|
#include "GRID.h" |
26 |
|
|
#include "STREAMICE.h" |
27 |
|
|
#include "STREAMICE_CG.h" |
28 |
|
|
|
29 |
|
|
C !INPUT/OUTPUT ARGUMENTS |
30 |
|
|
INTEGER myThid |
31 |
|
|
! _RL taudx (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
32 |
|
|
! _RL taudx (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
33 |
|
|
|
34 |
|
|
#ifdef ALLOW_STREAMICE |
35 |
|
|
|
36 |
|
|
|
37 |
|
|
C LOCAL VARIABLES |
38 |
|
|
INTEGER i, j, bi, bj, k, l, |
39 |
|
|
& Gi, Gj |
40 |
|
|
LOGICAL at_west_bdry, at_east_bdry, |
41 |
|
|
& at_north_bdry, at_south_bdry |
42 |
|
|
_RL sx, sy, diffx, diffy, neu_val |
43 |
|
|
|
44 |
|
|
IF (myXGlobalLo.eq.1) at_west_bdry = .true. |
45 |
|
|
IF (myYGlobalLo.eq.1) at_south_bdry = .true. |
46 |
|
|
IF (myXGlobalLo-1+sNx*nSx.eq.Nx) |
47 |
|
|
& at_east_bdry = .false. |
48 |
|
|
IF (myYGlobalLo-1+sNy*nSy.eq.Ny) |
49 |
|
|
& at_north_bdry = .false. |
50 |
|
|
|
51 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
52 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
53 |
|
|
DO j=1-OLy,sNy+OLy |
54 |
|
|
DO i=1-OLx,sNx+OLx |
55 |
|
|
taudx_SI(i,j,bi,bj) = 0. _d 0 |
56 |
|
|
taudy_SI(i,j,bi,bj) = 0. _d 0 |
57 |
|
|
ENDDO |
58 |
|
|
ENDDO |
59 |
|
|
ENDDO |
60 |
|
|
ENDDO |
61 |
|
|
|
62 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
63 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
64 |
|
|
|
65 |
|
|
DO i=0,sNx+1 |
66 |
|
|
DO j=0,sNy+1 |
67 |
|
|
|
68 |
|
|
diffx = 0. _d 0 |
69 |
|
|
diffy = 0. _d 0 |
70 |
|
|
sx = 0. _d 0 |
71 |
|
|
sy = 0. _d 0 |
72 |
|
|
|
73 |
|
|
Gi = (myXGlobalLo-1)+(bi-1)*sNx+i |
74 |
|
|
Gj = (myYGlobalLo-1)+(bj-1)*sNy+j |
75 |
|
|
|
76 |
|
|
IF (STREAMICE_hmask(i,j,bi,bj).eq.1.0) THEN |
77 |
|
|
IF (Gi .eq. 1) THEN |
78 |
|
|
IF (STREAMICE_hmask(i+1,j,bi,bj).eq.1.0) THEN |
79 |
|
|
sx = (surf_el_streamice(i+1,j,bi,bj)- |
80 |
|
|
& surf_el_streamice(i,j,bi,bj))/dxC(i+1,j,bi,bj) |
81 |
|
|
ELSE |
82 |
|
|
sx = 0. _d 0 |
83 |
|
|
ENDIF |
84 |
|
|
ELSEIF (Gi .eq. Nx) THEN |
85 |
|
|
IF (STREAMICE_hmask(i-1,j,bi,bj).eq.1.0) THEN |
86 |
|
|
sx = (surf_el_streamice(i,j,bi,bj)- |
87 |
|
|
& surf_el_streamice(i-1,j,bi,bj))/dxC(i,j,bi,bj) |
88 |
|
|
ELSE |
89 |
|
|
sx = 0. _d 0 |
90 |
|
|
ENDIF |
91 |
|
|
ELSE |
92 |
|
|
IF (STREAMICE_hmask(i+1,j,bi,bj).eq.1.0) THEN |
93 |
|
|
diffx = diffx + dxC(i+1,j,bi,bj) |
94 |
|
|
sx = surf_el_streamice(i+1,j,bi,bj) |
95 |
|
|
ELSE |
96 |
|
|
sx = surf_el_streamice(i,j,bi,bj) |
97 |
|
|
ENDIF |
98 |
|
|
IF (STREAMICE_hmask(i-1,j,bi,bj).eq.1.0) THEN |
99 |
|
|
diffx = diffx + dxC(i,j,bi,bj) |
100 |
|
|
sx = sx - surf_el_streamice(i-1,j,bi,bj) |
101 |
|
|
ELSE |
102 |
|
|
sx = sx - surf_el_streamice(i,j,bi,bj) |
103 |
|
|
ENDIF |
104 |
|
|
IF (diffx .gt. 0. _d 0) THEN |
105 |
|
|
sx = sx / diffx |
106 |
|
|
ELSE |
107 |
|
|
sx = 0. _d 0 |
108 |
|
|
ENDIF |
109 |
|
|
ENDIF |
110 |
|
|
|
111 |
|
|
|
112 |
|
|
|
113 |
|
|
IF (Gj .eq. 1) THEN |
114 |
|
|
IF (STREAMICE_hmask(i,j+1,bi,bj).eq.1.0) THEN |
115 |
|
|
sy = (surf_el_streamice(i,j+1,bi,bj)- |
116 |
|
|
& surf_el_streamice(i,j,bi,bj))/dyC(i,j+1,bi,bj) |
117 |
|
|
ELSE |
118 |
|
|
sy = 0. _d 0 |
119 |
|
|
ENDIF |
120 |
|
|
ELSEIF (Gj .eq. Ny) THEN |
121 |
|
|
IF (STREAMICE_hmask(i,j-1,bi,bj).eq.1.0) THEN |
122 |
|
|
sy = (surf_el_streamice(i,j,bi,bj)- |
123 |
|
|
& surf_el_streamice(i,j-1,bi,bj))/dyC(i,j,bi,bj) |
124 |
|
|
ELSE |
125 |
|
|
sy = 0. _d 0 |
126 |
|
|
ENDIF |
127 |
|
|
ELSE |
128 |
|
|
IF (STREAMICE_hmask(i,j+1,bi,bj).eq.1.0) THEN |
129 |
|
|
|
130 |
|
|
diffy = diffy + dyC(i,j+1,bi,bj) |
131 |
|
|
sy = surf_el_streamice(i,j+1,bi,bj) |
132 |
|
|
ELSE |
133 |
|
|
sy = surf_el_streamice(i,j,bi,bj) |
134 |
|
|
ENDIF |
135 |
|
|
IF (STREAMICE_hmask(i,j-1,bi,bj).eq.1.0) THEN |
136 |
|
|
diffy = diffy + dyC(i,j,bi,bj) |
137 |
|
|
sy = sy - surf_el_streamice(i,j-1,bi,bj) |
138 |
|
|
ELSE |
139 |
|
|
sy = sy - surf_el_streamice(i,j,bi,bj) |
140 |
|
|
ENDIF |
141 |
|
|
IF (diffy .gt. 0. _d 0) THEN |
142 |
|
|
sy = sy / diffy |
143 |
|
|
ELSE |
144 |
|
|
sy = 0. _d 0 |
145 |
|
|
ENDIF |
146 |
|
|
ENDIF |
147 |
|
|
|
148 |
|
|
DO k=0,1 |
149 |
|
|
DO l=0,1 |
150 |
|
|
IF (STREAMICE_umask(i+k,j+l,bi,bj).eq.1.0) THEN |
151 |
|
|
taudx_SI(i+k,j+l,bi,bj) = taudx_SI(i+k,j+l,bi,bj) - |
152 |
|
|
& 0.25 * streamice_density * gravity * sx * |
153 |
|
|
& H_streamice(i,j,bi,bj) * rA(i,j,bi,bj) |
154 |
|
|
taudy_SI(i+k,j+l,bi,bj) = taudy_SI(i+k,j+l,bi,bj) - |
155 |
|
|
& 0.25 * streamice_density * gravity * sy * |
156 |
|
|
& H_streamice(i,j,bi,bj) * rA(i,j,bi,bj) |
157 |
|
|
|
158 |
|
|
ENDIF |
159 |
|
|
ENDDO |
160 |
|
|
ENDDO |
161 |
|
|
|
162 |
|
|
IF (float_frac_streamice(i,j,bi,bj) .eq. 1.0) then |
163 |
|
|
neu_val = .5 * gravity * |
164 |
|
|
& (streamice_density * H_streamice (i,j,bi,bj) ** 2 - |
165 |
|
|
& streamice_density_ocean_avg * R_low(i,j,bi,bj) ** 2) |
166 |
|
|
ELSE |
167 |
|
|
neu_val = .5 * gravity * |
168 |
|
|
& (1-streamice_density/streamice_density_ocean_avg) * |
169 |
|
|
& streamice_density * H_streamice(i,j,bi,bj) ** 2 |
170 |
|
|
ENDIF |
171 |
|
|
|
172 |
|
|
IF ((STREAMICE_ufacemask(i,j,bi,bj) .eq. 2) |
173 |
|
|
& .OR. (STREAMICE_hmask(i-1,j,bi,bj) .eq. 0) |
174 |
|
|
& .OR. (STREAMICE_hmask(i-1,j,bi,bj) .eq. 2) ) THEN ! left face of the cell is at a stress boundary |
175 |
|
|
! the depth-integrated longitudinal stress is equal to the difference of depth-integrated pressure on either side of the face |
176 |
|
|
! on the ice side, it is rho g h^2 / 2 |
177 |
|
|
! on the ocean side, it is rhow g (delta OD)^2 / 2 |
178 |
|
|
! OD can be zero under the ice; but it is ASSUMED on the ice-free side of the face, topography elevation is not above the base of the |
179 |
|
|
! ice in the current cell |
180 |
|
|
|
181 |
|
|
taudx_SI(i,j,bi,bj) = taudx_SI(i,j,bi,bj) - |
182 |
|
|
& .5 * dyG(i,j,bi,bj) * neu_val ! note negative sign is due to direction of normal vector |
183 |
|
|
taudx_SI(i,j+1,bi,bj) = taudx_SI(i,j+1,bi,bj) - |
184 |
|
|
& .5 * dyG(i,j,bi,bj) * neu_val |
185 |
|
|
ENDIF |
186 |
|
|
|
187 |
|
|
IF ((STREAMICE_ufacemask(i+1,j,bi,bj) .eq. 2) |
188 |
|
|
& .OR. (STREAMICE_hmask(i+1,j,bi,bj) .eq. 0) |
189 |
|
|
& .OR. (STREAMICE_hmask(i+1,j,bi,bj) .eq. 2) ) THEN |
190 |
|
|
|
191 |
|
|
taudx_SI(i+1,j,bi,bj) = taudx_SI(i+1,j,bi,bj) + |
192 |
|
|
& .5 * dyG(i+1,j,bi,bj) * neu_val ! note negative sign is due to direction of normal vector |
193 |
|
|
taudx_SI(i+1,j+1,bi,bj) = taudx_SI(i+1,j+1,bi,bj) + |
194 |
|
|
& .5 * dyG(i+1,j,bi,bj) * neu_val |
195 |
|
|
ENDIF |
196 |
|
|
|
197 |
|
|
IF ((STREAMICE_vfacemask(i,j,bi,bj) .eq. 2) |
198 |
|
|
& .OR. (STREAMICE_hmask(i,j-1,bi,bj) .eq. 0) |
199 |
|
|
& .OR. (STREAMICE_hmask(i,j-1,bi,bj) .eq. 2) ) THEN |
200 |
|
|
|
201 |
|
|
taudy_SI(i,j,bi,bj) = taudy_SI(i,j,bi,bj) - |
202 |
|
|
& .5 * dxG(i,j,bi,bj) * neu_val ! note negative sign is due to direction of normal vector |
203 |
|
|
taudy_SI(i+1,j,bi,bj) = taudy_SI(i+1,j,bi,bj) - |
204 |
|
|
& .5 * dxG(i,j,bi,bj) * neu_val |
205 |
|
|
ENDIF |
206 |
|
|
|
207 |
|
|
IF ((STREAMICE_vfacemask(i,j+1,bi,bj) .eq. 2) |
208 |
|
|
& .OR. (STREAMICE_hmask(i,j+1,bi,bj) .eq. 0) |
209 |
|
|
& .OR. (STREAMICE_hmask(i,j+1,bi,bj) .eq. 2) ) THEN |
210 |
|
|
|
211 |
|
|
taudy_SI(i,j+1,bi,bj) = taudy_SI(i,j+1,bi,bj) + |
212 |
|
|
& .5 * dxG(i,j+1,bi,bj) * neu_val ! note negative sign is due to direction of normal vector |
213 |
|
|
taudy_SI(i+1,j+1,bi,bj) = taudy_SI(i+1,j+1,bi,bj) + |
214 |
|
|
& .5 * dxG(i,j+1,bi,bj) * neu_val |
215 |
|
|
ENDIF |
216 |
|
|
|
217 |
|
|
ENDIF |
218 |
|
|
ENDDO |
219 |
|
|
ENDDO |
220 |
|
|
ENDDO |
221 |
|
|
ENDDO |
222 |
|
|
|
223 |
|
|
|
224 |
|
|
|
225 |
|
|
#endif |
226 |
|
|
RETURN |
227 |
|
|
END |
228 |
|
|
|
229 |
|
|
|