1 |
C $Header: /u/gcmpack/MITgcm_contrib/dgoldberg/streamice/streamice_cg_functions.F,v 1.3 2012/05/14 16:53:09 dgoldberg Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "STREAMICE_OPTIONS.h" |
5 |
|
6 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
7 |
|
8 |
CBOP |
9 |
SUBROUTINE STREAMICE_CG_ACTION( myThid, |
10 |
O uret, |
11 |
O vret, |
12 |
I u, |
13 |
I v, |
14 |
I is, ie, js, je ) |
15 |
C /============================================================\ |
16 |
C | SUBROUTINE | |
17 |
C | o | |
18 |
C |============================================================| |
19 |
C | | |
20 |
C \============================================================/ |
21 |
IMPLICIT NONE |
22 |
|
23 |
C === Global variables === |
24 |
#include "SIZE.h" |
25 |
#include "EEPARAMS.h" |
26 |
#include "PARAMS.h" |
27 |
#include "GRID.h" |
28 |
#include "STREAMICE.h" |
29 |
#include "STREAMICE_CG.h" |
30 |
|
31 |
C !INPUT/OUTPUT ARGUMENTS |
32 |
C uret, vret - result of matrix operating on u, v |
33 |
C is, ie, js, je - starting and ending cells |
34 |
INTEGER myThid |
35 |
_RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
36 |
_RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
37 |
_RL u (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
38 |
_RL v (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
39 |
INTEGER is, ie, js, je |
40 |
|
41 |
#ifdef ALLOW_STREAMICE |
42 |
|
43 |
C the linear action of the matrix on (u,v) with triangular finite elements |
44 |
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
45 |
C but this may change pursuant to conversations with others |
46 |
C |
47 |
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
48 |
C in order to make less frequent halo updates |
49 |
C isym = 1 if grid is symmetric, 0 o.w. |
50 |
|
51 |
C the linear action of the matrix on (u,v) with triangular finite elements |
52 |
C Phi has the form |
53 |
C Phi (i,j,k,q) - applies to cell i,j |
54 |
|
55 |
C 3 - 4 |
56 |
C | | |
57 |
C 1 - 2 |
58 |
|
59 |
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
60 |
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
61 |
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
62 |
|
63 |
C !LOCAL VARIABLES: |
64 |
C == Local variables == |
65 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
66 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
67 |
_RL Ucell (2,2) |
68 |
_RL Vcell (2,2) |
69 |
_RL Hcell (2,2) |
70 |
_RL phival(2,2) |
71 |
|
72 |
uret(1,1,1,1) = uret(1,1,1,1) |
73 |
vret(1,1,1,1) = vret(1,1,1,1) |
74 |
|
75 |
DO j = js, je |
76 |
DO i = is, ie |
77 |
DO bj = myByLo(myThid), myByHi(myThid) |
78 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
79 |
|
80 |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
81 |
DO iq = 1,2 |
82 |
DO jq = 1,2 |
83 |
|
84 |
n = 2*(jq-1)+iq |
85 |
|
86 |
uq = u(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + |
87 |
& u(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + |
88 |
& u(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + |
89 |
& u(i+1,j+1,bi,bj) * Xquad(iq) * Xquad(jq) |
90 |
vq = v(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + |
91 |
& v(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + |
92 |
& v(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + |
93 |
& v(i+1,j+1,bi,bj) * Xquad(iq) * Xquad(jq) |
94 |
ux = u(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
95 |
& u(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
96 |
& u(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
97 |
& u(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
98 |
uy = u(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
99 |
& u(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
100 |
& u(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
101 |
& u(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
102 |
vx = v(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
103 |
& v(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
104 |
& v(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
105 |
& v(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
106 |
vy = v(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
107 |
& v(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
108 |
& v(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
109 |
& v(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
110 |
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
111 |
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
112 |
exy = .5*(uy+vx) + |
113 |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
114 |
|
115 |
do inode = 1,2 |
116 |
do jnode = 1,2 |
117 |
|
118 |
m = 2*(jnode-1)+inode |
119 |
ilq = 1 |
120 |
jlq = 1 |
121 |
if (inode.eq.iq) ilq = 2 |
122 |
if (jnode.eq.jq) jlq = 2 |
123 |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
124 |
|
125 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
126 |
|
127 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
128 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
129 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
130 |
& visc_streamice(i,j,bi,bj) * ( |
131 |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
132 |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
133 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
134 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
135 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
136 |
& visc_streamice(i,j,bi,bj) * ( |
137 |
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
138 |
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
139 |
|
140 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
141 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
142 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
143 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
144 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
145 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
146 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
147 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
148 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
149 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
150 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
151 |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
152 |
|
153 |
|
154 |
|
155 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
156 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
157 |
& phival(inode,jnode) * |
158 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
159 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
160 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
161 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
162 |
& phival(inode,jnode) * |
163 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
164 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
165 |
|
166 |
endif |
167 |
enddo |
168 |
enddo |
169 |
|
170 |
enddo |
171 |
enddo |
172 |
c-- STREAMICE_hmask |
173 |
endif |
174 |
|
175 |
enddo |
176 |
enddo |
177 |
enddo |
178 |
enddo |
179 |
|
180 |
#endif |
181 |
RETURN |
182 |
END SUBROUTINE |
183 |
|
184 |
SUBROUTINE STREAMICE_CG_MAKE_A( myThid ) |
185 |
C /============================================================\ |
186 |
C | SUBROUTINE | |
187 |
C | o | |
188 |
C |============================================================| |
189 |
C | | |
190 |
C \============================================================/ |
191 |
IMPLICIT NONE |
192 |
|
193 |
C === Global variables === |
194 |
#include "SIZE.h" |
195 |
#include "EEPARAMS.h" |
196 |
#include "PARAMS.h" |
197 |
#include "GRID.h" |
198 |
#include "STREAMICE.h" |
199 |
#include "STREAMICE_CG.h" |
200 |
|
201 |
C !INPUT/OUTPUT ARGUMENTS |
202 |
C uret, vret - result of matrix operating on u, v |
203 |
C is, ie, js, je - starting and ending cells |
204 |
INTEGER myThid |
205 |
|
206 |
#ifdef ALLOW_STREAMICE |
207 |
|
208 |
#ifdef STREAMICE_CONSTRUCT_MATRIX |
209 |
|
210 |
C the linear action of the matrix on (u,v) with triangular finite elements |
211 |
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
212 |
C but this may change pursuant to conversations with others |
213 |
C |
214 |
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
215 |
C in order to make less frequent halo updates |
216 |
C isym = 1 if grid is symmetric, 0 o.w. |
217 |
|
218 |
C the linear action of the matrix on (u,v) with triangular finite elements |
219 |
C Phi has the form |
220 |
C Phi (i,j,k,q) - applies to cell i,j |
221 |
|
222 |
C 3 - 4 |
223 |
C | | |
224 |
C 1 - 2 |
225 |
|
226 |
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
227 |
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
228 |
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
229 |
|
230 |
C !LOCAL VARIABLES: |
231 |
C == Local variables == |
232 |
INTEGER iq, jq, inodx, inody, i, j, bi, bj, ilqx, ilqy, m_i, n |
233 |
INTEGER jlqx, jlqy, jnodx,jnody, m_j, col_y, col_x, cg_halo, k |
234 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
235 |
_RL phival(2,2) |
236 |
|
237 |
! do i=1,3 |
238 |
! do j=0,2 |
239 |
! col_index_a = i + j*3 |
240 |
! enddo |
241 |
! enddo |
242 |
|
243 |
cg_halo = min(OLx-1,OLy-1) |
244 |
|
245 |
DO j = 1-cg_halo, sNy+cg_halo |
246 |
DO i = 1-cg_halo, sNx+cg_halo |
247 |
DO bj = myByLo(myThid), myByHi(myThid) |
248 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
249 |
cc DO k=1,4 |
250 |
DO col_x=-1,1 |
251 |
DO col_y=-1,1 |
252 |
streamice_cg_A1(i,j,bi,bj,col_x,col_y)=0.0 |
253 |
streamice_cg_A2(i,j,bi,bj,col_x,col_y)=0.0 |
254 |
streamice_cg_A3(i,j,bi,bj,col_x,col_y)=0.0 |
255 |
streamice_cg_A4(i,j,bi,bj,col_x,col_y)=0.0 |
256 |
ENDDO |
257 |
ENDDO |
258 |
cc ENDDO |
259 |
ENDDO |
260 |
ENDDO |
261 |
ENDDO |
262 |
ENDDO |
263 |
|
264 |
DO j = 1-cg_halo, sNy+cg_halo |
265 |
DO i = 1-cg_halo, sNx+cg_halo |
266 |
DO bj = myByLo(myThid), myByHi(myThid) |
267 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
268 |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
269 |
DO iq=1,2 |
270 |
DO jq = 1,2 |
271 |
|
272 |
n = 2*(jq-1)+iq |
273 |
|
274 |
DO inodx = 1,2 |
275 |
DO inody = 1,2 |
276 |
|
277 |
if (STREAMICE_umask(i-1+inodx,j-1+inody,bi,bj) |
278 |
& .eq.1.0) |
279 |
& then |
280 |
|
281 |
m_i = 2*(inody-1)+inodx |
282 |
ilqx = 1 |
283 |
ilqy = 1 |
284 |
|
285 |
if (inodx.eq.iq) ilqx = 2 |
286 |
if (inody.eq.jq) ilqy = 2 |
287 |
phival(inodx,inody) = Xquad(ilqx)*Xquad(ilqy) |
288 |
|
289 |
DO jnodx = 1,2 |
290 |
DO jnody = 1,2 |
291 |
if (STREAMICE_umask(i-1+jnodx,j-1+jnody,bi,bj) |
292 |
& .eq.1.0) |
293 |
& then |
294 |
|
295 |
m_j = 2*(jnody-1)+jnodx |
296 |
ilqx = 1 |
297 |
ilqy = 1 |
298 |
if (jnodx.eq.iq) ilqx = 2 |
299 |
if (jnody.eq.jq) ilqy = 2 |
300 |
|
301 |
! col_j = col_index_a ( |
302 |
! & jnodx+mod(inodx,2), |
303 |
! & jnody+mod(inody,2) ) |
304 |
|
305 |
col_x = mod(inodx,2)+jnodx-2 |
306 |
col_y = mod(inody,2)+jnody-2 |
307 |
|
308 |
c |
309 |
|
310 |
ux = DPhi (i,j,bi,bj,m_j,n,1) |
311 |
uy = DPhi (i,j,bi,bj,m_j,n,2) |
312 |
vx = 0 |
313 |
vy = 0 |
314 |
uq = Xquad(ilqx) * Xquad(ilqy) |
315 |
vq = 0 |
316 |
|
317 |
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
318 |
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
319 |
exy = .5*(uy+vx) + |
320 |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
321 |
|
322 |
streamice_cg_A1 |
323 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
324 |
& streamice_cg_A1 |
325 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
326 |
& .25 * |
327 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
328 |
& visc_streamice(i,j,bi,bj) * ( |
329 |
& DPhi(i,j,bi,bj,m_i,n,1)*(4*exx+2*eyy) + |
330 |
& DPhi(i,j,bi,bj,m_i,n,2)*(2*exy)) |
331 |
|
332 |
streamice_cg_A3 |
333 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
334 |
& streamice_cg_A3 |
335 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
336 |
& .25 * |
337 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
338 |
& visc_streamice(i,j,bi,bj) * ( |
339 |
& DPhi(i,j,bi,bj,m_i,n,2)*(4*eyy+2*exx) + |
340 |
& DPhi(i,j,bi,bj,m_i,n,1)*(2*exy)) |
341 |
|
342 |
streamice_cg_A1 |
343 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
344 |
& streamice_cg_A1 |
345 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
346 |
& .25 * |
347 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
348 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
349 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
350 |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
351 |
|
352 |
streamice_cg_A3 |
353 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
354 |
& streamice_cg_A3 |
355 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
356 |
& .25 * |
357 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
358 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
359 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
360 |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
361 |
|
362 |
streamice_cg_A1 |
363 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
364 |
& streamice_cg_A1 |
365 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
366 |
& .25*phival(inodx,inody) * |
367 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
368 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
369 |
|
370 |
streamice_cg_A3 |
371 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
372 |
& streamice_cg_A3 |
373 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
374 |
& .25*phival(inodx,inody) * |
375 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
376 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
377 |
|
378 |
c |
379 |
|
380 |
vx = DPhi (i,j,bi,bj,m_j,n,1) |
381 |
vy = DPhi (i,j,bi,bj,m_j,n,2) |
382 |
ux = 0 |
383 |
uy = 0 |
384 |
vq = Xquad(ilqx) * Xquad(ilqy) |
385 |
uq = 0 |
386 |
|
387 |
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
388 |
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
389 |
exy = .5*(uy+vx) + |
390 |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
391 |
|
392 |
streamice_cg_A2 |
393 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
394 |
& streamice_cg_A2 |
395 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
396 |
& .25 * |
397 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
398 |
& visc_streamice(i,j,bi,bj) * ( |
399 |
& DPhi(i,j,bi,bj,m_i,n,1)*(4*exx+2*eyy) + |
400 |
& DPhi(i,j,bi,bj,m_i,n,2)*(2*exy)) |
401 |
|
402 |
streamice_cg_A4 |
403 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
404 |
& streamice_cg_A4 |
405 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
406 |
& .25 * |
407 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
408 |
& visc_streamice(i,j,bi,bj) * ( |
409 |
& DPhi(i,j,bi,bj,m_i,n,2)*(4*eyy+2*exx) + |
410 |
& DPhi(i,j,bi,bj,m_i,n,1)*(2*exy)) |
411 |
|
412 |
streamice_cg_A2 |
413 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
414 |
& streamice_cg_A2 |
415 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
416 |
& .25 * |
417 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
418 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
419 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
420 |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
421 |
|
422 |
streamice_cg_A4 |
423 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
424 |
& streamice_cg_A4 |
425 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
426 |
& .25 * |
427 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
428 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
429 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
430 |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
431 |
|
432 |
streamice_cg_A2 |
433 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
434 |
& streamice_cg_A2 |
435 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
436 |
& .25*phival(inodx,inody) * |
437 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
438 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
439 |
|
440 |
streamice_cg_A4 |
441 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
442 |
& streamice_cg_A4 |
443 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
444 |
& .25*phival(inodx,inody) * |
445 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
446 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
447 |
|
448 |
endif |
449 |
enddo |
450 |
enddo |
451 |
endif |
452 |
enddo |
453 |
enddo |
454 |
enddo |
455 |
enddo |
456 |
endif |
457 |
enddo |
458 |
enddo |
459 |
enddo |
460 |
enddo |
461 |
|
462 |
#endif |
463 |
#endif |
464 |
RETURN |
465 |
END SUBROUTINE |
466 |
|
467 |
SUBROUTINE STREAMICE_CG_ADIAG( myThid, |
468 |
O uret, |
469 |
O vret) |
470 |
|
471 |
C /============================================================\ |
472 |
C | SUBROUTINE | |
473 |
C | o | |
474 |
C |============================================================| |
475 |
C | | |
476 |
C \============================================================/ |
477 |
IMPLICIT NONE |
478 |
|
479 |
C === Global variables === |
480 |
#include "SIZE.h" |
481 |
#include "EEPARAMS.h" |
482 |
#include "PARAMS.h" |
483 |
#include "GRID.h" |
484 |
#include "STREAMICE.h" |
485 |
#include "STREAMICE_CG.h" |
486 |
|
487 |
C !INPUT/OUTPUT ARGUMENTS |
488 |
C uret, vret - result of matrix operating on u, v |
489 |
C is, ie, js, je - starting and ending cells |
490 |
INTEGER myThid |
491 |
_RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
492 |
_RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
493 |
|
494 |
|
495 |
#ifdef ALLOW_STREAMICE |
496 |
|
497 |
C the linear action of the matrix on (u,v) with triangular finite elements |
498 |
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
499 |
C but this may change pursuant to conversations with others |
500 |
C |
501 |
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
502 |
C in order to make less frequent halo updates |
503 |
C isym = 1 if grid is symmetric, 0 o.w. |
504 |
|
505 |
C the linear action of the matrix on (u,v) with triangular finite elements |
506 |
C Phi has the form |
507 |
C Phi (i,j,k,q) - applies to cell i,j |
508 |
|
509 |
C 3 - 4 |
510 |
C | | |
511 |
C 1 - 2 |
512 |
|
513 |
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
514 |
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
515 |
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
516 |
|
517 |
C !LOCAL VARIABLES: |
518 |
C == Local variables == |
519 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
520 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
521 |
_RL Ucell (2,2) |
522 |
_RL Vcell (2,2) |
523 |
_RL Hcell (2,2) |
524 |
_RL phival(2,2) |
525 |
|
526 |
uret(1,1,1,1) = uret(1,1,1,1) |
527 |
vret(1,1,1,1) = vret(1,1,1,1) |
528 |
|
529 |
DO j = 0, sNy+1 |
530 |
DO i = 0, sNx+1 |
531 |
DO bj = myByLo(myThid), myByHi(myThid) |
532 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
533 |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
534 |
DO iq=1,2 |
535 |
DO jq = 1,2 |
536 |
|
537 |
n = 2*(jq-1)+iq |
538 |
|
539 |
DO inode = 1,2 |
540 |
DO jnode = 1,2 |
541 |
|
542 |
m = 2*(jnode-1)+inode |
543 |
|
544 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
545 |
|
546 |
ilq = 1 |
547 |
jlq = 1 |
548 |
|
549 |
if (inode.eq.iq) ilq = 2 |
550 |
if (jnode.eq.jq) jlq = 2 |
551 |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
552 |
|
553 |
ux = DPhi (i,j,bi,bj,m,n,1) |
554 |
uy = DPhi (i,j,bi,bj,m,n,2) |
555 |
vx = 0 |
556 |
vy = 0 |
557 |
uq = Xquad(ilq) * Xquad(jlq) |
558 |
vq = 0 |
559 |
|
560 |
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
561 |
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
562 |
exy = .5*(uy+vx) + |
563 |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
564 |
|
565 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
566 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
567 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
568 |
& visc_streamice(i,j,bi,bj) * ( |
569 |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
570 |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
571 |
|
572 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
573 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
574 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
575 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
576 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
577 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
578 |
|
579 |
|
580 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
581 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
582 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
583 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
584 |
|
585 |
|
586 |
vx = DPhi (i,j,bi,bj,m,n,1) |
587 |
vy = DPhi (i,j,bi,bj,m,n,2) |
588 |
ux = 0 |
589 |
uy = 0 |
590 |
vq = Xquad(ilq) * Xquad(jlq) |
591 |
uq = 0 |
592 |
|
593 |
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
594 |
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
595 |
exy = .5*(uy+vx) + |
596 |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
597 |
|
598 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
599 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
600 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
601 |
& visc_streamice(i,j,bi,bj) * ( |
602 |
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
603 |
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
604 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
605 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
606 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
607 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
608 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
609 |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
610 |
|
611 |
|
612 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
613 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
614 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
615 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
616 |
|
617 |
endif |
618 |
|
619 |
enddo |
620 |
enddo |
621 |
enddo |
622 |
enddo |
623 |
endif |
624 |
enddo |
625 |
enddo |
626 |
enddo |
627 |
enddo |
628 |
|
629 |
#endif |
630 |
RETURN |
631 |
END SUBROUTINE |
632 |
|
633 |
|
634 |
|
635 |
SUBROUTINE STREAMICE_CG_BOUND_VALS( myThid, |
636 |
O uret, |
637 |
O vret) |
638 |
C /============================================================\ |
639 |
C | SUBROUTINE | |
640 |
C | o | |
641 |
C |============================================================| |
642 |
C | | |
643 |
C \============================================================/ |
644 |
IMPLICIT NONE |
645 |
|
646 |
C === Global variables === |
647 |
#include "SIZE.h" |
648 |
#include "EEPARAMS.h" |
649 |
#include "PARAMS.h" |
650 |
#include "GRID.h" |
651 |
#include "STREAMICE.h" |
652 |
#include "STREAMICE_CG.h" |
653 |
|
654 |
C !INPUT/OUTPUT ARGUMENTS |
655 |
C uret, vret - result of matrix operating on u, v |
656 |
C is, ie, js, je - starting and ending cells |
657 |
INTEGER myThid |
658 |
_RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
659 |
_RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
660 |
|
661 |
#ifdef ALLOW_STREAMICE |
662 |
|
663 |
C the linear action of the matrix on (u,v) with triangular finite elements |
664 |
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
665 |
C but this may change pursuant to conversations with others |
666 |
C |
667 |
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
668 |
C in order to make less frequent halo updates |
669 |
C isym = 1 if grid is symmetric, 0 o.w. |
670 |
|
671 |
C the linear action of the matrix on (u,v) with triangular finite elements |
672 |
C Phi has the form |
673 |
C Phi (i,j,k,q) - applies to cell i,j |
674 |
|
675 |
C 3 - 4 |
676 |
C | | |
677 |
C 1 - 2 |
678 |
|
679 |
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
680 |
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
681 |
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
682 |
|
683 |
C !LOCAL VARIABLES: |
684 |
C == Local variables == |
685 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
686 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
687 |
_RL Ucell (2,2) |
688 |
_RL Vcell (2,2) |
689 |
_RL Hcell (2,2) |
690 |
_RL phival(2,2) |
691 |
|
692 |
uret(1,1,1,1) = uret(1,1,1,1) |
693 |
vret(1,1,1,1) = vret(1,1,1,1) |
694 |
|
695 |
DO j = 0, sNy+1 |
696 |
DO i = 0, sNx+1 |
697 |
DO bj = myByLo(myThid), myByHi(myThid) |
698 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
699 |
IF ((STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) .AND. |
700 |
& ((STREAMICE_umask(i,j,bi,bj).eq.3.0) .OR. |
701 |
& (STREAMICE_umask(i,j+1,bi,bj).eq.3.0) .OR. |
702 |
& (STREAMICE_umask(i+1,j,bi,bj).eq.3.0) .OR. |
703 |
& (STREAMICE_umask(i+1,j+1,bi,bj).eq.3.0))) THEN |
704 |
|
705 |
DO iq=1,2 |
706 |
DO jq = 1,2 |
707 |
|
708 |
n = 2*(jq-1)+iq |
709 |
|
710 |
uq = u_bdry_values_SI(i,j,bi,bj)*Xquad(3-iq)*Xquad(3-jq)+ |
711 |
& u_bdry_values_SI(i+1,j,bi,bj)*Xquad(iq)*Xquad(3-jq)+ |
712 |
& u_bdry_values_SI(i,j+1,bi,bj)*Xquad(3-iq)*Xquad(jq)+ |
713 |
& u_bdry_values_SI(i+1,j+1,bi,bj)*Xquad(iq)*Xquad(jq) |
714 |
vq = v_bdry_values_SI(i,j,bi,bj)*Xquad(3-iq)*Xquad(3-jq)+ |
715 |
& v_bdry_values_SI(i+1,j,bi,bj)*Xquad(iq)*Xquad(3-jq)+ |
716 |
& v_bdry_values_SI(i,j+1,bi,bj)*Xquad(3-iq)*Xquad(jq)+ |
717 |
& v_bdry_values_SI(i+1,j+1,bi,bj)*Xquad(iq)*Xquad(jq) |
718 |
ux = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
719 |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
720 |
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
721 |
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
722 |
uy = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
723 |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
724 |
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
725 |
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
726 |
vx = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
727 |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
728 |
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
729 |
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
730 |
vy = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
731 |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
732 |
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
733 |
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
734 |
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
735 |
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
736 |
exy = .5*(uy+vx) + |
737 |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
738 |
|
739 |
do inode = 1,2 |
740 |
do jnode = 1,2 |
741 |
|
742 |
m = 2*(jnode-1)+inode |
743 |
ilq = 1 |
744 |
jlq = 1 |
745 |
if (inode.eq.iq) ilq = 2 |
746 |
if (jnode.eq.jq) jlq = 2 |
747 |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
748 |
|
749 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
750 |
|
751 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
752 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
753 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
754 |
& visc_streamice(i,j,bi,bj) * ( |
755 |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
756 |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
757 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
758 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
759 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
760 |
& visc_streamice(i,j,bi,bj) * ( |
761 |
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
762 |
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
763 |
|
764 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
765 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
766 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
767 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
768 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
769 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
770 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
771 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
772 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
773 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
774 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
775 |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
776 |
|
777 |
! if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then |
778 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
779 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
780 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
781 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
782 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
783 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
784 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
785 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
786 |
! endif |
787 |
endif |
788 |
enddo |
789 |
enddo |
790 |
enddo |
791 |
enddo |
792 |
endif |
793 |
enddo |
794 |
enddo |
795 |
enddo |
796 |
enddo |
797 |
|
798 |
#endif |
799 |
RETURN |
800 |
END SUBROUTINE |