63 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
64 |
C == Local variables == |
C == Local variables == |
65 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
66 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, phival |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
67 |
_RL Ucell (2,2) |
_RL Ucell (2,2) |
68 |
_RL Vcell (2,2) |
_RL Vcell (2,2) |
69 |
_RL Hcell (2,2) |
_RL Hcell (2,2) |
70 |
|
_RL phival(2,2) |
71 |
|
|
72 |
|
uret(1,1,1,1) = uret(1,1,1,1) |
73 |
|
vret(1,1,1,1) = vret(1,1,1,1) |
74 |
|
|
75 |
DO j = js, je |
DO j = js, je |
76 |
DO i = is, ie |
DO i = is, ie |
77 |
DO bj = myByLo(myThid), myByHi(myThid) |
DO bj = myByLo(myThid), myByHi(myThid) |
78 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
DO bi = myBxLo(myThid), myBxHi(myThid) |
79 |
|
|
80 |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
81 |
DO iq=1,2 |
DO iq = 1,2 |
82 |
DO jq = 1,2 |
DO jq = 1,2 |
83 |
|
|
84 |
n = 2*(jq-1)+iq |
n = 2*(jq-1)+iq |
117 |
|
|
118 |
m = 2*(jnode-1)+inode |
m = 2*(jnode-1)+inode |
119 |
ilq = 1 |
ilq = 1 |
120 |
jlq = 1 |
jlq = 1 |
121 |
if (inode.eq.iq) ilq = 2 |
if (inode.eq.iq) ilq = 2 |
122 |
if (jnode.eq.jq) jlq = 2 |
if (jnode.eq.jq) jlq = 2 |
123 |
phival = Xquad(ilq)*Xquad(jlq) |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
124 |
|
|
125 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
126 |
|
|
130 |
& visc_streamice(i,j,bi,bj) * ( |
& visc_streamice(i,j,bi,bj) * ( |
131 |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
132 |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
133 |
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
134 |
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
135 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
136 |
|
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
137 |
|
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
138 |
|
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
139 |
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
140 |
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
141 |
|
& phival(inode,jnode) * |
142 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
143 |
|
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
144 |
|
|
145 |
|
endif |
146 |
|
|
147 |
|
if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
148 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
149 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
150 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
151 |
& visc_streamice(i,j,bi,bj) * ( |
& visc_streamice(i,j,bi,bj) * ( |
152 |
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
153 |
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
|
|
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
|
|
& visc_streamice(i,j,bi,bj) * phival * |
|
|
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
|
|
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
|
154 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
155 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
156 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
157 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
158 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
159 |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
|
|
|
|
! IF (bi.eq.2.and.bj.eq.2.and.i.eq.15.and. |
|
|
! & (exx.ne.0.0 .or. eyy.ne.0.0 .or. exy.ne.0.0)) THEN |
|
|
! PRINT *, "CG_FUNCTION", j, v(i,j,bi,bj),v(i+1,j,bi,bj), |
|
|
! & v(i,j+1,bi,bj),v(i+1,j+1,bi,bj) |
|
|
! ENDIF |
|
|
|
|
|
|
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
|
|
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
|
|
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
|
160 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
161 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
162 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * |
163 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
164 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
165 |
|
|
166 |
endif |
endif |
167 |
enddo |
enddo |
168 |
enddo |
enddo |
169 |
|
|
170 |
enddo |
enddo |
171 |
enddo |
enddo |
172 |
|
c-- STREAMICE_hmask |
173 |
endif |
endif |
174 |
|
|
175 |
enddo |
enddo |
176 |
enddo |
enddo |
177 |
enddo |
enddo |
205 |
|
|
206 |
#ifdef ALLOW_STREAMICE |
#ifdef ALLOW_STREAMICE |
207 |
|
|
208 |
|
#ifdef STREAMICE_CONSTRUCT_MATRIX |
209 |
|
|
210 |
C the linear action of the matrix on (u,v) with triangular finite elements |
C the linear action of the matrix on (u,v) with triangular finite elements |
211 |
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
212 |
C but this may change pursuant to conversations with others |
C but this may change pursuant to conversations with others |
231 |
C == Local variables == |
C == Local variables == |
232 |
INTEGER iq, jq, inodx, inody, i, j, bi, bj, ilqx, ilqy, m_i, n |
INTEGER iq, jq, inodx, inody, i, j, bi, bj, ilqx, ilqy, m_i, n |
233 |
INTEGER jlqx, jlqy, jnodx,jnody, m_j, col_y, col_x, cg_halo, k |
INTEGER jlqx, jlqy, jnodx,jnody, m_j, col_y, col_x, cg_halo, k |
234 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, phival |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
235 |
|
_RL phival(2,2) |
236 |
|
|
237 |
! do i=1,3 |
! do i=1,3 |
238 |
! do j=0,2 |
! do j=0,2 |
275 |
DO inody = 1,2 |
DO inody = 1,2 |
276 |
|
|
277 |
if (STREAMICE_umask(i-1+inodx,j-1+inody,bi,bj) |
if (STREAMICE_umask(i-1+inodx,j-1+inody,bi,bj) |
278 |
& .eq.1.0) |
& .eq.1.0 .or. |
279 |
|
& streamice_vmask(i-1+inodx,j-1+inody,bi,bj).eq.1.0) |
280 |
& then |
& then |
281 |
|
|
282 |
m_i = 2*(inody-1)+inodx |
m_i = 2*(inody-1)+inodx |
285 |
|
|
286 |
if (inodx.eq.iq) ilqx = 2 |
if (inodx.eq.iq) ilqx = 2 |
287 |
if (inody.eq.jq) ilqy = 2 |
if (inody.eq.jq) ilqy = 2 |
288 |
phival = Xquad(ilqx)*Xquad(ilqy) |
phival(inodx,inody) = Xquad(ilqx)*Xquad(ilqy) |
289 |
|
|
290 |
DO jnodx = 1,2 |
DO jnodx = 1,2 |
291 |
DO jnody = 1,2 |
DO jnody = 1,2 |
292 |
if (STREAMICE_umask(i-1+jnodx,j-1+jnody,bi,bj) |
if (STREAMICE_umask(i-1+jnodx,j-1+jnody,bi,bj) |
293 |
& .eq.1.0) |
& .eq.1.0 .or. |
294 |
|
& STREAMICE_vmask(i-1+jnodx,j-1+jnody,bi,bj).eq.1.0) |
295 |
& then |
& then |
296 |
|
|
297 |
m_j = 2*(jnody-1)+jnodx |
m_j = 2*(jnody-1)+jnodx |
347 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
348 |
& .25 * |
& .25 * |
349 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
350 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
351 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
352 |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
353 |
|
|
357 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
358 |
& .25 * |
& .25 * |
359 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
360 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
361 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
362 |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
363 |
|
|
365 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
366 |
& streamice_cg_A1 |
& streamice_cg_A1 |
367 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
368 |
& .25*phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& .25*phival(inodx,inody) * |
369 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
370 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
371 |
|
|
372 |
streamice_cg_A3 |
streamice_cg_A3 |
373 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
374 |
& streamice_cg_A3 |
& streamice_cg_A3 |
375 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
376 |
& .25*phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& .25*phival(inodx,inody) * |
377 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
378 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
379 |
|
|
380 |
c |
c |
417 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
418 |
& .25 * |
& .25 * |
419 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
420 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
421 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
422 |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
423 |
|
|
427 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
428 |
& .25 * |
& .25 * |
429 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
430 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
431 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
432 |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
433 |
|
|
435 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
436 |
& streamice_cg_A2 |
& streamice_cg_A2 |
437 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
438 |
& .25*phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& .25*phival(inodx,inody) * |
439 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
440 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
441 |
|
|
442 |
streamice_cg_A4 |
streamice_cg_A4 |
443 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
444 |
& streamice_cg_A4 |
& streamice_cg_A4 |
445 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
446 |
& .25*phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& .25*phival(inodx,inody) * |
447 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
448 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
449 |
|
|
450 |
endif |
endif |
462 |
enddo |
enddo |
463 |
|
|
464 |
#endif |
#endif |
465 |
|
#endif |
466 |
RETURN |
RETURN |
467 |
END SUBROUTINE |
END SUBROUTINE |
468 |
|
|
519 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
520 |
C == Local variables == |
C == Local variables == |
521 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
522 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, phival |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
523 |
_RL Ucell (2,2) |
_RL Ucell (2,2) |
524 |
_RL Vcell (2,2) |
_RL Vcell (2,2) |
525 |
_RL Hcell (2,2) |
_RL Hcell (2,2) |
526 |
|
_RL phival(2,2) |
527 |
|
|
528 |
|
uret(1,1,1,1) = uret(1,1,1,1) |
529 |
|
vret(1,1,1,1) = vret(1,1,1,1) |
530 |
|
|
531 |
DO j = 0, sNy+1 |
DO j = 0, sNy+1 |
532 |
DO i = 0, sNx+1 |
DO i = 0, sNx+1 |
542 |
DO jnode = 1,2 |
DO jnode = 1,2 |
543 |
|
|
544 |
m = 2*(jnode-1)+inode |
m = 2*(jnode-1)+inode |
|
ilq = 1 |
|
|
jlq = 1 |
|
|
|
|
|
if (inode.eq.iq) ilq = 2 |
|
|
if (jnode.eq.jq) jlq = 2 |
|
|
phival = Xquad(ilq)*Xquad(jlq) |
|
545 |
|
|
546 |
ux = DPhi (i,j,bi,bj,m,n,1) |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0 .or. |
547 |
uy = DPhi (i,j,bi,bj,m,n,2) |
& STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) |
548 |
vx = 0 |
& then |
549 |
vy = 0 |
|
550 |
uq = Xquad(ilq) * Xquad(jlq) |
ilq = 1 |
551 |
vq = 0 |
jlq = 1 |
|
|
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
|
|
exy = .5*(uy+vx) + |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
|
552 |
|
|
553 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
if (inode.eq.iq) ilq = 2 |
554 |
|
if (jnode.eq.jq) jlq = 2 |
555 |
|
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
556 |
|
|
557 |
|
ux = DPhi (i,j,bi,bj,m,n,1) |
558 |
|
uy = DPhi (i,j,bi,bj,m,n,2) |
559 |
|
vx = 0 |
560 |
|
vy = 0 |
561 |
|
uq = Xquad(ilq) * Xquad(jlq) |
562 |
|
vq = 0 |
563 |
|
|
564 |
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
565 |
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
566 |
|
exy = .5*(uy+vx) + |
567 |
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
568 |
|
|
569 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
570 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
571 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
576 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
577 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
578 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
579 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
580 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
581 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
582 |
|
|
583 |
|
|
584 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
585 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
586 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
587 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
588 |
|
|
589 |
|
|
608 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
609 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
610 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
611 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
612 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
613 |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
614 |
|
|
615 |
|
|
616 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
617 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
618 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
619 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
620 |
|
|
621 |
endif |
endif |
622 |
|
|
623 |
enddo |
enddo |
624 |
enddo |
enddo |
625 |
enddo |
enddo |
687 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
688 |
C == Local variables == |
C == Local variables == |
689 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
690 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, phival |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
691 |
_RL Ucell (2,2) |
_RL Ucell (2,2) |
692 |
_RL Vcell (2,2) |
_RL Vcell (2,2) |
693 |
_RL Hcell (2,2) |
_RL Hcell (2,2) |
694 |
|
_RL phival(2,2) |
695 |
|
|
696 |
|
uret(1,1,1,1) = uret(1,1,1,1) |
697 |
|
vret(1,1,1,1) = vret(1,1,1,1) |
698 |
|
|
699 |
DO j = 0, sNy+1 |
DO j = 0, sNy+1 |
700 |
DO i = 0, sNx+1 |
DO i = 0, sNx+1 |
704 |
& ((STREAMICE_umask(i,j,bi,bj).eq.3.0) .OR. |
& ((STREAMICE_umask(i,j,bi,bj).eq.3.0) .OR. |
705 |
& (STREAMICE_umask(i,j+1,bi,bj).eq.3.0) .OR. |
& (STREAMICE_umask(i,j+1,bi,bj).eq.3.0) .OR. |
706 |
& (STREAMICE_umask(i+1,j,bi,bj).eq.3.0) .OR. |
& (STREAMICE_umask(i+1,j,bi,bj).eq.3.0) .OR. |
707 |
& (STREAMICE_umask(i+1,j+1,bi,bj).eq.3.0))) THEN |
& (STREAMICE_umask(i+1,j+1,bi,bj).eq.3.0) .OR. |
708 |
|
& (STREAMICE_vmask(i,j,bi,bj).eq.3.0) .OR. |
709 |
|
& (STREAMICE_vmask(i,j+1,bi,bj).eq.3.0) .OR. |
710 |
|
& (STREAMICE_vmask(i+1,j,bi,bj).eq.3.0) .OR. |
711 |
|
& (STREAMICE_vmask(i+1,j+1,bi,bj).eq.3.0))) THEN |
712 |
|
|
713 |
DO iq=1,2 |
DO iq=1,2 |
714 |
DO jq = 1,2 |
DO jq = 1,2 |
744 |
exy = .5*(uy+vx) + |
exy = .5*(uy+vx) + |
745 |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
746 |
|
|
747 |
|
|
748 |
do inode = 1,2 |
do inode = 1,2 |
749 |
do jnode = 1,2 |
do jnode = 1,2 |
750 |
|
|
751 |
m = 2*(jnode-1)+inode |
m = 2*(jnode-1)+inode |
752 |
ilq = 1 |
ilq = 1 |
753 |
ilq = 1 |
jlq = 1 |
754 |
if (inode.eq.iq) ilq = 2 |
if (inode.eq.iq) ilq = 2 |
755 |
if (jnode.eq.jq) jlq = 2 |
if (jnode.eq.jq) jlq = 2 |
756 |
phival = Xquad(ilq)*Xquad(jlq) |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
757 |
|
|
758 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
759 |
|
|
763 |
& visc_streamice(i,j,bi,bj) * ( |
& visc_streamice(i,j,bi,bj) * ( |
764 |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
765 |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
766 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
|
|
& visc_streamice(i,j,bi,bj) * ( |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
|
767 |
|
|
768 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
769 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
770 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
771 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
772 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
773 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
774 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
|
|
& visc_streamice(i,j,bi,bj) * phival * |
|
|
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
|
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
|
775 |
|
|
776 |
! if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then |
! if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then |
777 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
778 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
779 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
780 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
781 |
|
|
782 |
|
! endif |
783 |
|
endif |
784 |
|
if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
785 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
786 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
787 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
788 |
|
& visc_streamice(i,j,bi,bj) * ( |
789 |
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
790 |
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
791 |
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
792 |
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
793 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
794 |
|
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
795 |
|
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
796 |
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
797 |
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
798 |
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
799 |
|
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
800 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
|
! endif |
|
801 |
endif |
endif |
802 |
enddo |
enddo |
803 |
enddo |
enddo |