62 |
|
|
63 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
64 |
C == Local variables == |
C == Local variables == |
65 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n,Gi,Gj |
66 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
67 |
_RL Ucell (2,2) |
_RL Ucell (2,2) |
68 |
_RL Vcell (2,2) |
_RL Vcell (2,2) |
77 |
DO bj = myByLo(myThid), myByHi(myThid) |
DO bj = myByLo(myThid), myByHi(myThid) |
78 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
DO bi = myBxLo(myThid), myBxHi(myThid) |
79 |
|
|
80 |
|
Gi = (myXGlobalLo-1)+(bi-1)*sNx+i |
81 |
|
Gj = (myYGlobalLo-1)+(bj-1)*sNy+j |
82 |
|
|
83 |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
84 |
DO iq = 1,2 |
DO iq = 1,2 |
85 |
DO jq = 1,2 |
DO jq = 1,2 |
86 |
|
|
87 |
n = 2*(jq-1)+iq |
n = 2*(jq-1)+iq |
88 |
|
|
89 |
|
|
90 |
uq = u(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + |
uq = u(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + |
91 |
& u(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + |
& u(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + |
92 |
& u(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + |
& u(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + |
127 |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
128 |
|
|
129 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
130 |
|
|
131 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
132 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
133 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
134 |
& visc_streamice(i,j,bi,bj) * ( |
& visc_streamice(i,j,bi,bj) * ( |
135 |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
136 |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
137 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
|
|
& visc_streamice(i,j,bi,bj) * ( |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
|
138 |
|
|
139 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
140 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
141 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
142 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
143 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
144 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
|
|
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
|
|
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
|
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
|
145 |
|
|
|
! IF (bi.eq.2.and.bj.eq.2.and.i.eq.15.and. |
|
|
! & (exx.ne.0.0 .or. eyy.ne.0.0 .or. exy.ne.0.0)) THEN |
|
|
! PRINT *, "CG_FUNCTION", j, v(i,j,bi,bj),v(i+1,j,bi,bj), |
|
|
! & v(i,j+1,bi,bj),v(i+1,j+1,bi,bj) |
|
|
! ENDIF |
|
146 |
|
|
|
|
|
147 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
148 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
149 |
& phival(inode,jnode) * |
& phival(inode,jnode) * |
150 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
151 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
152 |
|
|
153 |
|
|
154 |
|
endif |
155 |
|
|
156 |
|
if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
157 |
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
158 |
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
159 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
160 |
|
& visc_streamice(i,j,bi,bj) * ( |
161 |
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
162 |
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
163 |
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
164 |
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
165 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
166 |
|
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
167 |
|
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
168 |
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
169 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
170 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
171 |
& phival(inode,jnode) * |
& phival(inode,jnode) * |
214 |
|
|
215 |
#ifdef ALLOW_STREAMICE |
#ifdef ALLOW_STREAMICE |
216 |
|
|
217 |
|
#ifdef STREAMICE_CONSTRUCT_MATRIX |
218 |
|
|
219 |
C the linear action of the matrix on (u,v) with triangular finite elements |
C the linear action of the matrix on (u,v) with triangular finite elements |
220 |
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
221 |
C but this may change pursuant to conversations with others |
C but this may change pursuant to conversations with others |
284 |
DO inody = 1,2 |
DO inody = 1,2 |
285 |
|
|
286 |
if (STREAMICE_umask(i-1+inodx,j-1+inody,bi,bj) |
if (STREAMICE_umask(i-1+inodx,j-1+inody,bi,bj) |
287 |
& .eq.1.0) |
& .eq.1.0 .or. |
288 |
|
& streamice_vmask(i-1+inodx,j-1+inody,bi,bj).eq.1.0) |
289 |
& then |
& then |
290 |
|
|
291 |
m_i = 2*(inody-1)+inodx |
m_i = 2*(inody-1)+inodx |
299 |
DO jnodx = 1,2 |
DO jnodx = 1,2 |
300 |
DO jnody = 1,2 |
DO jnody = 1,2 |
301 |
if (STREAMICE_umask(i-1+jnodx,j-1+jnody,bi,bj) |
if (STREAMICE_umask(i-1+jnodx,j-1+jnody,bi,bj) |
302 |
& .eq.1.0) |
& .eq.1.0 .or. |
303 |
|
& STREAMICE_vmask(i-1+jnodx,j-1+jnody,bi,bj).eq.1.0) |
304 |
& then |
& then |
305 |
|
|
306 |
m_j = 2*(jnody-1)+jnodx |
m_j = 2*(jnody-1)+jnodx |
471 |
enddo |
enddo |
472 |
|
|
473 |
#endif |
#endif |
474 |
|
#endif |
475 |
RETURN |
RETURN |
476 |
END SUBROUTINE |
END SUBROUTINE |
477 |
|
|
552 |
|
|
553 |
m = 2*(jnode-1)+inode |
m = 2*(jnode-1)+inode |
554 |
|
|
555 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0 .or. |
556 |
|
& STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) |
557 |
|
& then |
558 |
|
|
559 |
ilq = 1 |
ilq = 1 |
560 |
jlq = 1 |
jlq = 1 |
713 |
& ((STREAMICE_umask(i,j,bi,bj).eq.3.0) .OR. |
& ((STREAMICE_umask(i,j,bi,bj).eq.3.0) .OR. |
714 |
& (STREAMICE_umask(i,j+1,bi,bj).eq.3.0) .OR. |
& (STREAMICE_umask(i,j+1,bi,bj).eq.3.0) .OR. |
715 |
& (STREAMICE_umask(i+1,j,bi,bj).eq.3.0) .OR. |
& (STREAMICE_umask(i+1,j,bi,bj).eq.3.0) .OR. |
716 |
& (STREAMICE_umask(i+1,j+1,bi,bj).eq.3.0))) THEN |
& (STREAMICE_umask(i+1,j+1,bi,bj).eq.3.0) .OR. |
717 |
|
& (STREAMICE_vmask(i,j,bi,bj).eq.3.0) .OR. |
718 |
|
& (STREAMICE_vmask(i,j+1,bi,bj).eq.3.0) .OR. |
719 |
|
& (STREAMICE_vmask(i+1,j,bi,bj).eq.3.0) .OR. |
720 |
|
& (STREAMICE_vmask(i+1,j+1,bi,bj).eq.3.0))) THEN |
721 |
|
|
722 |
DO iq=1,2 |
DO iq=1,2 |
723 |
DO jq = 1,2 |
DO jq = 1,2 |
736 |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
737 |
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
738 |
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
739 |
uy = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
uy = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
740 |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
741 |
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
742 |
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
744 |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
745 |
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
746 |
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
747 |
vy = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
vy = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
748 |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
749 |
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
750 |
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
753 |
exy = .5*(uy+vx) + |
exy = .5*(uy+vx) + |
754 |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
755 |
|
|
756 |
|
|
757 |
do inode = 1,2 |
do inode = 1,2 |
758 |
do jnode = 1,2 |
do jnode = 1,2 |
759 |
|
|
764 |
if (jnode.eq.jq) jlq = 2 |
if (jnode.eq.jq) jlq = 2 |
765 |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
766 |
|
|
767 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
768 |
|
|
769 |
|
|
770 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
771 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
773 |
& visc_streamice(i,j,bi,bj) * ( |
& visc_streamice(i,j,bi,bj) * ( |
774 |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
775 |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
776 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
|
|
& visc_streamice(i,j,bi,bj) * ( |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
|
777 |
|
|
778 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
779 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
781 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
782 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
783 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
784 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
|
|
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
|
|
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
|
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
|
785 |
|
|
786 |
! if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then |
! if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then |
787 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
788 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
789 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
790 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
791 |
|
|
792 |
|
|
793 |
|
! endif |
794 |
|
endif |
795 |
|
if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
796 |
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
797 |
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
798 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
799 |
|
& visc_streamice(i,j,bi,bj) * ( |
800 |
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
801 |
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
802 |
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
803 |
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
804 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
805 |
|
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
806 |
|
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
807 |
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
808 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
809 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
810 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
811 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
|
! endif |
|
812 |
endif |
endif |
813 |
enddo |
enddo |
814 |
enddo |
enddo |