62 |
|
|
63 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
64 |
C == Local variables == |
C == Local variables == |
65 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n,Gi,Gj |
66 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, phival |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
67 |
_RL Ucell (2,2) |
_RL Ucell (2,2) |
68 |
_RL Vcell (2,2) |
_RL Vcell (2,2) |
69 |
_RL Hcell (2,2) |
_RL Hcell (2,2) |
70 |
|
_RL phival(2,2) |
71 |
|
|
72 |
|
uret(1,1,1,1) = uret(1,1,1,1) |
73 |
|
vret(1,1,1,1) = vret(1,1,1,1) |
74 |
|
|
75 |
DO j = js, je |
DO j = js, je |
76 |
DO i = is, ie |
DO i = is, ie |
77 |
DO bj = myByLo(myThid), myByHi(myThid) |
DO bj = myByLo(myThid), myByHi(myThid) |
78 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
DO bi = myBxLo(myThid), myBxHi(myThid) |
79 |
|
|
80 |
|
Gi = (myXGlobalLo-1)+(bi-1)*sNx+i |
81 |
|
Gj = (myYGlobalLo-1)+(bj-1)*sNy+j |
82 |
|
|
83 |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
84 |
DO iq=1,2 |
DO iq = 1,2 |
85 |
DO jq = 1,2 |
DO jq = 1,2 |
86 |
|
|
87 |
n = 2*(jq-1)+iq |
n = 2*(jq-1)+iq |
88 |
|
|
89 |
|
|
90 |
uq = u(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + |
uq = u(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + |
91 |
& u(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + |
& u(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + |
92 |
& u(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + |
& u(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + |
121 |
|
|
122 |
m = 2*(jnode-1)+inode |
m = 2*(jnode-1)+inode |
123 |
ilq = 1 |
ilq = 1 |
124 |
jlq = 1 |
jlq = 1 |
125 |
if (inode.eq.iq) ilq = 2 |
if (inode.eq.iq) ilq = 2 |
126 |
if (jnode.eq.jq) jlq = 2 |
if (jnode.eq.jq) jlq = 2 |
127 |
phival = Xquad(ilq)*Xquad(jlq) |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
128 |
|
|
129 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
130 |
|
|
131 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
132 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
133 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
134 |
& visc_streamice(i,j,bi,bj) * ( |
& visc_streamice(i,j,bi,bj) * ( |
135 |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
136 |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
137 |
|
|
138 |
|
|
139 |
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
140 |
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
141 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
142 |
|
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
143 |
|
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
144 |
|
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
145 |
|
|
146 |
|
|
147 |
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
148 |
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
149 |
|
& phival(inode,jnode) * |
150 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
151 |
|
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
152 |
|
|
153 |
|
|
154 |
|
endif |
155 |
|
|
156 |
|
if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
157 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
158 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
159 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
160 |
& visc_streamice(i,j,bi,bj) * ( |
& visc_streamice(i,j,bi,bj) * ( |
161 |
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
162 |
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
|
|
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
|
|
& visc_streamice(i,j,bi,bj) * phival * |
|
|
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
|
|
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
|
163 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
164 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
165 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
166 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
167 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
168 |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
|
|
|
|
! IF (bi.eq.2.and.bj.eq.2.and.i.eq.15.and. |
|
|
! & (exx.ne.0.0 .or. eyy.ne.0.0 .or. exy.ne.0.0)) THEN |
|
|
! PRINT *, "CG_FUNCTION", j, v(i,j,bi,bj),v(i+1,j,bi,bj), |
|
|
! & v(i,j+1,bi,bj),v(i+1,j+1,bi,bj) |
|
|
! ENDIF |
|
|
|
|
|
|
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
|
|
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
|
|
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
|
169 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
170 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
171 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * |
172 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
173 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
174 |
|
|
175 |
endif |
endif |
176 |
enddo |
enddo |
177 |
enddo |
enddo |
178 |
|
|
179 |
enddo |
enddo |
180 |
enddo |
enddo |
181 |
|
c-- STREAMICE_hmask |
182 |
endif |
endif |
183 |
|
|
184 |
enddo |
enddo |
185 |
enddo |
enddo |
186 |
enddo |
enddo |
214 |
|
|
215 |
#ifdef ALLOW_STREAMICE |
#ifdef ALLOW_STREAMICE |
216 |
|
|
217 |
|
#ifdef STREAMICE_CONSTRUCT_MATRIX |
218 |
|
|
219 |
C the linear action of the matrix on (u,v) with triangular finite elements |
C the linear action of the matrix on (u,v) with triangular finite elements |
220 |
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
221 |
C but this may change pursuant to conversations with others |
C but this may change pursuant to conversations with others |
240 |
C == Local variables == |
C == Local variables == |
241 |
INTEGER iq, jq, inodx, inody, i, j, bi, bj, ilqx, ilqy, m_i, n |
INTEGER iq, jq, inodx, inody, i, j, bi, bj, ilqx, ilqy, m_i, n |
242 |
INTEGER jlqx, jlqy, jnodx,jnody, m_j, col_y, col_x, cg_halo, k |
INTEGER jlqx, jlqy, jnodx,jnody, m_j, col_y, col_x, cg_halo, k |
243 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, phival |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
244 |
|
_RL phival(2,2) |
245 |
|
|
246 |
! do i=1,3 |
! do i=1,3 |
247 |
! do j=0,2 |
! do j=0,2 |
284 |
DO inody = 1,2 |
DO inody = 1,2 |
285 |
|
|
286 |
if (STREAMICE_umask(i-1+inodx,j-1+inody,bi,bj) |
if (STREAMICE_umask(i-1+inodx,j-1+inody,bi,bj) |
287 |
& .eq.1.0) |
& .eq.1.0 .or. |
288 |
|
& streamice_vmask(i-1+inodx,j-1+inody,bi,bj).eq.1.0) |
289 |
& then |
& then |
290 |
|
|
291 |
m_i = 2*(inody-1)+inodx |
m_i = 2*(inody-1)+inodx |
294 |
|
|
295 |
if (inodx.eq.iq) ilqx = 2 |
if (inodx.eq.iq) ilqx = 2 |
296 |
if (inody.eq.jq) ilqy = 2 |
if (inody.eq.jq) ilqy = 2 |
297 |
phival = Xquad(ilqx)*Xquad(ilqy) |
phival(inodx,inody) = Xquad(ilqx)*Xquad(ilqy) |
298 |
|
|
299 |
DO jnodx = 1,2 |
DO jnodx = 1,2 |
300 |
DO jnody = 1,2 |
DO jnody = 1,2 |
301 |
if (STREAMICE_umask(i-1+jnodx,j-1+jnody,bi,bj) |
if (STREAMICE_umask(i-1+jnodx,j-1+jnody,bi,bj) |
302 |
& .eq.1.0) |
& .eq.1.0 .or. |
303 |
|
& STREAMICE_vmask(i-1+jnodx,j-1+jnody,bi,bj).eq.1.0) |
304 |
& then |
& then |
305 |
|
|
306 |
m_j = 2*(jnody-1)+jnodx |
m_j = 2*(jnody-1)+jnodx |
356 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
357 |
& .25 * |
& .25 * |
358 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
359 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
360 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
361 |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
362 |
|
|
366 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
367 |
& .25 * |
& .25 * |
368 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
369 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
370 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
371 |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
372 |
|
|
374 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
375 |
& streamice_cg_A1 |
& streamice_cg_A1 |
376 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
377 |
& .25*phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& .25*phival(inodx,inody) * |
378 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
379 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
380 |
|
|
381 |
streamice_cg_A3 |
streamice_cg_A3 |
382 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
383 |
& streamice_cg_A3 |
& streamice_cg_A3 |
384 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
385 |
& .25*phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& .25*phival(inodx,inody) * |
386 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
387 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
388 |
|
|
389 |
c |
c |
426 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
427 |
& .25 * |
& .25 * |
428 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
429 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
430 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
431 |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
432 |
|
|
436 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
437 |
& .25 * |
& .25 * |
438 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
439 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
440 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
441 |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
442 |
|
|
444 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
445 |
& streamice_cg_A2 |
& streamice_cg_A2 |
446 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
447 |
& .25*phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& .25*phival(inodx,inody) * |
448 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
449 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
450 |
|
|
451 |
streamice_cg_A4 |
streamice_cg_A4 |
452 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
453 |
& streamice_cg_A4 |
& streamice_cg_A4 |
454 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
455 |
& .25*phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& .25*phival(inodx,inody) * |
456 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
457 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
458 |
|
|
459 |
endif |
endif |
471 |
enddo |
enddo |
472 |
|
|
473 |
#endif |
#endif |
474 |
|
#endif |
475 |
RETURN |
RETURN |
476 |
END SUBROUTINE |
END SUBROUTINE |
477 |
|
|
528 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
529 |
C == Local variables == |
C == Local variables == |
530 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
531 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, phival |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
532 |
_RL Ucell (2,2) |
_RL Ucell (2,2) |
533 |
_RL Vcell (2,2) |
_RL Vcell (2,2) |
534 |
_RL Hcell (2,2) |
_RL Hcell (2,2) |
535 |
|
_RL phival(2,2) |
536 |
|
|
537 |
|
uret(1,1,1,1) = uret(1,1,1,1) |
538 |
|
vret(1,1,1,1) = vret(1,1,1,1) |
539 |
|
|
540 |
DO j = 0, sNy+1 |
DO j = 0, sNy+1 |
541 |
DO i = 0, sNx+1 |
DO i = 0, sNx+1 |
551 |
DO jnode = 1,2 |
DO jnode = 1,2 |
552 |
|
|
553 |
m = 2*(jnode-1)+inode |
m = 2*(jnode-1)+inode |
|
ilq = 1 |
|
|
jlq = 1 |
|
|
|
|
|
if (inode.eq.iq) ilq = 2 |
|
|
if (jnode.eq.jq) jlq = 2 |
|
|
phival = Xquad(ilq)*Xquad(jlq) |
|
554 |
|
|
555 |
ux = DPhi (i,j,bi,bj,m,n,1) |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0 .or. |
556 |
uy = DPhi (i,j,bi,bj,m,n,2) |
& STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) |
557 |
vx = 0 |
& then |
558 |
vy = 0 |
|
559 |
uq = Xquad(ilq) * Xquad(jlq) |
ilq = 1 |
560 |
vq = 0 |
jlq = 1 |
|
|
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
|
|
exy = .5*(uy+vx) + |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
|
561 |
|
|
562 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
if (inode.eq.iq) ilq = 2 |
563 |
|
if (jnode.eq.jq) jlq = 2 |
564 |
|
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
565 |
|
|
566 |
|
ux = DPhi (i,j,bi,bj,m,n,1) |
567 |
|
uy = DPhi (i,j,bi,bj,m,n,2) |
568 |
|
vx = 0 |
569 |
|
vy = 0 |
570 |
|
uq = Xquad(ilq) * Xquad(jlq) |
571 |
|
vq = 0 |
572 |
|
|
573 |
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
574 |
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
575 |
|
exy = .5*(uy+vx) + |
576 |
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
577 |
|
|
578 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
579 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
580 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
585 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
586 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
587 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
588 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
589 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
590 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
591 |
|
|
592 |
|
|
593 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
594 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
595 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
596 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
597 |
|
|
598 |
|
|
617 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
618 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
619 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
620 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
621 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
622 |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
623 |
|
|
624 |
|
|
625 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
626 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
627 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
628 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
629 |
|
|
630 |
endif |
endif |
631 |
|
|
632 |
enddo |
enddo |
633 |
enddo |
enddo |
634 |
enddo |
enddo |
696 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
697 |
C == Local variables == |
C == Local variables == |
698 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
699 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, phival |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
700 |
_RL Ucell (2,2) |
_RL Ucell (2,2) |
701 |
_RL Vcell (2,2) |
_RL Vcell (2,2) |
702 |
_RL Hcell (2,2) |
_RL Hcell (2,2) |
703 |
|
_RL phival(2,2) |
704 |
|
|
705 |
|
uret(1,1,1,1) = uret(1,1,1,1) |
706 |
|
vret(1,1,1,1) = vret(1,1,1,1) |
707 |
|
|
708 |
DO j = 0, sNy+1 |
DO j = 0, sNy+1 |
709 |
DO i = 0, sNx+1 |
DO i = 0, sNx+1 |
713 |
& ((STREAMICE_umask(i,j,bi,bj).eq.3.0) .OR. |
& ((STREAMICE_umask(i,j,bi,bj).eq.3.0) .OR. |
714 |
& (STREAMICE_umask(i,j+1,bi,bj).eq.3.0) .OR. |
& (STREAMICE_umask(i,j+1,bi,bj).eq.3.0) .OR. |
715 |
& (STREAMICE_umask(i+1,j,bi,bj).eq.3.0) .OR. |
& (STREAMICE_umask(i+1,j,bi,bj).eq.3.0) .OR. |
716 |
& (STREAMICE_umask(i+1,j+1,bi,bj).eq.3.0))) THEN |
& (STREAMICE_umask(i+1,j+1,bi,bj).eq.3.0) .OR. |
717 |
|
& (STREAMICE_vmask(i,j,bi,bj).eq.3.0) .OR. |
718 |
|
& (STREAMICE_vmask(i,j+1,bi,bj).eq.3.0) .OR. |
719 |
|
& (STREAMICE_vmask(i+1,j,bi,bj).eq.3.0) .OR. |
720 |
|
& (STREAMICE_vmask(i+1,j+1,bi,bj).eq.3.0))) THEN |
721 |
|
|
722 |
DO iq=1,2 |
DO iq=1,2 |
723 |
DO jq = 1,2 |
DO jq = 1,2 |
736 |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
737 |
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
738 |
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
739 |
uy = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
uy = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
740 |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
741 |
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
742 |
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
744 |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
745 |
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
746 |
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
747 |
vy = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
vy = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
748 |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
749 |
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
750 |
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
753 |
exy = .5*(uy+vx) + |
exy = .5*(uy+vx) + |
754 |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
755 |
|
|
756 |
|
|
757 |
do inode = 1,2 |
do inode = 1,2 |
758 |
do jnode = 1,2 |
do jnode = 1,2 |
759 |
|
|
760 |
m = 2*(jnode-1)+inode |
m = 2*(jnode-1)+inode |
761 |
ilq = 1 |
ilq = 1 |
762 |
ilq = 1 |
jlq = 1 |
763 |
if (inode.eq.iq) ilq = 2 |
if (inode.eq.iq) ilq = 2 |
764 |
if (jnode.eq.jq) jlq = 2 |
if (jnode.eq.jq) jlq = 2 |
765 |
phival = Xquad(ilq)*Xquad(jlq) |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
766 |
|
|
767 |
|
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
768 |
|
|
|
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
|
769 |
|
|
770 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
771 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
773 |
& visc_streamice(i,j,bi,bj) * ( |
& visc_streamice(i,j,bi,bj) * ( |
774 |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
775 |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
776 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
|
|
& visc_streamice(i,j,bi,bj) * ( |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
|
777 |
|
|
778 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
779 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
780 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
781 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
782 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
783 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
784 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
|
|
& visc_streamice(i,j,bi,bj) * phival * |
|
|
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
|
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
|
785 |
|
|
786 |
! if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then |
! if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then |
787 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
788 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
789 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
790 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
791 |
|
|
792 |
|
|
793 |
|
! endif |
794 |
|
endif |
795 |
|
if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
796 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
797 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
798 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
799 |
|
& visc_streamice(i,j,bi,bj) * ( |
800 |
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
801 |
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
802 |
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
803 |
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
804 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
805 |
|
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
806 |
|
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
807 |
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
808 |
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
809 |
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
810 |
|
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
811 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
|
! endif |
|
812 |
endif |
endif |
813 |
enddo |
enddo |
814 |
enddo |
enddo |