63 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
64 |
C == Local variables == |
C == Local variables == |
65 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
66 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, phival |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
67 |
_RL Ucell (2,2) |
_RL Ucell (2,2) |
68 |
_RL Vcell (2,2) |
_RL Vcell (2,2) |
69 |
_RL Hcell (2,2) |
_RL Hcell (2,2) |
70 |
|
_RL phival(2,2) |
71 |
|
|
72 |
|
uret(1,1,1,1) = uret(1,1,1,1) |
73 |
|
vret(1,1,1,1) = vret(1,1,1,1) |
74 |
|
|
75 |
DO j = js, je |
DO j = js, je |
76 |
DO i = is, ie |
DO i = is, ie |
77 |
DO bj = myByLo(myThid), myByHi(myThid) |
DO bj = myByLo(myThid), myByHi(myThid) |
78 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
DO bi = myBxLo(myThid), myBxHi(myThid) |
79 |
|
|
80 |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
81 |
DO iq=1,2 |
DO iq = 1,2 |
82 |
DO jq = 1,2 |
DO jq = 1,2 |
83 |
|
|
84 |
n = 2*(jq-1)+iq |
n = 2*(jq-1)+iq |
117 |
|
|
118 |
m = 2*(jnode-1)+inode |
m = 2*(jnode-1)+inode |
119 |
ilq = 1 |
ilq = 1 |
120 |
jlq = 1 |
jlq = 1 |
121 |
if (inode.eq.iq) ilq = 2 |
if (inode.eq.iq) ilq = 2 |
122 |
if (jnode.eq.jq) jlq = 2 |
if (jnode.eq.jq) jlq = 2 |
123 |
phival = Xquad(ilq)*Xquad(jlq) |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
124 |
|
|
125 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
126 |
|
|
127 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
128 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
129 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
130 |
& visc_streamice(i,j,bi,bj) * ( |
& visc_streamice(i,j,bi,bj) * ( |
131 |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
132 |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
133 |
|
|
134 |
|
|
135 |
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
136 |
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
137 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
138 |
|
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
139 |
|
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
140 |
|
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
141 |
|
|
142 |
|
|
143 |
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
144 |
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
145 |
|
& phival(inode,jnode) * |
146 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
147 |
|
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
148 |
|
|
149 |
|
|
150 |
|
endif |
151 |
|
|
152 |
|
if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
153 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
154 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
155 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
156 |
& visc_streamice(i,j,bi,bj) * ( |
& visc_streamice(i,j,bi,bj) * ( |
157 |
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
158 |
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
|
|
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
|
|
& visc_streamice(i,j,bi,bj) * phival * |
|
|
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
|
|
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
|
159 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
160 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
161 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
162 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
163 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
164 |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
|
|
|
|
! IF (bi.eq.2.and.bj.eq.2.and.i.eq.15.and. |
|
|
! & (exx.ne.0.0 .or. eyy.ne.0.0 .or. exy.ne.0.0)) THEN |
|
|
! PRINT *, "CG_FUNCTION", j, v(i,j,bi,bj),v(i+1,j,bi,bj), |
|
|
! & v(i,j+1,bi,bj),v(i+1,j+1,bi,bj) |
|
|
! ENDIF |
|
|
|
|
|
|
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
|
|
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
|
|
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
|
165 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
166 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
167 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * |
168 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
169 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
170 |
|
|
171 |
endif |
endif |
172 |
enddo |
enddo |
173 |
enddo |
enddo |
174 |
|
|
175 |
enddo |
enddo |
176 |
enddo |
enddo |
177 |
|
c-- STREAMICE_hmask |
178 |
endif |
endif |
179 |
|
|
180 |
enddo |
enddo |
181 |
enddo |
enddo |
182 |
enddo |
enddo |
210 |
|
|
211 |
#ifdef ALLOW_STREAMICE |
#ifdef ALLOW_STREAMICE |
212 |
|
|
213 |
|
#ifdef STREAMICE_CONSTRUCT_MATRIX |
214 |
|
|
215 |
C the linear action of the matrix on (u,v) with triangular finite elements |
C the linear action of the matrix on (u,v) with triangular finite elements |
216 |
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
217 |
C but this may change pursuant to conversations with others |
C but this may change pursuant to conversations with others |
236 |
C == Local variables == |
C == Local variables == |
237 |
INTEGER iq, jq, inodx, inody, i, j, bi, bj, ilqx, ilqy, m_i, n |
INTEGER iq, jq, inodx, inody, i, j, bi, bj, ilqx, ilqy, m_i, n |
238 |
INTEGER jlqx, jlqy, jnodx,jnody, m_j, col_y, col_x, cg_halo, k |
INTEGER jlqx, jlqy, jnodx,jnody, m_j, col_y, col_x, cg_halo, k |
239 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, phival |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
240 |
|
_RL phival(2,2) |
241 |
|
|
242 |
! do i=1,3 |
! do i=1,3 |
243 |
! do j=0,2 |
! do j=0,2 |
280 |
DO inody = 1,2 |
DO inody = 1,2 |
281 |
|
|
282 |
if (STREAMICE_umask(i-1+inodx,j-1+inody,bi,bj) |
if (STREAMICE_umask(i-1+inodx,j-1+inody,bi,bj) |
283 |
& .eq.1.0) |
& .eq.1.0 .or. |
284 |
|
& streamice_vmask(i-1+inodx,j-1+inody,bi,bj).eq.1.0) |
285 |
& then |
& then |
286 |
|
|
287 |
m_i = 2*(inody-1)+inodx |
m_i = 2*(inody-1)+inodx |
290 |
|
|
291 |
if (inodx.eq.iq) ilqx = 2 |
if (inodx.eq.iq) ilqx = 2 |
292 |
if (inody.eq.jq) ilqy = 2 |
if (inody.eq.jq) ilqy = 2 |
293 |
phival = Xquad(ilqx)*Xquad(ilqy) |
phival(inodx,inody) = Xquad(ilqx)*Xquad(ilqy) |
294 |
|
|
295 |
DO jnodx = 1,2 |
DO jnodx = 1,2 |
296 |
DO jnody = 1,2 |
DO jnody = 1,2 |
297 |
if (STREAMICE_umask(i-1+jnodx,j-1+jnody,bi,bj) |
if (STREAMICE_umask(i-1+jnodx,j-1+jnody,bi,bj) |
298 |
& .eq.1.0) |
& .eq.1.0 .or. |
299 |
|
& STREAMICE_vmask(i-1+jnodx,j-1+jnody,bi,bj).eq.1.0) |
300 |
& then |
& then |
301 |
|
|
302 |
m_j = 2*(jnody-1)+jnodx |
m_j = 2*(jnody-1)+jnodx |
352 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
353 |
& .25 * |
& .25 * |
354 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
355 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
356 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
357 |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
358 |
|
|
362 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
363 |
& .25 * |
& .25 * |
364 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
365 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
366 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
367 |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
368 |
|
|
370 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
371 |
& streamice_cg_A1 |
& streamice_cg_A1 |
372 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
373 |
& .25*phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& .25*phival(inodx,inody) * |
374 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
375 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
376 |
|
|
377 |
streamice_cg_A3 |
streamice_cg_A3 |
378 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
379 |
& streamice_cg_A3 |
& streamice_cg_A3 |
380 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
381 |
& .25*phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& .25*phival(inodx,inody) * |
382 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
383 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
384 |
|
|
385 |
c |
c |
422 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
423 |
& .25 * |
& .25 * |
424 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
425 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
426 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
427 |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
428 |
|
|
432 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
433 |
& .25 * |
& .25 * |
434 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
435 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
436 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
437 |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
438 |
|
|
440 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
441 |
& streamice_cg_A2 |
& streamice_cg_A2 |
442 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
443 |
& .25*phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& .25*phival(inodx,inody) * |
444 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
445 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
446 |
|
|
447 |
streamice_cg_A4 |
streamice_cg_A4 |
448 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
449 |
& streamice_cg_A4 |
& streamice_cg_A4 |
450 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
451 |
& .25*phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& .25*phival(inodx,inody) * |
452 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
453 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
454 |
|
|
455 |
endif |
endif |
467 |
enddo |
enddo |
468 |
|
|
469 |
#endif |
#endif |
470 |
|
#endif |
471 |
RETURN |
RETURN |
472 |
END SUBROUTINE |
END SUBROUTINE |
473 |
|
|
524 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
525 |
C == Local variables == |
C == Local variables == |
526 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
527 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, phival |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
528 |
_RL Ucell (2,2) |
_RL Ucell (2,2) |
529 |
_RL Vcell (2,2) |
_RL Vcell (2,2) |
530 |
_RL Hcell (2,2) |
_RL Hcell (2,2) |
531 |
|
_RL phival(2,2) |
532 |
|
|
533 |
|
uret(1,1,1,1) = uret(1,1,1,1) |
534 |
|
vret(1,1,1,1) = vret(1,1,1,1) |
535 |
|
|
536 |
DO j = 0, sNy+1 |
DO j = 0, sNy+1 |
537 |
DO i = 0, sNx+1 |
DO i = 0, sNx+1 |
547 |
DO jnode = 1,2 |
DO jnode = 1,2 |
548 |
|
|
549 |
m = 2*(jnode-1)+inode |
m = 2*(jnode-1)+inode |
|
ilq = 1 |
|
|
jlq = 1 |
|
|
|
|
|
if (inode.eq.iq) ilq = 2 |
|
|
if (jnode.eq.jq) jlq = 2 |
|
|
phival = Xquad(ilq)*Xquad(jlq) |
|
550 |
|
|
551 |
ux = DPhi (i,j,bi,bj,m,n,1) |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0 .or. |
552 |
uy = DPhi (i,j,bi,bj,m,n,2) |
& STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) |
553 |
vx = 0 |
& then |
554 |
vy = 0 |
|
555 |
uq = Xquad(ilq) * Xquad(jlq) |
ilq = 1 |
556 |
vq = 0 |
jlq = 1 |
|
|
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
|
|
exy = .5*(uy+vx) + |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
|
557 |
|
|
558 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
if (inode.eq.iq) ilq = 2 |
559 |
|
if (jnode.eq.jq) jlq = 2 |
560 |
|
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
561 |
|
|
562 |
|
ux = DPhi (i,j,bi,bj,m,n,1) |
563 |
|
uy = DPhi (i,j,bi,bj,m,n,2) |
564 |
|
vx = 0 |
565 |
|
vy = 0 |
566 |
|
uq = Xquad(ilq) * Xquad(jlq) |
567 |
|
vq = 0 |
568 |
|
|
569 |
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
570 |
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
571 |
|
exy = .5*(uy+vx) + |
572 |
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
573 |
|
|
574 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
575 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
576 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
581 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
582 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
583 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
584 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
585 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
586 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
587 |
|
|
588 |
|
|
589 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
590 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
591 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
592 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
593 |
|
|
594 |
|
|
613 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
614 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
615 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
616 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
617 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
618 |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
619 |
|
|
620 |
|
|
621 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
622 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
623 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
624 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
625 |
|
|
626 |
endif |
endif |
627 |
|
|
628 |
enddo |
enddo |
629 |
enddo |
enddo |
630 |
enddo |
enddo |
692 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
693 |
C == Local variables == |
C == Local variables == |
694 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
695 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, phival |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
696 |
_RL Ucell (2,2) |
_RL Ucell (2,2) |
697 |
_RL Vcell (2,2) |
_RL Vcell (2,2) |
698 |
_RL Hcell (2,2) |
_RL Hcell (2,2) |
699 |
|
_RL phival(2,2) |
700 |
|
|
701 |
|
uret(1,1,1,1) = uret(1,1,1,1) |
702 |
|
vret(1,1,1,1) = vret(1,1,1,1) |
703 |
|
|
704 |
DO j = 0, sNy+1 |
DO j = 0, sNy+1 |
705 |
DO i = 0, sNx+1 |
DO i = 0, sNx+1 |
709 |
& ((STREAMICE_umask(i,j,bi,bj).eq.3.0) .OR. |
& ((STREAMICE_umask(i,j,bi,bj).eq.3.0) .OR. |
710 |
& (STREAMICE_umask(i,j+1,bi,bj).eq.3.0) .OR. |
& (STREAMICE_umask(i,j+1,bi,bj).eq.3.0) .OR. |
711 |
& (STREAMICE_umask(i+1,j,bi,bj).eq.3.0) .OR. |
& (STREAMICE_umask(i+1,j,bi,bj).eq.3.0) .OR. |
712 |
& (STREAMICE_umask(i+1,j+1,bi,bj).eq.3.0))) THEN |
& (STREAMICE_umask(i+1,j+1,bi,bj).eq.3.0) .OR. |
713 |
|
& (STREAMICE_vmask(i,j,bi,bj).eq.3.0) .OR. |
714 |
|
& (STREAMICE_vmask(i,j+1,bi,bj).eq.3.0) .OR. |
715 |
|
& (STREAMICE_vmask(i+1,j,bi,bj).eq.3.0) .OR. |
716 |
|
& (STREAMICE_vmask(i+1,j+1,bi,bj).eq.3.0))) THEN |
717 |
|
|
718 |
DO iq=1,2 |
DO iq=1,2 |
719 |
DO jq = 1,2 |
DO jq = 1,2 |
732 |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
733 |
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
734 |
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
735 |
uy = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
uy = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
736 |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
737 |
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
738 |
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
740 |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
741 |
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
742 |
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
743 |
vy = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
vy = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
744 |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
745 |
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
746 |
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
749 |
exy = .5*(uy+vx) + |
exy = .5*(uy+vx) + |
750 |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
751 |
|
|
752 |
|
|
753 |
do inode = 1,2 |
do inode = 1,2 |
754 |
do jnode = 1,2 |
do jnode = 1,2 |
755 |
|
|
756 |
m = 2*(jnode-1)+inode |
m = 2*(jnode-1)+inode |
757 |
ilq = 1 |
ilq = 1 |
758 |
ilq = 1 |
jlq = 1 |
759 |
if (inode.eq.iq) ilq = 2 |
if (inode.eq.iq) ilq = 2 |
760 |
if (jnode.eq.jq) jlq = 2 |
if (jnode.eq.jq) jlq = 2 |
761 |
phival = Xquad(ilq)*Xquad(jlq) |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
762 |
|
|
763 |
|
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
764 |
|
|
|
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
|
765 |
|
|
766 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
767 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
769 |
& visc_streamice(i,j,bi,bj) * ( |
& visc_streamice(i,j,bi,bj) * ( |
770 |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
771 |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
772 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
|
|
& visc_streamice(i,j,bi,bj) * ( |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
|
773 |
|
|
774 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
775 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
776 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
777 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
778 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
779 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
780 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
|
|
& visc_streamice(i,j,bi,bj) * phival * |
|
|
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
|
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
|
781 |
|
|
782 |
! if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then |
! if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then |
783 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
784 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
785 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
786 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
787 |
|
|
788 |
|
|
789 |
|
! endif |
790 |
|
endif |
791 |
|
if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
792 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
793 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
794 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
795 |
|
& visc_streamice(i,j,bi,bj) * ( |
796 |
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
797 |
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
798 |
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
799 |
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
800 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
801 |
|
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
802 |
|
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
803 |
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
804 |
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
805 |
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
806 |
|
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
807 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
|
! endif |
|
808 |
endif |
endif |
809 |
enddo |
enddo |
810 |
enddo |
enddo |