63 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
64 |
C == Local variables == |
C == Local variables == |
65 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
66 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, phival |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
67 |
_RL Ucell (2,2) |
_RL Ucell (2,2) |
68 |
_RL Vcell (2,2) |
_RL Vcell (2,2) |
69 |
_RL Hcell (2,2) |
_RL Hcell (2,2) |
70 |
|
_RL phival(2,2) |
71 |
|
|
72 |
|
uret(1,1,1,1) = uret(1,1,1,1) |
73 |
|
vret(1,1,1,1) = vret(1,1,1,1) |
74 |
|
|
75 |
DO j = js, je |
DO j = js, je |
76 |
DO i = is, ie |
DO i = is, ie |
77 |
DO bj = myByLo(myThid), myByHi(myThid) |
DO bj = myByLo(myThid), myByHi(myThid) |
78 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
DO bi = myBxLo(myThid), myBxHi(myThid) |
79 |
|
|
80 |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
81 |
DO iq=1,2 |
DO iq = 1,2 |
82 |
DO jq = 1,2 |
DO jq = 1,2 |
83 |
|
|
84 |
n = 2*(jq-1)+iq |
n = 2*(jq-1)+iq |
117 |
|
|
118 |
m = 2*(jnode-1)+inode |
m = 2*(jnode-1)+inode |
119 |
ilq = 1 |
ilq = 1 |
120 |
jlq = 1 |
jlq = 1 |
121 |
if (inode.eq.iq) ilq = 2 |
if (inode.eq.iq) ilq = 2 |
122 |
if (jnode.eq.jq) jlq = 2 |
if (jnode.eq.jq) jlq = 2 |
123 |
phival = Xquad(ilq)*Xquad(jlq) |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
124 |
|
|
125 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
126 |
|
|
140 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
141 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
142 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
143 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
144 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
145 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
146 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
147 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
148 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
149 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
150 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
151 |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
152 |
|
|
159 |
|
|
160 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
161 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
162 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * |
163 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
164 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
165 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
166 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
167 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * |
168 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
169 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
170 |
|
|
171 |
endif |
endif |
172 |
enddo |
enddo |
173 |
enddo |
enddo |
174 |
|
|
175 |
enddo |
enddo |
176 |
enddo |
enddo |
177 |
|
c-- STREAMICE_hmask |
178 |
endif |
endif |
179 |
|
|
180 |
enddo |
enddo |
181 |
enddo |
enddo |
182 |
enddo |
enddo |
234 |
C == Local variables == |
C == Local variables == |
235 |
INTEGER iq, jq, inodx, inody, i, j, bi, bj, ilqx, ilqy, m_i, n |
INTEGER iq, jq, inodx, inody, i, j, bi, bj, ilqx, ilqy, m_i, n |
236 |
INTEGER jlqx, jlqy, jnodx,jnody, m_j, col_y, col_x, cg_halo, k |
INTEGER jlqx, jlqy, jnodx,jnody, m_j, col_y, col_x, cg_halo, k |
237 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, phival |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
238 |
|
_RL phival(2,2) |
239 |
|
|
240 |
! do i=1,3 |
! do i=1,3 |
241 |
! do j=0,2 |
! do j=0,2 |
287 |
|
|
288 |
if (inodx.eq.iq) ilqx = 2 |
if (inodx.eq.iq) ilqx = 2 |
289 |
if (inody.eq.jq) ilqy = 2 |
if (inody.eq.jq) ilqy = 2 |
290 |
phival = Xquad(ilqx)*Xquad(ilqy) |
phival(inodx,inody) = Xquad(ilqx)*Xquad(ilqy) |
291 |
|
|
292 |
DO jnodx = 1,2 |
DO jnodx = 1,2 |
293 |
DO jnody = 1,2 |
DO jnody = 1,2 |
348 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
349 |
& .25 * |
& .25 * |
350 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
351 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
352 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
353 |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
354 |
|
|
358 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
359 |
& .25 * |
& .25 * |
360 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
361 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
362 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
363 |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
364 |
|
|
366 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
367 |
& streamice_cg_A1 |
& streamice_cg_A1 |
368 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
369 |
& .25*phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& .25*phival(inodx,inody) * |
370 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
371 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
372 |
|
|
373 |
streamice_cg_A3 |
streamice_cg_A3 |
374 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
375 |
& streamice_cg_A3 |
& streamice_cg_A3 |
376 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
377 |
& .25*phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& .25*phival(inodx,inody) * |
378 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
379 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
380 |
|
|
381 |
c |
c |
418 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
419 |
& .25 * |
& .25 * |
420 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
421 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
422 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
423 |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
424 |
|
|
428 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
429 |
& .25 * |
& .25 * |
430 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
431 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
432 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
433 |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
434 |
|
|
436 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
437 |
& streamice_cg_A2 |
& streamice_cg_A2 |
438 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
439 |
& .25*phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& .25*phival(inodx,inody) * |
440 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
441 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
442 |
|
|
443 |
streamice_cg_A4 |
streamice_cg_A4 |
444 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
445 |
& streamice_cg_A4 |
& streamice_cg_A4 |
446 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
447 |
& .25*phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& .25*phival(inodx,inody) * |
448 |
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
449 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
450 |
|
|
451 |
endif |
endif |
519 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
520 |
C == Local variables == |
C == Local variables == |
521 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
522 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, phival |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
523 |
_RL Ucell (2,2) |
_RL Ucell (2,2) |
524 |
_RL Vcell (2,2) |
_RL Vcell (2,2) |
525 |
_RL Hcell (2,2) |
_RL Hcell (2,2) |
526 |
|
_RL phival(2,2) |
527 |
|
|
528 |
|
uret(1,1,1,1) = uret(1,1,1,1) |
529 |
|
vret(1,1,1,1) = vret(1,1,1,1) |
530 |
|
|
531 |
DO j = 0, sNy+1 |
DO j = 0, sNy+1 |
532 |
DO i = 0, sNx+1 |
DO i = 0, sNx+1 |
542 |
DO jnode = 1,2 |
DO jnode = 1,2 |
543 |
|
|
544 |
m = 2*(jnode-1)+inode |
m = 2*(jnode-1)+inode |
|
ilq = 1 |
|
|
jlq = 1 |
|
|
|
|
|
if (inode.eq.iq) ilq = 2 |
|
|
if (jnode.eq.jq) jlq = 2 |
|
|
phival = Xquad(ilq)*Xquad(jlq) |
|
545 |
|
|
546 |
ux = DPhi (i,j,bi,bj,m,n,1) |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
547 |
uy = DPhi (i,j,bi,bj,m,n,2) |
|
548 |
vx = 0 |
ilq = 1 |
549 |
vy = 0 |
jlq = 1 |
|
uq = Xquad(ilq) * Xquad(jlq) |
|
|
vq = 0 |
|
|
|
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
|
|
exy = .5*(uy+vx) + |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
|
550 |
|
|
551 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
if (inode.eq.iq) ilq = 2 |
552 |
|
if (jnode.eq.jq) jlq = 2 |
553 |
|
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
554 |
|
|
555 |
|
ux = DPhi (i,j,bi,bj,m,n,1) |
556 |
|
uy = DPhi (i,j,bi,bj,m,n,2) |
557 |
|
vx = 0 |
558 |
|
vy = 0 |
559 |
|
uq = Xquad(ilq) * Xquad(jlq) |
560 |
|
vq = 0 |
561 |
|
|
562 |
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
563 |
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
564 |
|
exy = .5*(uy+vx) + |
565 |
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
566 |
|
|
567 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
568 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
569 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
574 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
575 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
576 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
577 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
578 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
579 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
580 |
|
|
581 |
|
|
582 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
583 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
584 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
585 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
586 |
|
|
587 |
|
|
606 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
607 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
608 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
609 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
610 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
611 |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
612 |
|
|
613 |
|
|
614 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
615 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
616 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
617 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
618 |
|
|
619 |
endif |
endif |
620 |
|
|
621 |
enddo |
enddo |
622 |
enddo |
enddo |
623 |
enddo |
enddo |
685 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
686 |
C == Local variables == |
C == Local variables == |
687 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
688 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, phival |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
689 |
_RL Ucell (2,2) |
_RL Ucell (2,2) |
690 |
_RL Vcell (2,2) |
_RL Vcell (2,2) |
691 |
_RL Hcell (2,2) |
_RL Hcell (2,2) |
692 |
|
_RL phival(2,2) |
693 |
|
|
694 |
|
uret(1,1,1,1) = uret(1,1,1,1) |
695 |
|
vret(1,1,1,1) = vret(1,1,1,1) |
696 |
|
|
697 |
DO j = 0, sNy+1 |
DO j = 0, sNy+1 |
698 |
DO i = 0, sNx+1 |
DO i = 0, sNx+1 |
743 |
|
|
744 |
m = 2*(jnode-1)+inode |
m = 2*(jnode-1)+inode |
745 |
ilq = 1 |
ilq = 1 |
746 |
ilq = 1 |
jlq = 1 |
747 |
if (inode.eq.iq) ilq = 2 |
if (inode.eq.iq) ilq = 2 |
748 |
if (jnode.eq.jq) jlq = 2 |
if (jnode.eq.jq) jlq = 2 |
749 |
phival = Xquad(ilq)*Xquad(jlq) |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
750 |
|
|
751 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
752 |
|
|
766 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
767 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
768 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
769 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
770 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
771 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
772 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
773 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
774 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
& grid_jacq_streamice(i,j,bi,bj,n) * |
775 |
& visc_streamice(i,j,bi,bj) * phival * |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
776 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
777 |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
778 |
|
|
779 |
! if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then |
! if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then |
780 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
uret(i-1+inode,j-1+jnode,bi,bj) = |
781 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
782 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
783 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
784 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
vret(i-1+inode,j-1+jnode,bi,bj) = |
785 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
786 |
& phival * grid_jacq_streamice(i,j,bi,bj,n) * |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
787 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
788 |
! endif |
! endif |
789 |
endif |
endif |