1 |
C $Header: /u/gcmpack/MITgcm/pkg/streamice/streamice_cg_functions.F,v 1.2 2013/08/24 20:35:17 dgoldberg Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "STREAMICE_OPTIONS.h" |
5 |
|
6 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
7 |
|
8 |
CBOP |
9 |
SUBROUTINE STREAMICE_CG_ACTION( myThid, |
10 |
O uret, |
11 |
O vret, |
12 |
I u, |
13 |
I v, |
14 |
I is, ie, js, je ) |
15 |
C /============================================================\ |
16 |
C | SUBROUTINE | |
17 |
C | o | |
18 |
C |============================================================| |
19 |
C | | |
20 |
C \============================================================/ |
21 |
IMPLICIT NONE |
22 |
|
23 |
C === Global variables === |
24 |
#include "SIZE.h" |
25 |
#include "EEPARAMS.h" |
26 |
#include "PARAMS.h" |
27 |
#include "GRID.h" |
28 |
#include "STREAMICE.h" |
29 |
#include "STREAMICE_CG.h" |
30 |
|
31 |
C !INPUT/OUTPUT ARGUMENTS |
32 |
C uret, vret - result of matrix operating on u, v |
33 |
C is, ie, js, je - starting and ending cells |
34 |
INTEGER myThid |
35 |
_RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
36 |
_RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
37 |
_RL u (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
38 |
_RL v (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
39 |
INTEGER is, ie, js, je |
40 |
|
41 |
#ifdef ALLOW_STREAMICE |
42 |
|
43 |
C the linear action of the matrix on (u,v) with triangular finite elements |
44 |
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
45 |
C but this may change pursuant to conversations with others |
46 |
C |
47 |
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
48 |
C in order to make less frequent halo updates |
49 |
C isym = 1 if grid is symmetric, 0 o.w. |
50 |
|
51 |
C the linear action of the matrix on (u,v) with triangular finite elements |
52 |
C Phi has the form |
53 |
C Phi (i,j,k,q) - applies to cell i,j |
54 |
|
55 |
C 3 - 4 |
56 |
C | | |
57 |
C 1 - 2 |
58 |
|
59 |
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
60 |
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
61 |
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
62 |
|
63 |
C !LOCAL VARIABLES: |
64 |
C == Local variables == |
65 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n,Gi,Gj |
66 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
67 |
_RL Ucell (2,2) |
68 |
_RL Vcell (2,2) |
69 |
_RL Hcell (2,2) |
70 |
_RL phival(2,2) |
71 |
|
72 |
uret(1,1,1,1) = uret(1,1,1,1) |
73 |
vret(1,1,1,1) = vret(1,1,1,1) |
74 |
|
75 |
DO j = js, je |
76 |
DO i = is, ie |
77 |
DO bj = myByLo(myThid), myByHi(myThid) |
78 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
79 |
|
80 |
Gi = (myXGlobalLo-1)+(bi-1)*sNx+i |
81 |
Gj = (myYGlobalLo-1)+(bj-1)*sNy+j |
82 |
|
83 |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
84 |
DO iq = 1,2 |
85 |
DO jq = 1,2 |
86 |
|
87 |
n = 2*(jq-1)+iq |
88 |
|
89 |
|
90 |
uq = u(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + |
91 |
& u(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + |
92 |
& u(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + |
93 |
& u(i+1,j+1,bi,bj) * Xquad(iq) * Xquad(jq) |
94 |
vq = v(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + |
95 |
& v(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + |
96 |
& v(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + |
97 |
& v(i+1,j+1,bi,bj) * Xquad(iq) * Xquad(jq) |
98 |
ux = u(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
99 |
& u(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
100 |
& u(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
101 |
& u(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
102 |
uy = u(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
103 |
& u(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
104 |
& u(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
105 |
& u(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
106 |
vx = v(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
107 |
& v(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
108 |
& v(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
109 |
& v(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
110 |
vy = v(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
111 |
& v(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
112 |
& v(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
113 |
& v(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
114 |
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
115 |
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
116 |
exy = .5*(uy+vx) + |
117 |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
118 |
|
119 |
do inode = 1,2 |
120 |
do jnode = 1,2 |
121 |
|
122 |
m = 2*(jnode-1)+inode |
123 |
ilq = 1 |
124 |
jlq = 1 |
125 |
if (inode.eq.iq) ilq = 2 |
126 |
if (jnode.eq.jq) jlq = 2 |
127 |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
128 |
|
129 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
130 |
|
131 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
132 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
133 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
134 |
& visc_streamice(i,j,bi,bj) * ( |
135 |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
136 |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
137 |
|
138 |
|
139 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
140 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
141 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
142 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
143 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
144 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
145 |
|
146 |
|
147 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
148 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
149 |
& phival(inode,jnode) * |
150 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
151 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
152 |
|
153 |
|
154 |
endif |
155 |
|
156 |
if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
157 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
158 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
159 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
160 |
& visc_streamice(i,j,bi,bj) * ( |
161 |
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
162 |
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
163 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
164 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
165 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
166 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
167 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
168 |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
169 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
170 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
171 |
& phival(inode,jnode) * |
172 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
173 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
174 |
|
175 |
endif |
176 |
enddo |
177 |
enddo |
178 |
|
179 |
enddo |
180 |
enddo |
181 |
c-- STREAMICE_hmask |
182 |
endif |
183 |
|
184 |
enddo |
185 |
enddo |
186 |
enddo |
187 |
enddo |
188 |
|
189 |
#endif |
190 |
RETURN |
191 |
END SUBROUTINE |
192 |
|
193 |
SUBROUTINE STREAMICE_CG_MAKE_A( myThid ) |
194 |
C /============================================================\ |
195 |
C | SUBROUTINE | |
196 |
C | o | |
197 |
C |============================================================| |
198 |
C | | |
199 |
C \============================================================/ |
200 |
IMPLICIT NONE |
201 |
|
202 |
C === Global variables === |
203 |
#include "SIZE.h" |
204 |
#include "EEPARAMS.h" |
205 |
#include "PARAMS.h" |
206 |
#include "GRID.h" |
207 |
#include "STREAMICE.h" |
208 |
#include "STREAMICE_CG.h" |
209 |
|
210 |
C !INPUT/OUTPUT ARGUMENTS |
211 |
C uret, vret - result of matrix operating on u, v |
212 |
C is, ie, js, je - starting and ending cells |
213 |
INTEGER myThid |
214 |
|
215 |
#ifdef ALLOW_STREAMICE |
216 |
|
217 |
#ifdef STREAMICE_CONSTRUCT_MATRIX |
218 |
|
219 |
C the linear action of the matrix on (u,v) with triangular finite elements |
220 |
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
221 |
C but this may change pursuant to conversations with others |
222 |
C |
223 |
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
224 |
C in order to make less frequent halo updates |
225 |
C isym = 1 if grid is symmetric, 0 o.w. |
226 |
|
227 |
C the linear action of the matrix on (u,v) with triangular finite elements |
228 |
C Phi has the form |
229 |
C Phi (i,j,k,q) - applies to cell i,j |
230 |
|
231 |
C 3 - 4 |
232 |
C | | |
233 |
C 1 - 2 |
234 |
|
235 |
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
236 |
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
237 |
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
238 |
|
239 |
C !LOCAL VARIABLES: |
240 |
C == Local variables == |
241 |
INTEGER iq, jq, inodx, inody, i, j, bi, bj, ilqx, ilqy, m_i, n |
242 |
INTEGER jlqx, jlqy, jnodx,jnody, m_j, col_y, col_x, cg_halo, k |
243 |
INTEGER colx_rev, coly_rev |
244 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, tmpval |
245 |
_RL phival(2,2) |
246 |
|
247 |
! do i=1,3 |
248 |
! do j=0,2 |
249 |
! col_index_a = i + j*3 |
250 |
! enddo |
251 |
! enddo |
252 |
|
253 |
cg_halo = min(OLx-1,OLy-1) |
254 |
|
255 |
DO j = 1-cg_halo, sNy+cg_halo |
256 |
DO i = 1-cg_halo, sNx+cg_halo |
257 |
DO bj = myByLo(myThid), myByHi(myThid) |
258 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
259 |
cc DO k=1,4 |
260 |
DO col_x=-1,1 |
261 |
DO col_y=-1,1 |
262 |
streamice_cg_A1(i,j,bi,bj,col_x,col_y)=0.0 |
263 |
streamice_cg_A2(i,j,bi,bj,col_x,col_y)=0.0 |
264 |
streamice_cg_A3(i,j,bi,bj,col_x,col_y)=0.0 |
265 |
streamice_cg_A4(i,j,bi,bj,col_x,col_y)=0.0 |
266 |
ENDDO |
267 |
ENDDO |
268 |
cc ENDDO |
269 |
ENDDO |
270 |
ENDDO |
271 |
ENDDO |
272 |
ENDDO |
273 |
|
274 |
DO j = 1-cg_halo, sNy+cg_halo |
275 |
DO i = 1-cg_halo, sNx+cg_halo |
276 |
DO bj = myByLo(myThid), myByHi(myThid) |
277 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
278 |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
279 |
DO iq=1,2 |
280 |
DO jq = 1,2 |
281 |
|
282 |
n = 2*(jq-1)+iq |
283 |
|
284 |
DO inodx = 1,2 |
285 |
DO inody = 1,2 |
286 |
|
287 |
! if (i.eq.50 .and. j.eq.50) then |
288 |
! PRINT *, "GOT HERE MAKEA", inodx,inody, |
289 |
! & streamice_umask(i-1+inodx,j-1+inody,bi,bj) |
290 |
! endif |
291 |
|
292 |
if (STREAMICE_umask(i-1+inodx,j-1+inody,bi,bj) |
293 |
& .eq.1.0 .or. |
294 |
& streamice_vmask(i-1+inodx,j-1+inody,bi,bj).eq.1.0) |
295 |
& then |
296 |
|
297 |
m_i = 2*(inody-1)+inodx |
298 |
ilqx = 1 |
299 |
ilqy = 1 |
300 |
|
301 |
if (inodx.eq.iq) ilqx = 2 |
302 |
if (inody.eq.jq) ilqy = 2 |
303 |
phival(inodx,inody) = Xquad(ilqx)*Xquad(ilqy) |
304 |
|
305 |
DO jnodx = 1,2 |
306 |
DO jnody = 1,2 |
307 |
if (STREAMICE_umask(i-1+jnodx,j-1+jnody,bi,bj) |
308 |
& .eq.1.0 .or. |
309 |
& STREAMICE_vmask(i-1+jnodx,j-1+jnody,bi,bj).eq.1.0) |
310 |
& then |
311 |
|
312 |
m_j = 2*(jnody-1)+jnodx |
313 |
ilqx = 1 |
314 |
ilqy = 1 |
315 |
if (jnodx.eq.iq) ilqx = 2 |
316 |
if (jnody.eq.jq) ilqy = 2 |
317 |
|
318 |
! col_j = col_index_a ( |
319 |
! & jnodx+mod(inodx,2), |
320 |
! & jnody+mod(inody,2) ) |
321 |
|
322 |
col_x = mod(inodx,2)+jnodx-2 |
323 |
colx_rev = mod(jnodx,2)+inodx-2 |
324 |
col_y = mod(inody,2)+jnody-2 |
325 |
coly_rev = mod(jnody,2)+inody-2 |
326 |
c |
327 |
|
328 |
|
329 |
IF ( (inodx.eq.jnodx .and. inody.eq.jnody) .or. |
330 |
& (inodx.eq.1 .and. inody.eq.1) .or. |
331 |
& (jnody.eq.2 .and. inody.eq.1) .or. |
332 |
& (jnody.eq.2 .and. jnodx.eq.2)) THEN |
333 |
|
334 |
|
335 |
|
336 |
ux = DPhi (i,j,bi,bj,m_j,n,1) |
337 |
uy = DPhi (i,j,bi,bj,m_j,n,2) |
338 |
vx = 0 |
339 |
vy = 0 |
340 |
uq = Xquad(ilqx) * Xquad(ilqy) |
341 |
vq = 0 |
342 |
|
343 |
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
344 |
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
345 |
exy = .5*(uy+vx) + |
346 |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
347 |
|
348 |
tmpval = .25 * |
349 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
350 |
& visc_streamice(i,j,bi,bj) * ( |
351 |
& DPhi(i,j,bi,bj,m_i,n,1)*(4*exx+2*eyy) + |
352 |
& DPhi(i,j,bi,bj,m_i,n,2)*(2*exy)) |
353 |
|
354 |
streamice_cg_A1 |
355 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
356 |
& streamice_cg_A1 |
357 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval |
358 |
|
359 |
IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN |
360 |
streamice_cg_A1 |
361 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= |
362 |
& streamice_cg_A1 |
363 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ |
364 |
& tmpval |
365 |
ENDIF |
366 |
|
367 |
!!! |
368 |
|
369 |
tmpval = .25 * |
370 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
371 |
& visc_streamice(i,j,bi,bj) * ( |
372 |
& DPhi(i,j,bi,bj,m_i,n,2)*(4*eyy+2*exx) + |
373 |
& DPhi(i,j,bi,bj,m_i,n,1)*(2*exy)) |
374 |
|
375 |
streamice_cg_A3 |
376 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
377 |
& streamice_cg_A3 |
378 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval |
379 |
|
380 |
IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN |
381 |
streamice_cg_A2 |
382 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= |
383 |
& streamice_cg_A2 |
384 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ |
385 |
& tmpval |
386 |
ENDIF |
387 |
|
388 |
!!! |
389 |
|
390 |
tmpval = .25 * |
391 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
392 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
393 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
394 |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
395 |
|
396 |
streamice_cg_A1 |
397 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
398 |
& streamice_cg_A1 |
399 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval |
400 |
|
401 |
IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN |
402 |
streamice_cg_A1 |
403 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= |
404 |
& streamice_cg_A1 |
405 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ |
406 |
& tmpval |
407 |
ENDIF |
408 |
|
409 |
!!! |
410 |
|
411 |
tmpval = .25 * |
412 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
413 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
414 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
415 |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
416 |
|
417 |
streamice_cg_A3 |
418 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
419 |
& streamice_cg_A3 |
420 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval |
421 |
|
422 |
IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN |
423 |
streamice_cg_A2 |
424 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= |
425 |
& streamice_cg_A2 |
426 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ |
427 |
& tmpval |
428 |
ENDIF |
429 |
|
430 |
|
431 |
!!! |
432 |
|
433 |
tmpval = .25*phival(inodx,inody) * |
434 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
435 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
436 |
|
437 |
streamice_cg_A1 |
438 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
439 |
& streamice_cg_A1 |
440 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval |
441 |
|
442 |
IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN |
443 |
streamice_cg_A1 |
444 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= |
445 |
& streamice_cg_A1 |
446 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ |
447 |
& tmpval |
448 |
ENDIF |
449 |
|
450 |
|
451 |
!!! |
452 |
tmpval = .25*phival(inodx,inody) * |
453 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
454 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
455 |
|
456 |
streamice_cg_A3 |
457 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
458 |
& streamice_cg_A3 |
459 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval |
460 |
|
461 |
IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN |
462 |
streamice_cg_A2 |
463 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= |
464 |
& streamice_cg_A2 |
465 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ |
466 |
& tmpval |
467 |
ENDIF |
468 |
|
469 |
|
470 |
|
471 |
!!! |
472 |
|
473 |
vx = DPhi (i,j,bi,bj,m_j,n,1) |
474 |
vy = DPhi (i,j,bi,bj,m_j,n,2) |
475 |
ux = 0 |
476 |
uy = 0 |
477 |
vq = Xquad(ilqx) * Xquad(ilqy) |
478 |
uq = 0 |
479 |
|
480 |
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
481 |
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
482 |
exy = .5*(uy+vx) + |
483 |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
484 |
|
485 |
tmpval = .25 * |
486 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
487 |
& visc_streamice(i,j,bi,bj) * ( |
488 |
& DPhi(i,j,bi,bj,m_i,n,1)*(4*exx+2*eyy) + |
489 |
& DPhi(i,j,bi,bj,m_i,n,2)*(2*exy)) |
490 |
|
491 |
streamice_cg_A2 |
492 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
493 |
& streamice_cg_A2 |
494 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval |
495 |
|
496 |
IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN |
497 |
streamice_cg_A3 |
498 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= |
499 |
& streamice_cg_A3 |
500 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ |
501 |
& tmpval |
502 |
ENDIF |
503 |
|
504 |
|
505 |
tmpval = .25 * |
506 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
507 |
& visc_streamice(i,j,bi,bj) * ( |
508 |
& DPhi(i,j,bi,bj,m_i,n,2)*(4*eyy+2*exx) + |
509 |
& DPhi(i,j,bi,bj,m_i,n,1)*(2*exy)) |
510 |
|
511 |
streamice_cg_A4 |
512 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
513 |
& streamice_cg_A4 |
514 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval |
515 |
|
516 |
IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN |
517 |
streamice_cg_A4 |
518 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= |
519 |
& streamice_cg_A4 |
520 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ |
521 |
& tmpval |
522 |
ENDIF |
523 |
|
524 |
|
525 |
tmpval = .25 * |
526 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
527 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
528 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
529 |
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
530 |
|
531 |
streamice_cg_A2 |
532 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
533 |
& streamice_cg_A2 |
534 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval |
535 |
|
536 |
IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN |
537 |
streamice_cg_A3 |
538 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= |
539 |
& streamice_cg_A3 |
540 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ |
541 |
& tmpval |
542 |
ENDIF |
543 |
|
544 |
|
545 |
tmpval = .25 * |
546 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
547 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
548 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
549 |
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
550 |
|
551 |
streamice_cg_A4 |
552 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
553 |
& streamice_cg_A4 |
554 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval |
555 |
|
556 |
IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN |
557 |
streamice_cg_A4 |
558 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= |
559 |
& streamice_cg_A4 |
560 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ |
561 |
& tmpval |
562 |
ENDIF |
563 |
|
564 |
|
565 |
tmpval = .25*phival(inodx,inody) * |
566 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
567 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
568 |
|
569 |
streamice_cg_A2 |
570 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
571 |
& streamice_cg_A2 |
572 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval |
573 |
|
574 |
IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN |
575 |
streamice_cg_A3 |
576 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= |
577 |
& streamice_cg_A3 |
578 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ |
579 |
& tmpval |
580 |
ENDIF |
581 |
|
582 |
|
583 |
tmpval = .25*phival(inodx,inody) * |
584 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
585 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
586 |
|
587 |
streamice_cg_A4 |
588 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
589 |
& streamice_cg_A4 |
590 |
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval |
591 |
|
592 |
IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN |
593 |
streamice_cg_A4 |
594 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= |
595 |
& streamice_cg_A4 |
596 |
& (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ |
597 |
& tmpval |
598 |
ENDIF |
599 |
|
600 |
|
601 |
endif |
602 |
endif |
603 |
enddo |
604 |
enddo |
605 |
endif |
606 |
enddo |
607 |
enddo |
608 |
enddo |
609 |
enddo |
610 |
endif |
611 |
enddo |
612 |
enddo |
613 |
enddo |
614 |
enddo |
615 |
|
616 |
|
617 |
|
618 |
#endif |
619 |
#endif |
620 |
RETURN |
621 |
END SUBROUTINE |
622 |
|
623 |
SUBROUTINE STREAMICE_CG_ADIAG( myThid, |
624 |
O uret, |
625 |
O vret) |
626 |
|
627 |
C /============================================================\ |
628 |
C | SUBROUTINE | |
629 |
C | o | |
630 |
C |============================================================| |
631 |
C | | |
632 |
C \============================================================/ |
633 |
IMPLICIT NONE |
634 |
|
635 |
C === Global variables === |
636 |
#include "SIZE.h" |
637 |
#include "EEPARAMS.h" |
638 |
#include "PARAMS.h" |
639 |
#include "GRID.h" |
640 |
#include "STREAMICE.h" |
641 |
#include "STREAMICE_CG.h" |
642 |
|
643 |
C !INPUT/OUTPUT ARGUMENTS |
644 |
C uret, vret - result of matrix operating on u, v |
645 |
C is, ie, js, je - starting and ending cells |
646 |
INTEGER myThid |
647 |
_RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
648 |
_RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
649 |
|
650 |
|
651 |
#ifdef ALLOW_STREAMICE |
652 |
|
653 |
C the linear action of the matrix on (u,v) with triangular finite elements |
654 |
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
655 |
C but this may change pursuant to conversations with others |
656 |
C |
657 |
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
658 |
C in order to make less frequent halo updates |
659 |
C isym = 1 if grid is symmetric, 0 o.w. |
660 |
|
661 |
C the linear action of the matrix on (u,v) with triangular finite elements |
662 |
C Phi has the form |
663 |
C Phi (i,j,k,q) - applies to cell i,j |
664 |
|
665 |
C 3 - 4 |
666 |
C | | |
667 |
C 1 - 2 |
668 |
|
669 |
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
670 |
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
671 |
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
672 |
|
673 |
C !LOCAL VARIABLES: |
674 |
C == Local variables == |
675 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
676 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
677 |
_RL Ucell (2,2) |
678 |
_RL Vcell (2,2) |
679 |
_RL Hcell (2,2) |
680 |
_RL phival(2,2) |
681 |
|
682 |
uret(1,1,1,1) = uret(1,1,1,1) |
683 |
vret(1,1,1,1) = vret(1,1,1,1) |
684 |
|
685 |
DO j = 0, sNy+1 |
686 |
DO i = 0, sNx+1 |
687 |
DO bj = myByLo(myThid), myByHi(myThid) |
688 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
689 |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
690 |
DO iq=1,2 |
691 |
DO jq = 1,2 |
692 |
|
693 |
n = 2*(jq-1)+iq |
694 |
|
695 |
DO inode = 1,2 |
696 |
DO jnode = 1,2 |
697 |
|
698 |
m = 2*(jnode-1)+inode |
699 |
|
700 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0 .or. |
701 |
& STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) |
702 |
& then |
703 |
|
704 |
ilq = 1 |
705 |
jlq = 1 |
706 |
|
707 |
if (inode.eq.iq) ilq = 2 |
708 |
if (jnode.eq.jq) jlq = 2 |
709 |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
710 |
|
711 |
ux = DPhi (i,j,bi,bj,m,n,1) |
712 |
uy = DPhi (i,j,bi,bj,m,n,2) |
713 |
vx = 0 |
714 |
vy = 0 |
715 |
uq = Xquad(ilq) * Xquad(jlq) |
716 |
vq = 0 |
717 |
|
718 |
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
719 |
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
720 |
exy = .5*(uy+vx) + |
721 |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
722 |
|
723 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
724 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
725 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
726 |
& visc_streamice(i,j,bi,bj) * ( |
727 |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
728 |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
729 |
|
730 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
731 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
732 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
733 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
734 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
735 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
736 |
|
737 |
|
738 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
739 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
740 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
741 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
742 |
|
743 |
|
744 |
vx = DPhi (i,j,bi,bj,m,n,1) |
745 |
vy = DPhi (i,j,bi,bj,m,n,2) |
746 |
ux = 0 |
747 |
uy = 0 |
748 |
vq = Xquad(ilq) * Xquad(jlq) |
749 |
uq = 0 |
750 |
|
751 |
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
752 |
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
753 |
exy = .5*(uy+vx) + |
754 |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
755 |
|
756 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
757 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
758 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
759 |
& visc_streamice(i,j,bi,bj) * ( |
760 |
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
761 |
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
762 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
763 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
764 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
765 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
766 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
767 |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
768 |
|
769 |
|
770 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
771 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
772 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
773 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
774 |
|
775 |
endif |
776 |
|
777 |
enddo |
778 |
enddo |
779 |
enddo |
780 |
enddo |
781 |
endif |
782 |
enddo |
783 |
enddo |
784 |
enddo |
785 |
enddo |
786 |
|
787 |
#endif |
788 |
RETURN |
789 |
END SUBROUTINE |
790 |
|
791 |
|
792 |
|
793 |
SUBROUTINE STREAMICE_CG_BOUND_VALS( myThid, |
794 |
O uret, |
795 |
O vret) |
796 |
C /============================================================\ |
797 |
C | SUBROUTINE | |
798 |
C | o | |
799 |
C |============================================================| |
800 |
C | | |
801 |
C \============================================================/ |
802 |
IMPLICIT NONE |
803 |
|
804 |
C === Global variables === |
805 |
#include "SIZE.h" |
806 |
#include "EEPARAMS.h" |
807 |
#include "PARAMS.h" |
808 |
#include "GRID.h" |
809 |
#include "STREAMICE.h" |
810 |
#include "STREAMICE_CG.h" |
811 |
|
812 |
C !INPUT/OUTPUT ARGUMENTS |
813 |
C uret, vret - result of matrix operating on u, v |
814 |
C is, ie, js, je - starting and ending cells |
815 |
INTEGER myThid |
816 |
_RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
817 |
_RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
818 |
|
819 |
#ifdef ALLOW_STREAMICE |
820 |
|
821 |
C the linear action of the matrix on (u,v) with triangular finite elements |
822 |
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
823 |
C but this may change pursuant to conversations with others |
824 |
C |
825 |
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
826 |
C in order to make less frequent halo updates |
827 |
C isym = 1 if grid is symmetric, 0 o.w. |
828 |
|
829 |
C the linear action of the matrix on (u,v) with triangular finite elements |
830 |
C Phi has the form |
831 |
C Phi (i,j,k,q) - applies to cell i,j |
832 |
|
833 |
C 3 - 4 |
834 |
C | | |
835 |
C 1 - 2 |
836 |
|
837 |
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
838 |
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
839 |
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
840 |
|
841 |
C !LOCAL VARIABLES: |
842 |
C == Local variables == |
843 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
844 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
845 |
_RL Ucell (2,2) |
846 |
_RL Vcell (2,2) |
847 |
_RL Hcell (2,2) |
848 |
_RL phival(2,2) |
849 |
|
850 |
uret(1,1,1,1) = uret(1,1,1,1) |
851 |
vret(1,1,1,1) = vret(1,1,1,1) |
852 |
|
853 |
DO j = 0, sNy+1 |
854 |
DO i = 0, sNx+1 |
855 |
DO bj = myByLo(myThid), myByHi(myThid) |
856 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
857 |
IF ((STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) .AND. |
858 |
& ((STREAMICE_umask(i,j,bi,bj).eq.3.0) .OR. |
859 |
& (STREAMICE_umask(i,j+1,bi,bj).eq.3.0) .OR. |
860 |
& (STREAMICE_umask(i+1,j,bi,bj).eq.3.0) .OR. |
861 |
& (STREAMICE_umask(i+1,j+1,bi,bj).eq.3.0) .OR. |
862 |
& (STREAMICE_vmask(i,j,bi,bj).eq.3.0) .OR. |
863 |
& (STREAMICE_vmask(i,j+1,bi,bj).eq.3.0) .OR. |
864 |
& (STREAMICE_vmask(i+1,j,bi,bj).eq.3.0) .OR. |
865 |
& (STREAMICE_vmask(i+1,j+1,bi,bj).eq.3.0))) THEN |
866 |
|
867 |
DO iq=1,2 |
868 |
DO jq = 1,2 |
869 |
|
870 |
n = 2*(jq-1)+iq |
871 |
|
872 |
uq = u_bdry_values_SI(i,j,bi,bj)*Xquad(3-iq)*Xquad(3-jq)+ |
873 |
& u_bdry_values_SI(i+1,j,bi,bj)*Xquad(iq)*Xquad(3-jq)+ |
874 |
& u_bdry_values_SI(i,j+1,bi,bj)*Xquad(3-iq)*Xquad(jq)+ |
875 |
& u_bdry_values_SI(i+1,j+1,bi,bj)*Xquad(iq)*Xquad(jq) |
876 |
vq = v_bdry_values_SI(i,j,bi,bj)*Xquad(3-iq)*Xquad(3-jq)+ |
877 |
& v_bdry_values_SI(i+1,j,bi,bj)*Xquad(iq)*Xquad(3-jq)+ |
878 |
& v_bdry_values_SI(i,j+1,bi,bj)*Xquad(3-iq)*Xquad(jq)+ |
879 |
& v_bdry_values_SI(i+1,j+1,bi,bj)*Xquad(iq)*Xquad(jq) |
880 |
ux = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
881 |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
882 |
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
883 |
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
884 |
uy = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
885 |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
886 |
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
887 |
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
888 |
vx = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
889 |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
890 |
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
891 |
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
892 |
vy = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
893 |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
894 |
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
895 |
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
896 |
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
897 |
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
898 |
exy = .5*(uy+vx) + |
899 |
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
900 |
|
901 |
|
902 |
do inode = 1,2 |
903 |
do jnode = 1,2 |
904 |
|
905 |
m = 2*(jnode-1)+inode |
906 |
ilq = 1 |
907 |
jlq = 1 |
908 |
if (inode.eq.iq) ilq = 2 |
909 |
if (jnode.eq.jq) jlq = 2 |
910 |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
911 |
|
912 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
913 |
|
914 |
|
915 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
916 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
917 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
918 |
& visc_streamice(i,j,bi,bj) * ( |
919 |
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
920 |
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
921 |
|
922 |
|
923 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
924 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
925 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
926 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
927 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
928 |
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
929 |
|
930 |
|
931 |
! if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then |
932 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
933 |
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
934 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
935 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
936 |
|
937 |
|
938 |
! endif |
939 |
endif |
940 |
if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
941 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
942 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
943 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
944 |
& visc_streamice(i,j,bi,bj) * ( |
945 |
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
946 |
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
947 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
948 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
949 |
& grid_jacq_streamice(i,j,bi,bj,n) * |
950 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
951 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
952 |
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
953 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
954 |
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
955 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
956 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
957 |
endif |
958 |
enddo |
959 |
enddo |
960 |
enddo |
961 |
enddo |
962 |
endif |
963 |
enddo |
964 |
enddo |
965 |
enddo |
966 |
enddo |
967 |
|
968 |
#endif |
969 |
RETURN |
970 |
END SUBROUTINE |