| 1 | C $Header: /u/gcmpack/MITgcm/pkg/streamice/streamice_cg_functions.F,v 1.2 2013/08/24 20:35:17 dgoldberg Exp $ | 
| 2 | C $Name:  $ | 
| 3 |  | 
| 4 | #include "STREAMICE_OPTIONS.h" | 
| 5 |  | 
| 6 | C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| | 
| 7 |  | 
| 8 | CBOP | 
| 9 | SUBROUTINE STREAMICE_CG_ACTION( myThid, | 
| 10 | O    uret, | 
| 11 | O    vret, | 
| 12 | I    u, | 
| 13 | I    v, | 
| 14 | I    is, ie, js, je ) | 
| 15 | C     /============================================================\ | 
| 16 | C     | SUBROUTINE                                                 | | 
| 17 | C     | o                                                          | | 
| 18 | C     |============================================================| | 
| 19 | C     |                                                            | | 
| 20 | C     \============================================================/ | 
| 21 | IMPLICIT NONE | 
| 22 |  | 
| 23 | C     === Global variables === | 
| 24 | #include "SIZE.h" | 
| 25 | #include "EEPARAMS.h" | 
| 26 | #include "PARAMS.h" | 
| 27 | #include "GRID.h" | 
| 28 | #include "STREAMICE.h" | 
| 29 | #include "STREAMICE_CG.h" | 
| 30 |  | 
| 31 | C     !INPUT/OUTPUT ARGUMENTS | 
| 32 | C     uret, vret - result of matrix operating on u, v | 
| 33 | C     is, ie, js, je - starting and ending cells | 
| 34 | INTEGER myThid | 
| 35 | _RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 36 | _RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 37 | _RL u (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 38 | _RL v (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 39 | INTEGER is, ie, js, je | 
| 40 |  | 
| 41 | #ifdef ALLOW_STREAMICE | 
| 42 |  | 
| 43 | C the linear action of the matrix on (u,v) with triangular finite elements | 
| 44 | C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, | 
| 45 | C but this may change pursuant to conversations with others | 
| 46 | C | 
| 47 | C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine | 
| 48 | C     in order to make less frequent halo updates | 
| 49 | C isym = 1 if grid is symmetric, 0 o.w. | 
| 50 |  | 
| 51 | C the linear action of the matrix on (u,v) with triangular finite elements | 
| 52 | C Phi has the form | 
| 53 | C Phi (i,j,k,q) - applies to cell i,j | 
| 54 |  | 
| 55 | C      3 - 4 | 
| 56 | C      |   | | 
| 57 | C      1 - 2 | 
| 58 |  | 
| 59 | C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q | 
| 60 | C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q | 
| 61 | C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear | 
| 62 |  | 
| 63 | C     !LOCAL VARIABLES: | 
| 64 | C     == Local variables == | 
| 65 | INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n,Gi,Gj | 
| 66 | _RL ux, vx, uy, vy, uq, vq, exx, eyy, exy | 
| 67 | _RL Ucell (2,2) | 
| 68 | _RL Vcell (2,2) | 
| 69 | _RL Hcell (2,2) | 
| 70 | _RL phival(2,2) | 
| 71 |  | 
| 72 | uret(1,1,1,1) = uret(1,1,1,1) | 
| 73 | vret(1,1,1,1) = vret(1,1,1,1) | 
| 74 |  | 
| 75 | DO j = js, je | 
| 76 | DO i = is, ie | 
| 77 | DO bj = myByLo(myThid), myByHi(myThid) | 
| 78 | DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 79 |  | 
| 80 | Gi = (myXGlobalLo-1)+(bi-1)*sNx+i | 
| 81 | Gj = (myYGlobalLo-1)+(bj-1)*sNy+j | 
| 82 |  | 
| 83 | IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN | 
| 84 | DO iq = 1,2 | 
| 85 | DO jq = 1,2 | 
| 86 |  | 
| 87 | n = 2*(jq-1)+iq | 
| 88 |  | 
| 89 |  | 
| 90 | uq = u(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + | 
| 91 | &       u(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + | 
| 92 | &       u(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + | 
| 93 | &       u(i+1,j+1,bi,bj) * Xquad(iq) * Xquad(jq) | 
| 94 | vq = v(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + | 
| 95 | &       v(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + | 
| 96 | &       v(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + | 
| 97 | &       v(i+1,j+1,bi,bj) * Xquad(iq) * Xquad(jq) | 
| 98 | ux = u(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + | 
| 99 | &       u(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + | 
| 100 | &       u(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + | 
| 101 | &       u(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) | 
| 102 | uy = u(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + | 
| 103 | &       u(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + | 
| 104 | &       u(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + | 
| 105 | &       u(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) | 
| 106 | vx = v(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + | 
| 107 | &       v(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + | 
| 108 | &       v(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + | 
| 109 | &       v(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) | 
| 110 | vy = v(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + | 
| 111 | &       v(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + | 
| 112 | &       v(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + | 
| 113 | &       v(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) | 
| 114 | exx = ux + k1AtC_str(i,j,bi,bj)*vq | 
| 115 | eyy = vy + k2AtC_str(i,j,bi,bj)*uq | 
| 116 | exy = .5*(uy+vx) + | 
| 117 | &       k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq | 
| 118 |  | 
| 119 | do inode = 1,2 | 
| 120 | do jnode = 1,2 | 
| 121 |  | 
| 122 | m = 2*(jnode-1)+inode | 
| 123 | ilq = 1 | 
| 124 | jlq = 1 | 
| 125 | if (inode.eq.iq) ilq = 2 | 
| 126 | if (jnode.eq.jq) jlq = 2 | 
| 127 | phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) | 
| 128 |  | 
| 129 | if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then | 
| 130 |  | 
| 131 | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 132 | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 133 | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 134 | &         visc_streamice(i,j,bi,bj) * ( | 
| 135 | &          DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + | 
| 136 | &          DPhi(i,j,bi,bj,m,n,2)*(2*exy)) | 
| 137 |  | 
| 138 |  | 
| 139 | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 140 | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 141 | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 142 | &         visc_streamice(i,j,bi,bj) * phival(inode,jnode) * | 
| 143 | &         (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ | 
| 144 | &          4*0.5*k1AtC_str(i,j,bi,bj)*exy) | 
| 145 |  | 
| 146 |  | 
| 147 | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 148 | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 149 | &         phival(inode,jnode) * | 
| 150 | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 151 | &         tau_beta_eff_streamice (i,j,bi,bj) * uq | 
| 152 |  | 
| 153 |  | 
| 154 | endif | 
| 155 |  | 
| 156 | if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then | 
| 157 | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 158 | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 159 | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 160 | &         visc_streamice(i,j,bi,bj) * ( | 
| 161 | &          DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + | 
| 162 | &          DPhi(i,j,bi,bj,m,n,1)*(2*exy)) | 
| 163 | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 164 | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 165 | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 166 | &         visc_streamice(i,j,bi,bj) * phival(inode,jnode) * | 
| 167 | &         (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ | 
| 168 | &          4*0.5*k2AtC_str(i,j,bi,bj)*exy) | 
| 169 | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 170 | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 171 | &         phival(inode,jnode) * | 
| 172 | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 173 | &         tau_beta_eff_streamice (i,j,bi,bj) * vq | 
| 174 |  | 
| 175 | endif | 
| 176 | enddo | 
| 177 | enddo | 
| 178 |  | 
| 179 | enddo | 
| 180 | enddo | 
| 181 | c-- STREAMICE_hmask | 
| 182 | endif | 
| 183 |  | 
| 184 | enddo | 
| 185 | enddo | 
| 186 | enddo | 
| 187 | enddo | 
| 188 |  | 
| 189 | #endif | 
| 190 | RETURN | 
| 191 | END SUBROUTINE | 
| 192 |  | 
| 193 | SUBROUTINE STREAMICE_CG_MAKE_A( myThid ) | 
| 194 | C     /============================================================\ | 
| 195 | C     | SUBROUTINE                                                 | | 
| 196 | C     | o                                                          | | 
| 197 | C     |============================================================| | 
| 198 | C     |                                                            | | 
| 199 | C     \============================================================/ | 
| 200 | IMPLICIT NONE | 
| 201 |  | 
| 202 | C     === Global variables === | 
| 203 | #include "SIZE.h" | 
| 204 | #include "EEPARAMS.h" | 
| 205 | #include "PARAMS.h" | 
| 206 | #include "GRID.h" | 
| 207 | #include "STREAMICE.h" | 
| 208 | #include "STREAMICE_CG.h" | 
| 209 |  | 
| 210 | C     !INPUT/OUTPUT ARGUMENTS | 
| 211 | C     uret, vret - result of matrix operating on u, v | 
| 212 | C     is, ie, js, je - starting and ending cells | 
| 213 | INTEGER myThid | 
| 214 |  | 
| 215 | #ifdef ALLOW_STREAMICE | 
| 216 |  | 
| 217 | #ifdef STREAMICE_CONSTRUCT_MATRIX | 
| 218 |  | 
| 219 | C the linear action of the matrix on (u,v) with triangular finite elements | 
| 220 | C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, | 
| 221 | C but this may change pursuant to conversations with others | 
| 222 | C | 
| 223 | C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine | 
| 224 | C     in order to make less frequent halo updates | 
| 225 | C isym = 1 if grid is symmetric, 0 o.w. | 
| 226 |  | 
| 227 | C the linear action of the matrix on (u,v) with triangular finite elements | 
| 228 | C Phi has the form | 
| 229 | C Phi (i,j,k,q) - applies to cell i,j | 
| 230 |  | 
| 231 | C      3 - 4 | 
| 232 | C      |   | | 
| 233 | C      1 - 2 | 
| 234 |  | 
| 235 | C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q | 
| 236 | C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q | 
| 237 | C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear | 
| 238 |  | 
| 239 | C     !LOCAL VARIABLES: | 
| 240 | C     == Local variables == | 
| 241 | INTEGER iq, jq, inodx, inody, i, j, bi, bj, ilqx, ilqy, m_i, n | 
| 242 | INTEGER jlqx, jlqy, jnodx,jnody, m_j, col_y, col_x, cg_halo, k | 
| 243 | INTEGER colx_rev, coly_rev | 
| 244 | _RL ux, vx, uy, vy, uq, vq, exx, eyy, exy, tmpval | 
| 245 | _RL phival(2,2) | 
| 246 |  | 
| 247 | !       do i=1,3 | 
| 248 | !        do j=0,2 | 
| 249 | !         col_index_a = i + j*3 | 
| 250 | !        enddo | 
| 251 | !       enddo | 
| 252 |  | 
| 253 | cg_halo = min(OLx-1,OLy-1) | 
| 254 |  | 
| 255 | DO j = 1-cg_halo, sNy+cg_halo | 
| 256 | DO i = 1-cg_halo, sNx+cg_halo | 
| 257 | DO bj = myByLo(myThid), myByHi(myThid) | 
| 258 | DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 259 | cc          DO k=1,4 | 
| 260 | DO col_x=-1,1 | 
| 261 | DO col_y=-1,1 | 
| 262 | streamice_cg_A1(i,j,bi,bj,col_x,col_y)=0.0 | 
| 263 | streamice_cg_A2(i,j,bi,bj,col_x,col_y)=0.0 | 
| 264 | streamice_cg_A3(i,j,bi,bj,col_x,col_y)=0.0 | 
| 265 | streamice_cg_A4(i,j,bi,bj,col_x,col_y)=0.0 | 
| 266 | ENDDO | 
| 267 | ENDDO | 
| 268 | cc          ENDDO | 
| 269 | ENDDO | 
| 270 | ENDDO | 
| 271 | ENDDO | 
| 272 | ENDDO | 
| 273 |  | 
| 274 | DO j = 1-cg_halo, sNy+cg_halo | 
| 275 | DO i = 1-cg_halo, sNx+cg_halo | 
| 276 | DO bj = myByLo(myThid), myByHi(myThid) | 
| 277 | DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 278 | IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN | 
| 279 | DO iq=1,2 | 
| 280 | DO jq = 1,2 | 
| 281 |  | 
| 282 | n = 2*(jq-1)+iq | 
| 283 |  | 
| 284 | DO inodx = 1,2 | 
| 285 | DO inody = 1,2 | 
| 286 |  | 
| 287 | !               if (i.eq.50 .and. j.eq.50) then | 
| 288 | !               PRINT *, "GOT HERE MAKEA", inodx,inody, | 
| 289 | !     &          streamice_umask(i-1+inodx,j-1+inody,bi,bj) | 
| 290 | !               endif | 
| 291 |  | 
| 292 | if (STREAMICE_umask(i-1+inodx,j-1+inody,bi,bj) | 
| 293 | &          .eq.1.0 .or. | 
| 294 | &             streamice_vmask(i-1+inodx,j-1+inody,bi,bj).eq.1.0) | 
| 295 | &          then | 
| 296 |  | 
| 297 | m_i = 2*(inody-1)+inodx | 
| 298 | ilqx = 1 | 
| 299 | ilqy = 1 | 
| 300 |  | 
| 301 | if (inodx.eq.iq) ilqx = 2 | 
| 302 | if (inody.eq.jq) ilqy = 2 | 
| 303 | phival(inodx,inody) = Xquad(ilqx)*Xquad(ilqy) | 
| 304 |  | 
| 305 | DO jnodx = 1,2 | 
| 306 | DO jnody = 1,2 | 
| 307 | if (STREAMICE_umask(i-1+jnodx,j-1+jnody,bi,bj) | 
| 308 | &             .eq.1.0 .or. | 
| 309 | &             STREAMICE_vmask(i-1+jnodx,j-1+jnody,bi,bj).eq.1.0) | 
| 310 | &             then | 
| 311 |  | 
| 312 | m_j = 2*(jnody-1)+jnodx | 
| 313 | ilqx = 1 | 
| 314 | ilqy = 1 | 
| 315 | if (jnodx.eq.iq) ilqx = 2 | 
| 316 | if (jnody.eq.jq) ilqy = 2 | 
| 317 |  | 
| 318 | !                    col_j = col_index_a ( | 
| 319 | !      &              jnodx+mod(inodx,2), | 
| 320 | !      &              jnody+mod(inody,2) ) | 
| 321 |  | 
| 322 | col_x = mod(inodx,2)+jnodx-2 | 
| 323 | colx_rev = mod(jnodx,2)+inodx-2 | 
| 324 | col_y = mod(inody,2)+jnody-2 | 
| 325 | coly_rev = mod(jnody,2)+inody-2 | 
| 326 | c | 
| 327 |  | 
| 328 |  | 
| 329 | IF ( (inodx.eq.jnodx .and. inody.eq.jnody) .or. | 
| 330 | &                  (inodx.eq.1 .and. inody.eq.1) .or. | 
| 331 | &                  (jnody.eq.2 .and. inody.eq.1) .or. | 
| 332 | &                  (jnody.eq.2 .and. jnodx.eq.2)) THEN | 
| 333 |  | 
| 334 |  | 
| 335 |  | 
| 336 | ux = DPhi (i,j,bi,bj,m_j,n,1) | 
| 337 | uy = DPhi (i,j,bi,bj,m_j,n,2) | 
| 338 | vx = 0 | 
| 339 | vy = 0 | 
| 340 | uq = Xquad(ilqx) * Xquad(ilqy) | 
| 341 | vq = 0 | 
| 342 |  | 
| 343 | exx = ux + k1AtC_str(i,j,bi,bj)*vq | 
| 344 | eyy = vy + k2AtC_str(i,j,bi,bj)*uq | 
| 345 | exy = .5*(uy+vx) + | 
| 346 | &              k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq | 
| 347 |  | 
| 348 | tmpval = .25 * | 
| 349 | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 350 | &              visc_streamice(i,j,bi,bj) * ( | 
| 351 | &              DPhi(i,j,bi,bj,m_i,n,1)*(4*exx+2*eyy) + | 
| 352 | &              DPhi(i,j,bi,bj,m_i,n,2)*(2*exy)) | 
| 353 |  | 
| 354 | streamice_cg_A1 | 
| 355 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 356 | &             streamice_cg_A1 | 
| 357 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval | 
| 358 |  | 
| 359 | IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN | 
| 360 | streamice_cg_A1 | 
| 361 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= | 
| 362 | &              streamice_cg_A1 | 
| 363 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ | 
| 364 | &               tmpval | 
| 365 | ENDIF | 
| 366 |  | 
| 367 | !!! | 
| 368 |  | 
| 369 | tmpval = .25 * | 
| 370 | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 371 | &              visc_streamice(i,j,bi,bj) * ( | 
| 372 | &              DPhi(i,j,bi,bj,m_i,n,2)*(4*eyy+2*exx) + | 
| 373 | &              DPhi(i,j,bi,bj,m_i,n,1)*(2*exy)) | 
| 374 |  | 
| 375 | streamice_cg_A3 | 
| 376 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 377 | &             streamice_cg_A3 | 
| 378 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval | 
| 379 |  | 
| 380 | IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN | 
| 381 | streamice_cg_A2 | 
| 382 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= | 
| 383 | &              streamice_cg_A2 | 
| 384 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ | 
| 385 | &               tmpval | 
| 386 | ENDIF | 
| 387 |  | 
| 388 | !!! | 
| 389 |  | 
| 390 | tmpval = .25 * | 
| 391 | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 392 | &              visc_streamice(i,j,bi,bj) * phival(inodx,inody) * | 
| 393 | &             (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* | 
| 394 | &              exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) | 
| 395 |  | 
| 396 | streamice_cg_A1 | 
| 397 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 398 | &             streamice_cg_A1 | 
| 399 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval | 
| 400 |  | 
| 401 | IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN | 
| 402 | streamice_cg_A1 | 
| 403 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= | 
| 404 | &              streamice_cg_A1 | 
| 405 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ | 
| 406 | &               tmpval | 
| 407 | ENDIF | 
| 408 |  | 
| 409 | !!! | 
| 410 |  | 
| 411 | tmpval = .25 * | 
| 412 | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 413 | &              visc_streamice(i,j,bi,bj) * phival(inodx,inody) * | 
| 414 | &             (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* | 
| 415 | &              eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) | 
| 416 |  | 
| 417 | streamice_cg_A3 | 
| 418 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 419 | &             streamice_cg_A3 | 
| 420 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval | 
| 421 |  | 
| 422 | IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN | 
| 423 | streamice_cg_A2 | 
| 424 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= | 
| 425 | &              streamice_cg_A2 | 
| 426 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ | 
| 427 | &               tmpval | 
| 428 | ENDIF | 
| 429 |  | 
| 430 |  | 
| 431 | !!! | 
| 432 |  | 
| 433 | tmpval = .25*phival(inodx,inody) * | 
| 434 | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 435 | &              tau_beta_eff_streamice (i,j,bi,bj) * uq | 
| 436 |  | 
| 437 | streamice_cg_A1 | 
| 438 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 439 | &             streamice_cg_A1 | 
| 440 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval | 
| 441 |  | 
| 442 | IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN | 
| 443 | streamice_cg_A1 | 
| 444 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= | 
| 445 | &              streamice_cg_A1 | 
| 446 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ | 
| 447 | &               tmpval | 
| 448 | ENDIF | 
| 449 |  | 
| 450 |  | 
| 451 | !!! | 
| 452 | tmpval = .25*phival(inodx,inody) * | 
| 453 | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 454 | &              tau_beta_eff_streamice (i,j,bi,bj) * vq | 
| 455 |  | 
| 456 | streamice_cg_A3 | 
| 457 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 458 | &             streamice_cg_A3 | 
| 459 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval | 
| 460 |  | 
| 461 | IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN | 
| 462 | streamice_cg_A2 | 
| 463 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= | 
| 464 | &              streamice_cg_A2 | 
| 465 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ | 
| 466 | &               tmpval | 
| 467 | ENDIF | 
| 468 |  | 
| 469 |  | 
| 470 |  | 
| 471 | !!! | 
| 472 |  | 
| 473 | vx = DPhi (i,j,bi,bj,m_j,n,1) | 
| 474 | vy = DPhi (i,j,bi,bj,m_j,n,2) | 
| 475 | ux = 0 | 
| 476 | uy = 0 | 
| 477 | vq = Xquad(ilqx) * Xquad(ilqy) | 
| 478 | uq = 0 | 
| 479 |  | 
| 480 | exx = ux + k1AtC_str(i,j,bi,bj)*vq | 
| 481 | eyy = vy + k2AtC_str(i,j,bi,bj)*uq | 
| 482 | exy = .5*(uy+vx) + | 
| 483 | &              k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq | 
| 484 |  | 
| 485 | tmpval = .25 * | 
| 486 | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 487 | &              visc_streamice(i,j,bi,bj) * ( | 
| 488 | &              DPhi(i,j,bi,bj,m_i,n,1)*(4*exx+2*eyy) + | 
| 489 | &              DPhi(i,j,bi,bj,m_i,n,2)*(2*exy)) | 
| 490 |  | 
| 491 | streamice_cg_A2 | 
| 492 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 493 | &             streamice_cg_A2 | 
| 494 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval | 
| 495 |  | 
| 496 | IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN | 
| 497 | streamice_cg_A3 | 
| 498 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= | 
| 499 | &              streamice_cg_A3 | 
| 500 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ | 
| 501 | &               tmpval | 
| 502 | ENDIF | 
| 503 |  | 
| 504 |  | 
| 505 | tmpval = .25 * | 
| 506 | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 507 | &              visc_streamice(i,j,bi,bj) * ( | 
| 508 | &              DPhi(i,j,bi,bj,m_i,n,2)*(4*eyy+2*exx) + | 
| 509 | &              DPhi(i,j,bi,bj,m_i,n,1)*(2*exy)) | 
| 510 |  | 
| 511 | streamice_cg_A4 | 
| 512 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 513 | &             streamice_cg_A4 | 
| 514 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval | 
| 515 |  | 
| 516 | IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN | 
| 517 | streamice_cg_A4 | 
| 518 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= | 
| 519 | &              streamice_cg_A4 | 
| 520 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ | 
| 521 | &               tmpval | 
| 522 | ENDIF | 
| 523 |  | 
| 524 |  | 
| 525 | tmpval = .25 * | 
| 526 | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 527 | &              visc_streamice(i,j,bi,bj) * phival(inodx,inody) * | 
| 528 | &             (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* | 
| 529 | &              exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) | 
| 530 |  | 
| 531 | streamice_cg_A2 | 
| 532 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 533 | &             streamice_cg_A2 | 
| 534 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval | 
| 535 |  | 
| 536 | IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN | 
| 537 | streamice_cg_A3 | 
| 538 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= | 
| 539 | &              streamice_cg_A3 | 
| 540 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ | 
| 541 | &               tmpval | 
| 542 | ENDIF | 
| 543 |  | 
| 544 |  | 
| 545 | tmpval = .25 * | 
| 546 | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 547 | &              visc_streamice(i,j,bi,bj) * phival(inodx,inody) * | 
| 548 | &             (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* | 
| 549 | &              eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) | 
| 550 |  | 
| 551 | streamice_cg_A4 | 
| 552 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 553 | &             streamice_cg_A4 | 
| 554 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval | 
| 555 |  | 
| 556 | IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN | 
| 557 | streamice_cg_A4 | 
| 558 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= | 
| 559 | &              streamice_cg_A4 | 
| 560 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ | 
| 561 | &               tmpval | 
| 562 | ENDIF | 
| 563 |  | 
| 564 |  | 
| 565 | tmpval = .25*phival(inodx,inody) * | 
| 566 | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 567 | &              tau_beta_eff_streamice (i,j,bi,bj) * uq | 
| 568 |  | 
| 569 | streamice_cg_A2 | 
| 570 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 571 | &             streamice_cg_A2 | 
| 572 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval | 
| 573 |  | 
| 574 | IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN | 
| 575 | streamice_cg_A3 | 
| 576 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= | 
| 577 | &              streamice_cg_A3 | 
| 578 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ | 
| 579 | &               tmpval | 
| 580 | ENDIF | 
| 581 |  | 
| 582 |  | 
| 583 | tmpval = .25*phival(inodx,inody) * | 
| 584 | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 585 | &              tau_beta_eff_streamice (i,j,bi,bj) * vq | 
| 586 |  | 
| 587 | streamice_cg_A4 | 
| 588 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 589 | &             streamice_cg_A4 | 
| 590 | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+tmpval | 
| 591 |  | 
| 592 | IF (.not. (inodx.eq.jnodx .and. inody.eq.jnody)) THEN | 
| 593 | streamice_cg_A4 | 
| 594 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)= | 
| 595 | &              streamice_cg_A4 | 
| 596 | &               (i-1+jnodx,j-1+jnody,bi,bj,colx_rev,coly_rev)+ | 
| 597 | &               tmpval | 
| 598 | ENDIF | 
| 599 |  | 
| 600 |  | 
| 601 | endif | 
| 602 | endif | 
| 603 | enddo | 
| 604 | enddo | 
| 605 | endif | 
| 606 | enddo | 
| 607 | enddo | 
| 608 | enddo | 
| 609 | enddo | 
| 610 | endif | 
| 611 | enddo | 
| 612 | enddo | 
| 613 | enddo | 
| 614 | enddo | 
| 615 |  | 
| 616 |  | 
| 617 |  | 
| 618 | #endif | 
| 619 | #endif | 
| 620 | RETURN | 
| 621 | END SUBROUTINE | 
| 622 |  | 
| 623 | SUBROUTINE STREAMICE_CG_ADIAG( myThid, | 
| 624 | O      uret, | 
| 625 | O      vret) | 
| 626 |  | 
| 627 | C     /============================================================\ | 
| 628 | C     | SUBROUTINE                                                 | | 
| 629 | C     | o                                                          | | 
| 630 | C     |============================================================| | 
| 631 | C     |                                                            | | 
| 632 | C     \============================================================/ | 
| 633 | IMPLICIT NONE | 
| 634 |  | 
| 635 | C     === Global variables === | 
| 636 | #include "SIZE.h" | 
| 637 | #include "EEPARAMS.h" | 
| 638 | #include "PARAMS.h" | 
| 639 | #include "GRID.h" | 
| 640 | #include "STREAMICE.h" | 
| 641 | #include "STREAMICE_CG.h" | 
| 642 |  | 
| 643 | C     !INPUT/OUTPUT ARGUMENTS | 
| 644 | C     uret, vret - result of matrix operating on u, v | 
| 645 | C     is, ie, js, je - starting and ending cells | 
| 646 | INTEGER myThid | 
| 647 | _RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 648 | _RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 649 |  | 
| 650 |  | 
| 651 | #ifdef ALLOW_STREAMICE | 
| 652 |  | 
| 653 | C the linear action of the matrix on (u,v) with triangular finite elements | 
| 654 | C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, | 
| 655 | C but this may change pursuant to conversations with others | 
| 656 | C | 
| 657 | C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine | 
| 658 | C     in order to make less frequent halo updates | 
| 659 | C isym = 1 if grid is symmetric, 0 o.w. | 
| 660 |  | 
| 661 | C the linear action of the matrix on (u,v) with triangular finite elements | 
| 662 | C Phi has the form | 
| 663 | C Phi (i,j,k,q) - applies to cell i,j | 
| 664 |  | 
| 665 | C      3 - 4 | 
| 666 | C      |   | | 
| 667 | C      1 - 2 | 
| 668 |  | 
| 669 | C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q | 
| 670 | C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q | 
| 671 | C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear | 
| 672 |  | 
| 673 | C     !LOCAL VARIABLES: | 
| 674 | C     == Local variables == | 
| 675 | INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n | 
| 676 | _RL ux, vx, uy, vy, uq, vq, exx, eyy, exy | 
| 677 | _RL Ucell (2,2) | 
| 678 | _RL Vcell (2,2) | 
| 679 | _RL Hcell (2,2) | 
| 680 | _RL phival(2,2) | 
| 681 |  | 
| 682 | uret(1,1,1,1) = uret(1,1,1,1) | 
| 683 | vret(1,1,1,1) = vret(1,1,1,1) | 
| 684 |  | 
| 685 | DO j = 0, sNy+1 | 
| 686 | DO i = 0, sNx+1 | 
| 687 | DO bj = myByLo(myThid), myByHi(myThid) | 
| 688 | DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 689 | IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN | 
| 690 | DO iq=1,2 | 
| 691 | DO jq = 1,2 | 
| 692 |  | 
| 693 | n = 2*(jq-1)+iq | 
| 694 |  | 
| 695 | DO inode = 1,2 | 
| 696 | DO jnode = 1,2 | 
| 697 |  | 
| 698 | m = 2*(jnode-1)+inode | 
| 699 |  | 
| 700 | if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0 .or. | 
| 701 | &           STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) | 
| 702 | &           then | 
| 703 |  | 
| 704 | ilq = 1 | 
| 705 | jlq = 1 | 
| 706 |  | 
| 707 | if (inode.eq.iq) ilq = 2 | 
| 708 | if (jnode.eq.jq) jlq = 2 | 
| 709 | phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) | 
| 710 |  | 
| 711 | ux = DPhi (i,j,bi,bj,m,n,1) | 
| 712 | uy = DPhi (i,j,bi,bj,m,n,2) | 
| 713 | vx = 0 | 
| 714 | vy = 0 | 
| 715 | uq = Xquad(ilq) * Xquad(jlq) | 
| 716 | vq = 0 | 
| 717 |  | 
| 718 | exx = ux + k1AtC_str(i,j,bi,bj)*vq | 
| 719 | eyy = vy + k2AtC_str(i,j,bi,bj)*uq | 
| 720 | exy = .5*(uy+vx) + | 
| 721 | &         k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq | 
| 722 |  | 
| 723 | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 724 | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 725 | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 726 | &         visc_streamice(i,j,bi,bj) * ( | 
| 727 | &          DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + | 
| 728 | &          DPhi(i,j,bi,bj,m,n,2)*(2*exy)) | 
| 729 |  | 
| 730 | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 731 | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 732 | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 733 | &         visc_streamice(i,j,bi,bj) * phival(inode,jnode) * | 
| 734 | &         (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ | 
| 735 | &          4*0.5*k1AtC_str(i,j,bi,bj)*exy) | 
| 736 |  | 
| 737 |  | 
| 738 | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 739 | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 740 | &         phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * | 
| 741 | &         tau_beta_eff_streamice (i,j,bi,bj) * uq | 
| 742 |  | 
| 743 |  | 
| 744 | vx = DPhi (i,j,bi,bj,m,n,1) | 
| 745 | vy = DPhi (i,j,bi,bj,m,n,2) | 
| 746 | ux = 0 | 
| 747 | uy = 0 | 
| 748 | vq = Xquad(ilq) * Xquad(jlq) | 
| 749 | uq = 0 | 
| 750 |  | 
| 751 | exx = ux + k1AtC_str(i,j,bi,bj)*vq | 
| 752 | eyy = vy + k2AtC_str(i,j,bi,bj)*uq | 
| 753 | exy = .5*(uy+vx) + | 
| 754 | &         k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq | 
| 755 |  | 
| 756 | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 757 | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 758 | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 759 | &         visc_streamice(i,j,bi,bj) * ( | 
| 760 | &          DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + | 
| 761 | &          DPhi(i,j,bi,bj,m,n,1)*(2*exy)) | 
| 762 | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 763 | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 764 | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 765 | &         visc_streamice(i,j,bi,bj) * phival(inode,jnode) * | 
| 766 | &         (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ | 
| 767 | &          4*0.5*k2AtC_str(i,j,bi,bj)*exy) | 
| 768 |  | 
| 769 |  | 
| 770 | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 771 | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 772 | &         phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * | 
| 773 | &         tau_beta_eff_streamice (i,j,bi,bj) * vq | 
| 774 |  | 
| 775 | endif | 
| 776 |  | 
| 777 | enddo | 
| 778 | enddo | 
| 779 | enddo | 
| 780 | enddo | 
| 781 | endif | 
| 782 | enddo | 
| 783 | enddo | 
| 784 | enddo | 
| 785 | enddo | 
| 786 |  | 
| 787 | #endif | 
| 788 | RETURN | 
| 789 | END SUBROUTINE | 
| 790 |  | 
| 791 |  | 
| 792 |  | 
| 793 | SUBROUTINE STREAMICE_CG_BOUND_VALS( myThid, | 
| 794 | O    uret, | 
| 795 | O    vret) | 
| 796 | C     /============================================================\ | 
| 797 | C     | SUBROUTINE                                                 | | 
| 798 | C     | o                                                          | | 
| 799 | C     |============================================================| | 
| 800 | C     |                                                            | | 
| 801 | C     \============================================================/ | 
| 802 | IMPLICIT NONE | 
| 803 |  | 
| 804 | C     === Global variables === | 
| 805 | #include "SIZE.h" | 
| 806 | #include "EEPARAMS.h" | 
| 807 | #include "PARAMS.h" | 
| 808 | #include "GRID.h" | 
| 809 | #include "STREAMICE.h" | 
| 810 | #include "STREAMICE_CG.h" | 
| 811 |  | 
| 812 | C     !INPUT/OUTPUT ARGUMENTS | 
| 813 | C     uret, vret - result of matrix operating on u, v | 
| 814 | C     is, ie, js, je - starting and ending cells | 
| 815 | INTEGER myThid | 
| 816 | _RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 817 | _RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 818 |  | 
| 819 | #ifdef ALLOW_STREAMICE | 
| 820 |  | 
| 821 | C the linear action of the matrix on (u,v) with triangular finite elements | 
| 822 | C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, | 
| 823 | C but this may change pursuant to conversations with others | 
| 824 | C | 
| 825 | C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine | 
| 826 | C     in order to make less frequent halo updates | 
| 827 | C isym = 1 if grid is symmetric, 0 o.w. | 
| 828 |  | 
| 829 | C the linear action of the matrix on (u,v) with triangular finite elements | 
| 830 | C Phi has the form | 
| 831 | C Phi (i,j,k,q) - applies to cell i,j | 
| 832 |  | 
| 833 | C      3 - 4 | 
| 834 | C      |   | | 
| 835 | C      1 - 2 | 
| 836 |  | 
| 837 | C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q | 
| 838 | C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q | 
| 839 | C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear | 
| 840 |  | 
| 841 | C     !LOCAL VARIABLES: | 
| 842 | C     == Local variables == | 
| 843 | INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n | 
| 844 | _RL ux, vx, uy, vy, uq, vq, exx, eyy, exy | 
| 845 | _RL Ucell (2,2) | 
| 846 | _RL Vcell (2,2) | 
| 847 | _RL Hcell (2,2) | 
| 848 | _RL phival(2,2) | 
| 849 |  | 
| 850 | uret(1,1,1,1) = uret(1,1,1,1) | 
| 851 | vret(1,1,1,1) = vret(1,1,1,1) | 
| 852 |  | 
| 853 | DO j = 0, sNy+1 | 
| 854 | DO i = 0, sNx+1 | 
| 855 | DO bj = myByLo(myThid), myByHi(myThid) | 
| 856 | DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 857 | IF ((STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) .AND. | 
| 858 | &     ((STREAMICE_umask(i,j,bi,bj).eq.3.0) .OR. | 
| 859 | &      (STREAMICE_umask(i,j+1,bi,bj).eq.3.0) .OR. | 
| 860 | &      (STREAMICE_umask(i+1,j,bi,bj).eq.3.0) .OR. | 
| 861 | &      (STREAMICE_umask(i+1,j+1,bi,bj).eq.3.0) .OR. | 
| 862 | &      (STREAMICE_vmask(i,j,bi,bj).eq.3.0) .OR. | 
| 863 | &      (STREAMICE_vmask(i,j+1,bi,bj).eq.3.0) .OR. | 
| 864 | &      (STREAMICE_vmask(i+1,j,bi,bj).eq.3.0) .OR. | 
| 865 | &      (STREAMICE_vmask(i+1,j+1,bi,bj).eq.3.0))) THEN | 
| 866 |  | 
| 867 | DO iq=1,2 | 
| 868 | DO jq = 1,2 | 
| 869 |  | 
| 870 | n = 2*(jq-1)+iq | 
| 871 |  | 
| 872 | uq = u_bdry_values_SI(i,j,bi,bj)*Xquad(3-iq)*Xquad(3-jq)+ | 
| 873 | &       u_bdry_values_SI(i+1,j,bi,bj)*Xquad(iq)*Xquad(3-jq)+ | 
| 874 | &       u_bdry_values_SI(i,j+1,bi,bj)*Xquad(3-iq)*Xquad(jq)+ | 
| 875 | &       u_bdry_values_SI(i+1,j+1,bi,bj)*Xquad(iq)*Xquad(jq) | 
| 876 | vq = v_bdry_values_SI(i,j,bi,bj)*Xquad(3-iq)*Xquad(3-jq)+ | 
| 877 | &       v_bdry_values_SI(i+1,j,bi,bj)*Xquad(iq)*Xquad(3-jq)+ | 
| 878 | &       v_bdry_values_SI(i,j+1,bi,bj)*Xquad(3-iq)*Xquad(jq)+ | 
| 879 | &       v_bdry_values_SI(i+1,j+1,bi,bj)*Xquad(iq)*Xquad(jq) | 
| 880 | ux = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + | 
| 881 | &       u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + | 
| 882 | &       u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + | 
| 883 | &       u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) | 
| 884 | uy = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + | 
| 885 | &       u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + | 
| 886 | &       u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + | 
| 887 | &       u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) | 
| 888 | vx = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + | 
| 889 | &       v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + | 
| 890 | &       v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + | 
| 891 | &       v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) | 
| 892 | vy = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + | 
| 893 | &       v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + | 
| 894 | &       v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + | 
| 895 | &       v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) | 
| 896 | exx = ux + k1AtC_str(i,j,bi,bj)*vq | 
| 897 | eyy = vy + k2AtC_str(i,j,bi,bj)*uq | 
| 898 | exy = .5*(uy+vx) + | 
| 899 | &       k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq | 
| 900 |  | 
| 901 |  | 
| 902 | do inode = 1,2 | 
| 903 | do jnode = 1,2 | 
| 904 |  | 
| 905 | m = 2*(jnode-1)+inode | 
| 906 | ilq = 1 | 
| 907 | jlq = 1 | 
| 908 | if (inode.eq.iq) ilq = 2 | 
| 909 | if (jnode.eq.jq) jlq = 2 | 
| 910 | phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) | 
| 911 |  | 
| 912 | if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then | 
| 913 |  | 
| 914 |  | 
| 915 | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 916 | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 917 | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 918 | &         visc_streamice(i,j,bi,bj) * ( | 
| 919 | &          DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + | 
| 920 | &          DPhi(i,j,bi,bj,m,n,2)*(2*exy)) | 
| 921 |  | 
| 922 |  | 
| 923 | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 924 | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 925 | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 926 | &         visc_streamice(i,j,bi,bj) * phival(inode,jnode) * | 
| 927 | &         (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ | 
| 928 | &          4*0.5*k1AtC_str(i,j,bi,bj)*exy) | 
| 929 |  | 
| 930 |  | 
| 931 | !               if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then | 
| 932 | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 933 | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 934 | &         phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * | 
| 935 | &         tau_beta_eff_streamice (i,j,bi,bj) * uq | 
| 936 |  | 
| 937 |  | 
| 938 | !               endif | 
| 939 | endif | 
| 940 | if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then | 
| 941 | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 942 | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 943 | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 944 | &         visc_streamice(i,j,bi,bj) * ( | 
| 945 | &          DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + | 
| 946 | &          DPhi(i,j,bi,bj,m,n,1)*(2*exy)) | 
| 947 | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 948 | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 949 | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 950 | &         visc_streamice(i,j,bi,bj) * phival(inode,jnode) * | 
| 951 | &         (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ | 
| 952 | &          4*0.5*k2AtC_str(i,j,bi,bj)*exy) | 
| 953 | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 954 | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 955 | &         phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * | 
| 956 | &         tau_beta_eff_streamice (i,j,bi,bj) * vq | 
| 957 | endif | 
| 958 | enddo | 
| 959 | enddo | 
| 960 | enddo | 
| 961 | enddo | 
| 962 | endif | 
| 963 | enddo | 
| 964 | enddo | 
| 965 | enddo | 
| 966 | enddo | 
| 967 |  | 
| 968 | #endif | 
| 969 | RETURN | 
| 970 | END SUBROUTINE |