1 |
dgoldberg |
1.7 |
C $Header: /u/gcmpack/MITgcm_contrib/dgoldberg/streamice/streamice_cg_functions.F,v 1.6 2012/12/28 23:54:02 dgoldberg Exp $ |
2 |
heimbach |
1.1 |
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "STREAMICE_OPTIONS.h" |
5 |
|
|
|
6 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
7 |
|
|
|
8 |
|
|
CBOP |
9 |
|
|
SUBROUTINE STREAMICE_CG_ACTION( myThid, |
10 |
|
|
O uret, |
11 |
|
|
O vret, |
12 |
|
|
I u, |
13 |
|
|
I v, |
14 |
|
|
I is, ie, js, je ) |
15 |
|
|
C /============================================================\ |
16 |
|
|
C | SUBROUTINE | |
17 |
|
|
C | o | |
18 |
|
|
C |============================================================| |
19 |
|
|
C | | |
20 |
|
|
C \============================================================/ |
21 |
|
|
IMPLICIT NONE |
22 |
|
|
|
23 |
|
|
C === Global variables === |
24 |
|
|
#include "SIZE.h" |
25 |
|
|
#include "EEPARAMS.h" |
26 |
|
|
#include "PARAMS.h" |
27 |
|
|
#include "GRID.h" |
28 |
|
|
#include "STREAMICE.h" |
29 |
|
|
#include "STREAMICE_CG.h" |
30 |
|
|
|
31 |
|
|
C !INPUT/OUTPUT ARGUMENTS |
32 |
|
|
C uret, vret - result of matrix operating on u, v |
33 |
|
|
C is, ie, js, je - starting and ending cells |
34 |
|
|
INTEGER myThid |
35 |
|
|
_RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
36 |
|
|
_RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
37 |
|
|
_RL u (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
38 |
|
|
_RL v (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
39 |
|
|
INTEGER is, ie, js, je |
40 |
|
|
|
41 |
|
|
#ifdef ALLOW_STREAMICE |
42 |
|
|
|
43 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
44 |
|
|
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
45 |
|
|
C but this may change pursuant to conversations with others |
46 |
|
|
C |
47 |
|
|
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
48 |
|
|
C in order to make less frequent halo updates |
49 |
|
|
C isym = 1 if grid is symmetric, 0 o.w. |
50 |
|
|
|
51 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
52 |
|
|
C Phi has the form |
53 |
|
|
C Phi (i,j,k,q) - applies to cell i,j |
54 |
|
|
|
55 |
|
|
C 3 - 4 |
56 |
|
|
C | | |
57 |
|
|
C 1 - 2 |
58 |
|
|
|
59 |
|
|
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
60 |
|
|
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
61 |
|
|
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
62 |
|
|
|
63 |
|
|
C !LOCAL VARIABLES: |
64 |
|
|
C == Local variables == |
65 |
dgoldberg |
1.7 |
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n,Gi,Gj |
66 |
heimbach |
1.2 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
67 |
heimbach |
1.1 |
_RL Ucell (2,2) |
68 |
|
|
_RL Vcell (2,2) |
69 |
|
|
_RL Hcell (2,2) |
70 |
heimbach |
1.2 |
_RL phival(2,2) |
71 |
|
|
|
72 |
|
|
uret(1,1,1,1) = uret(1,1,1,1) |
73 |
|
|
vret(1,1,1,1) = vret(1,1,1,1) |
74 |
heimbach |
1.1 |
|
75 |
|
|
DO j = js, je |
76 |
|
|
DO i = is, ie |
77 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
78 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
79 |
heimbach |
1.2 |
|
80 |
dgoldberg |
1.7 |
Gi = (myXGlobalLo-1)+(bi-1)*sNx+i |
81 |
|
|
Gj = (myYGlobalLo-1)+(bj-1)*sNy+j |
82 |
|
|
|
83 |
heimbach |
1.1 |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
84 |
heimbach |
1.2 |
DO iq = 1,2 |
85 |
heimbach |
1.1 |
DO jq = 1,2 |
86 |
|
|
|
87 |
|
|
n = 2*(jq-1)+iq |
88 |
|
|
|
89 |
dgoldberg |
1.7 |
|
90 |
heimbach |
1.1 |
uq = u(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + |
91 |
|
|
& u(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + |
92 |
|
|
& u(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + |
93 |
|
|
& u(i+1,j+1,bi,bj) * Xquad(iq) * Xquad(jq) |
94 |
|
|
vq = v(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + |
95 |
|
|
& v(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + |
96 |
|
|
& v(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + |
97 |
|
|
& v(i+1,j+1,bi,bj) * Xquad(iq) * Xquad(jq) |
98 |
|
|
ux = u(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
99 |
|
|
& u(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
100 |
|
|
& u(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
101 |
|
|
& u(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
102 |
|
|
uy = u(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
103 |
|
|
& u(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
104 |
|
|
& u(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
105 |
|
|
& u(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
106 |
|
|
vx = v(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
107 |
|
|
& v(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
108 |
|
|
& v(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
109 |
|
|
& v(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
110 |
|
|
vy = v(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
111 |
|
|
& v(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
112 |
|
|
& v(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
113 |
|
|
& v(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
114 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
115 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
116 |
|
|
exy = .5*(uy+vx) + |
117 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
118 |
|
|
|
119 |
|
|
do inode = 1,2 |
120 |
|
|
do jnode = 1,2 |
121 |
|
|
|
122 |
|
|
m = 2*(jnode-1)+inode |
123 |
|
|
ilq = 1 |
124 |
heimbach |
1.2 |
jlq = 1 |
125 |
heimbach |
1.1 |
if (inode.eq.iq) ilq = 2 |
126 |
heimbach |
1.2 |
if (jnode.eq.jq) jlq = 2 |
127 |
|
|
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
128 |
heimbach |
1.1 |
|
129 |
|
|
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
130 |
dgoldberg |
1.6 |
|
131 |
heimbach |
1.1 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
132 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
133 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
134 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
135 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
136 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
137 |
dgoldberg |
1.6 |
|
138 |
|
|
|
139 |
dgoldberg |
1.5 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
140 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
141 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
142 |
|
|
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
143 |
|
|
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
144 |
|
|
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
145 |
dgoldberg |
1.6 |
|
146 |
|
|
|
147 |
dgoldberg |
1.5 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
148 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
149 |
|
|
& phival(inode,jnode) * |
150 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
151 |
|
|
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
152 |
|
|
|
153 |
dgoldberg |
1.6 |
|
154 |
dgoldberg |
1.5 |
endif |
155 |
|
|
|
156 |
|
|
if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
157 |
heimbach |
1.1 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
158 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
159 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
160 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
161 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
162 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
163 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
164 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
165 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
166 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
167 |
heimbach |
1.1 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
168 |
|
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
169 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
170 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
171 |
heimbach |
1.2 |
& phival(inode,jnode) * |
172 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
173 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
174 |
|
|
|
175 |
|
|
endif |
176 |
|
|
enddo |
177 |
|
|
enddo |
178 |
heimbach |
1.2 |
|
179 |
heimbach |
1.1 |
enddo |
180 |
|
|
enddo |
181 |
heimbach |
1.2 |
c-- STREAMICE_hmask |
182 |
heimbach |
1.1 |
endif |
183 |
heimbach |
1.2 |
|
184 |
heimbach |
1.1 |
enddo |
185 |
|
|
enddo |
186 |
|
|
enddo |
187 |
|
|
enddo |
188 |
|
|
|
189 |
|
|
#endif |
190 |
|
|
RETURN |
191 |
|
|
END SUBROUTINE |
192 |
|
|
|
193 |
|
|
SUBROUTINE STREAMICE_CG_MAKE_A( myThid ) |
194 |
|
|
C /============================================================\ |
195 |
|
|
C | SUBROUTINE | |
196 |
|
|
C | o | |
197 |
|
|
C |============================================================| |
198 |
|
|
C | | |
199 |
|
|
C \============================================================/ |
200 |
|
|
IMPLICIT NONE |
201 |
|
|
|
202 |
|
|
C === Global variables === |
203 |
|
|
#include "SIZE.h" |
204 |
|
|
#include "EEPARAMS.h" |
205 |
|
|
#include "PARAMS.h" |
206 |
|
|
#include "GRID.h" |
207 |
|
|
#include "STREAMICE.h" |
208 |
|
|
#include "STREAMICE_CG.h" |
209 |
|
|
|
210 |
|
|
C !INPUT/OUTPUT ARGUMENTS |
211 |
|
|
C uret, vret - result of matrix operating on u, v |
212 |
|
|
C is, ie, js, je - starting and ending cells |
213 |
|
|
INTEGER myThid |
214 |
|
|
|
215 |
|
|
#ifdef ALLOW_STREAMICE |
216 |
|
|
|
217 |
dgoldberg |
1.3 |
#ifdef STREAMICE_CONSTRUCT_MATRIX |
218 |
|
|
|
219 |
heimbach |
1.1 |
C the linear action of the matrix on (u,v) with triangular finite elements |
220 |
|
|
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
221 |
|
|
C but this may change pursuant to conversations with others |
222 |
|
|
C |
223 |
|
|
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
224 |
|
|
C in order to make less frequent halo updates |
225 |
|
|
C isym = 1 if grid is symmetric, 0 o.w. |
226 |
|
|
|
227 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
228 |
|
|
C Phi has the form |
229 |
|
|
C Phi (i,j,k,q) - applies to cell i,j |
230 |
|
|
|
231 |
|
|
C 3 - 4 |
232 |
|
|
C | | |
233 |
|
|
C 1 - 2 |
234 |
|
|
|
235 |
|
|
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
236 |
|
|
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
237 |
|
|
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
238 |
|
|
|
239 |
|
|
C !LOCAL VARIABLES: |
240 |
|
|
C == Local variables == |
241 |
|
|
INTEGER iq, jq, inodx, inody, i, j, bi, bj, ilqx, ilqy, m_i, n |
242 |
|
|
INTEGER jlqx, jlqy, jnodx,jnody, m_j, col_y, col_x, cg_halo, k |
243 |
heimbach |
1.2 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
244 |
|
|
_RL phival(2,2) |
245 |
heimbach |
1.1 |
|
246 |
|
|
! do i=1,3 |
247 |
|
|
! do j=0,2 |
248 |
|
|
! col_index_a = i + j*3 |
249 |
|
|
! enddo |
250 |
|
|
! enddo |
251 |
|
|
|
252 |
|
|
cg_halo = min(OLx-1,OLy-1) |
253 |
|
|
|
254 |
|
|
DO j = 1-cg_halo, sNy+cg_halo |
255 |
|
|
DO i = 1-cg_halo, sNx+cg_halo |
256 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
257 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
258 |
|
|
cc DO k=1,4 |
259 |
|
|
DO col_x=-1,1 |
260 |
|
|
DO col_y=-1,1 |
261 |
|
|
streamice_cg_A1(i,j,bi,bj,col_x,col_y)=0.0 |
262 |
|
|
streamice_cg_A2(i,j,bi,bj,col_x,col_y)=0.0 |
263 |
|
|
streamice_cg_A3(i,j,bi,bj,col_x,col_y)=0.0 |
264 |
|
|
streamice_cg_A4(i,j,bi,bj,col_x,col_y)=0.0 |
265 |
|
|
ENDDO |
266 |
|
|
ENDDO |
267 |
|
|
cc ENDDO |
268 |
|
|
ENDDO |
269 |
|
|
ENDDO |
270 |
|
|
ENDDO |
271 |
|
|
ENDDO |
272 |
|
|
|
273 |
|
|
DO j = 1-cg_halo, sNy+cg_halo |
274 |
|
|
DO i = 1-cg_halo, sNx+cg_halo |
275 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
276 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
277 |
|
|
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
278 |
|
|
DO iq=1,2 |
279 |
|
|
DO jq = 1,2 |
280 |
|
|
|
281 |
|
|
n = 2*(jq-1)+iq |
282 |
|
|
|
283 |
|
|
DO inodx = 1,2 |
284 |
|
|
DO inody = 1,2 |
285 |
|
|
|
286 |
|
|
if (STREAMICE_umask(i-1+inodx,j-1+inody,bi,bj) |
287 |
dgoldberg |
1.5 |
& .eq.1.0 .or. |
288 |
|
|
& streamice_vmask(i-1+inodx,j-1+inody,bi,bj).eq.1.0) |
289 |
heimbach |
1.1 |
& then |
290 |
|
|
|
291 |
|
|
m_i = 2*(inody-1)+inodx |
292 |
|
|
ilqx = 1 |
293 |
|
|
ilqy = 1 |
294 |
|
|
|
295 |
|
|
if (inodx.eq.iq) ilqx = 2 |
296 |
|
|
if (inody.eq.jq) ilqy = 2 |
297 |
heimbach |
1.2 |
phival(inodx,inody) = Xquad(ilqx)*Xquad(ilqy) |
298 |
heimbach |
1.1 |
|
299 |
|
|
DO jnodx = 1,2 |
300 |
|
|
DO jnody = 1,2 |
301 |
|
|
if (STREAMICE_umask(i-1+jnodx,j-1+jnody,bi,bj) |
302 |
dgoldberg |
1.5 |
& .eq.1.0 .or. |
303 |
|
|
& STREAMICE_vmask(i-1+jnodx,j-1+jnody,bi,bj).eq.1.0) |
304 |
heimbach |
1.1 |
& then |
305 |
|
|
|
306 |
|
|
m_j = 2*(jnody-1)+jnodx |
307 |
|
|
ilqx = 1 |
308 |
|
|
ilqy = 1 |
309 |
|
|
if (jnodx.eq.iq) ilqx = 2 |
310 |
|
|
if (jnody.eq.jq) ilqy = 2 |
311 |
|
|
|
312 |
|
|
! col_j = col_index_a ( |
313 |
|
|
! & jnodx+mod(inodx,2), |
314 |
|
|
! & jnody+mod(inody,2) ) |
315 |
|
|
|
316 |
|
|
col_x = mod(inodx,2)+jnodx-2 |
317 |
|
|
col_y = mod(inody,2)+jnody-2 |
318 |
|
|
|
319 |
|
|
c |
320 |
|
|
|
321 |
|
|
ux = DPhi (i,j,bi,bj,m_j,n,1) |
322 |
|
|
uy = DPhi (i,j,bi,bj,m_j,n,2) |
323 |
|
|
vx = 0 |
324 |
|
|
vy = 0 |
325 |
|
|
uq = Xquad(ilqx) * Xquad(ilqy) |
326 |
|
|
vq = 0 |
327 |
|
|
|
328 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
329 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
330 |
|
|
exy = .5*(uy+vx) + |
331 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
332 |
|
|
|
333 |
|
|
streamice_cg_A1 |
334 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
335 |
|
|
& streamice_cg_A1 |
336 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
337 |
|
|
& .25 * |
338 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
339 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
340 |
|
|
& DPhi(i,j,bi,bj,m_i,n,1)*(4*exx+2*eyy) + |
341 |
|
|
& DPhi(i,j,bi,bj,m_i,n,2)*(2*exy)) |
342 |
|
|
|
343 |
|
|
streamice_cg_A3 |
344 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
345 |
|
|
& streamice_cg_A3 |
346 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
347 |
|
|
& .25 * |
348 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
349 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
350 |
|
|
& DPhi(i,j,bi,bj,m_i,n,2)*(4*eyy+2*exx) + |
351 |
|
|
& DPhi(i,j,bi,bj,m_i,n,1)*(2*exy)) |
352 |
|
|
|
353 |
|
|
streamice_cg_A1 |
354 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
355 |
|
|
& streamice_cg_A1 |
356 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
357 |
|
|
& .25 * |
358 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
359 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
360 |
heimbach |
1.1 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
361 |
|
|
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
362 |
|
|
|
363 |
|
|
streamice_cg_A3 |
364 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
365 |
|
|
& streamice_cg_A3 |
366 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
367 |
|
|
& .25 * |
368 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
369 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
370 |
heimbach |
1.1 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
371 |
|
|
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
372 |
|
|
|
373 |
|
|
streamice_cg_A1 |
374 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
375 |
|
|
& streamice_cg_A1 |
376 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
377 |
heimbach |
1.2 |
& .25*phival(inodx,inody) * |
378 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
379 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
380 |
|
|
|
381 |
|
|
streamice_cg_A3 |
382 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
383 |
|
|
& streamice_cg_A3 |
384 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
385 |
heimbach |
1.2 |
& .25*phival(inodx,inody) * |
386 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
387 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
388 |
|
|
|
389 |
|
|
c |
390 |
|
|
|
391 |
|
|
vx = DPhi (i,j,bi,bj,m_j,n,1) |
392 |
|
|
vy = DPhi (i,j,bi,bj,m_j,n,2) |
393 |
|
|
ux = 0 |
394 |
|
|
uy = 0 |
395 |
|
|
vq = Xquad(ilqx) * Xquad(ilqy) |
396 |
|
|
uq = 0 |
397 |
|
|
|
398 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
399 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
400 |
|
|
exy = .5*(uy+vx) + |
401 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
402 |
|
|
|
403 |
|
|
streamice_cg_A2 |
404 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
405 |
|
|
& streamice_cg_A2 |
406 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
407 |
|
|
& .25 * |
408 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
409 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
410 |
|
|
& DPhi(i,j,bi,bj,m_i,n,1)*(4*exx+2*eyy) + |
411 |
|
|
& DPhi(i,j,bi,bj,m_i,n,2)*(2*exy)) |
412 |
|
|
|
413 |
|
|
streamice_cg_A4 |
414 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
415 |
|
|
& streamice_cg_A4 |
416 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
417 |
|
|
& .25 * |
418 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
419 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
420 |
|
|
& DPhi(i,j,bi,bj,m_i,n,2)*(4*eyy+2*exx) + |
421 |
|
|
& DPhi(i,j,bi,bj,m_i,n,1)*(2*exy)) |
422 |
|
|
|
423 |
|
|
streamice_cg_A2 |
424 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
425 |
|
|
& streamice_cg_A2 |
426 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
427 |
|
|
& .25 * |
428 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
429 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
430 |
heimbach |
1.1 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
431 |
|
|
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
432 |
|
|
|
433 |
|
|
streamice_cg_A4 |
434 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
435 |
|
|
& streamice_cg_A4 |
436 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
437 |
|
|
& .25 * |
438 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
439 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
440 |
heimbach |
1.1 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
441 |
|
|
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
442 |
|
|
|
443 |
|
|
streamice_cg_A2 |
444 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
445 |
|
|
& streamice_cg_A2 |
446 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
447 |
heimbach |
1.2 |
& .25*phival(inodx,inody) * |
448 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
449 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
450 |
|
|
|
451 |
|
|
streamice_cg_A4 |
452 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
453 |
|
|
& streamice_cg_A4 |
454 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
455 |
heimbach |
1.2 |
& .25*phival(inodx,inody) * |
456 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
457 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
458 |
|
|
|
459 |
|
|
endif |
460 |
|
|
enddo |
461 |
|
|
enddo |
462 |
|
|
endif |
463 |
|
|
enddo |
464 |
|
|
enddo |
465 |
|
|
enddo |
466 |
|
|
enddo |
467 |
|
|
endif |
468 |
|
|
enddo |
469 |
|
|
enddo |
470 |
|
|
enddo |
471 |
|
|
enddo |
472 |
|
|
|
473 |
|
|
#endif |
474 |
dgoldberg |
1.3 |
#endif |
475 |
heimbach |
1.1 |
RETURN |
476 |
|
|
END SUBROUTINE |
477 |
|
|
|
478 |
|
|
SUBROUTINE STREAMICE_CG_ADIAG( myThid, |
479 |
|
|
O uret, |
480 |
|
|
O vret) |
481 |
|
|
|
482 |
|
|
C /============================================================\ |
483 |
|
|
C | SUBROUTINE | |
484 |
|
|
C | o | |
485 |
|
|
C |============================================================| |
486 |
|
|
C | | |
487 |
|
|
C \============================================================/ |
488 |
|
|
IMPLICIT NONE |
489 |
|
|
|
490 |
|
|
C === Global variables === |
491 |
|
|
#include "SIZE.h" |
492 |
|
|
#include "EEPARAMS.h" |
493 |
|
|
#include "PARAMS.h" |
494 |
|
|
#include "GRID.h" |
495 |
|
|
#include "STREAMICE.h" |
496 |
|
|
#include "STREAMICE_CG.h" |
497 |
|
|
|
498 |
|
|
C !INPUT/OUTPUT ARGUMENTS |
499 |
|
|
C uret, vret - result of matrix operating on u, v |
500 |
|
|
C is, ie, js, je - starting and ending cells |
501 |
|
|
INTEGER myThid |
502 |
|
|
_RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
503 |
|
|
_RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
504 |
|
|
|
505 |
|
|
|
506 |
|
|
#ifdef ALLOW_STREAMICE |
507 |
|
|
|
508 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
509 |
|
|
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
510 |
|
|
C but this may change pursuant to conversations with others |
511 |
|
|
C |
512 |
|
|
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
513 |
|
|
C in order to make less frequent halo updates |
514 |
|
|
C isym = 1 if grid is symmetric, 0 o.w. |
515 |
|
|
|
516 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
517 |
|
|
C Phi has the form |
518 |
|
|
C Phi (i,j,k,q) - applies to cell i,j |
519 |
|
|
|
520 |
|
|
C 3 - 4 |
521 |
|
|
C | | |
522 |
|
|
C 1 - 2 |
523 |
|
|
|
524 |
|
|
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
525 |
|
|
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
526 |
|
|
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
527 |
|
|
|
528 |
|
|
C !LOCAL VARIABLES: |
529 |
|
|
C == Local variables == |
530 |
|
|
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
531 |
heimbach |
1.2 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
532 |
heimbach |
1.1 |
_RL Ucell (2,2) |
533 |
|
|
_RL Vcell (2,2) |
534 |
|
|
_RL Hcell (2,2) |
535 |
heimbach |
1.2 |
_RL phival(2,2) |
536 |
|
|
|
537 |
|
|
uret(1,1,1,1) = uret(1,1,1,1) |
538 |
|
|
vret(1,1,1,1) = vret(1,1,1,1) |
539 |
heimbach |
1.1 |
|
540 |
|
|
DO j = 0, sNy+1 |
541 |
|
|
DO i = 0, sNx+1 |
542 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
543 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
544 |
|
|
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
545 |
|
|
DO iq=1,2 |
546 |
|
|
DO jq = 1,2 |
547 |
|
|
|
548 |
|
|
n = 2*(jq-1)+iq |
549 |
|
|
|
550 |
|
|
DO inode = 1,2 |
551 |
|
|
DO jnode = 1,2 |
552 |
|
|
|
553 |
|
|
m = 2*(jnode-1)+inode |
554 |
heimbach |
1.2 |
|
555 |
dgoldberg |
1.5 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0 .or. |
556 |
|
|
& STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) |
557 |
|
|
& then |
558 |
heimbach |
1.2 |
|
559 |
|
|
ilq = 1 |
560 |
|
|
jlq = 1 |
561 |
heimbach |
1.1 |
|
562 |
heimbach |
1.2 |
if (inode.eq.iq) ilq = 2 |
563 |
|
|
if (jnode.eq.jq) jlq = 2 |
564 |
|
|
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
565 |
|
|
|
566 |
|
|
ux = DPhi (i,j,bi,bj,m,n,1) |
567 |
|
|
uy = DPhi (i,j,bi,bj,m,n,2) |
568 |
|
|
vx = 0 |
569 |
|
|
vy = 0 |
570 |
|
|
uq = Xquad(ilq) * Xquad(jlq) |
571 |
|
|
vq = 0 |
572 |
|
|
|
573 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
574 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
575 |
|
|
exy = .5*(uy+vx) + |
576 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
577 |
heimbach |
1.1 |
|
578 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
579 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
580 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
581 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
582 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
583 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
584 |
|
|
|
585 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
586 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
587 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
588 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
589 |
heimbach |
1.1 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
590 |
|
|
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
591 |
|
|
|
592 |
|
|
|
593 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
594 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
595 |
heimbach |
1.2 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
596 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
597 |
|
|
|
598 |
|
|
|
599 |
|
|
vx = DPhi (i,j,bi,bj,m,n,1) |
600 |
|
|
vy = DPhi (i,j,bi,bj,m,n,2) |
601 |
|
|
ux = 0 |
602 |
|
|
uy = 0 |
603 |
|
|
vq = Xquad(ilq) * Xquad(jlq) |
604 |
|
|
uq = 0 |
605 |
|
|
|
606 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
607 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
608 |
|
|
exy = .5*(uy+vx) + |
609 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
610 |
|
|
|
611 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
612 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
613 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
614 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
615 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
616 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
617 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
618 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
619 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
620 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
621 |
heimbach |
1.1 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
622 |
|
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
623 |
|
|
|
624 |
|
|
|
625 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
626 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
627 |
heimbach |
1.2 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
628 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
629 |
|
|
|
630 |
|
|
endif |
631 |
heimbach |
1.2 |
|
632 |
heimbach |
1.1 |
enddo |
633 |
|
|
enddo |
634 |
|
|
enddo |
635 |
|
|
enddo |
636 |
|
|
endif |
637 |
|
|
enddo |
638 |
|
|
enddo |
639 |
|
|
enddo |
640 |
|
|
enddo |
641 |
|
|
|
642 |
|
|
#endif |
643 |
|
|
RETURN |
644 |
|
|
END SUBROUTINE |
645 |
|
|
|
646 |
|
|
|
647 |
|
|
|
648 |
|
|
SUBROUTINE STREAMICE_CG_BOUND_VALS( myThid, |
649 |
|
|
O uret, |
650 |
|
|
O vret) |
651 |
|
|
C /============================================================\ |
652 |
|
|
C | SUBROUTINE | |
653 |
|
|
C | o | |
654 |
|
|
C |============================================================| |
655 |
|
|
C | | |
656 |
|
|
C \============================================================/ |
657 |
|
|
IMPLICIT NONE |
658 |
|
|
|
659 |
|
|
C === Global variables === |
660 |
|
|
#include "SIZE.h" |
661 |
|
|
#include "EEPARAMS.h" |
662 |
|
|
#include "PARAMS.h" |
663 |
|
|
#include "GRID.h" |
664 |
|
|
#include "STREAMICE.h" |
665 |
|
|
#include "STREAMICE_CG.h" |
666 |
|
|
|
667 |
|
|
C !INPUT/OUTPUT ARGUMENTS |
668 |
|
|
C uret, vret - result of matrix operating on u, v |
669 |
|
|
C is, ie, js, je - starting and ending cells |
670 |
|
|
INTEGER myThid |
671 |
|
|
_RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
672 |
|
|
_RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
673 |
|
|
|
674 |
|
|
#ifdef ALLOW_STREAMICE |
675 |
|
|
|
676 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
677 |
|
|
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
678 |
|
|
C but this may change pursuant to conversations with others |
679 |
|
|
C |
680 |
|
|
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
681 |
|
|
C in order to make less frequent halo updates |
682 |
|
|
C isym = 1 if grid is symmetric, 0 o.w. |
683 |
|
|
|
684 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
685 |
|
|
C Phi has the form |
686 |
|
|
C Phi (i,j,k,q) - applies to cell i,j |
687 |
|
|
|
688 |
|
|
C 3 - 4 |
689 |
|
|
C | | |
690 |
|
|
C 1 - 2 |
691 |
|
|
|
692 |
|
|
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
693 |
|
|
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
694 |
|
|
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
695 |
|
|
|
696 |
|
|
C !LOCAL VARIABLES: |
697 |
|
|
C == Local variables == |
698 |
|
|
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
699 |
heimbach |
1.2 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
700 |
heimbach |
1.1 |
_RL Ucell (2,2) |
701 |
|
|
_RL Vcell (2,2) |
702 |
|
|
_RL Hcell (2,2) |
703 |
heimbach |
1.2 |
_RL phival(2,2) |
704 |
|
|
|
705 |
|
|
uret(1,1,1,1) = uret(1,1,1,1) |
706 |
|
|
vret(1,1,1,1) = vret(1,1,1,1) |
707 |
heimbach |
1.1 |
|
708 |
|
|
DO j = 0, sNy+1 |
709 |
|
|
DO i = 0, sNx+1 |
710 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
711 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
712 |
|
|
IF ((STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) .AND. |
713 |
|
|
& ((STREAMICE_umask(i,j,bi,bj).eq.3.0) .OR. |
714 |
|
|
& (STREAMICE_umask(i,j+1,bi,bj).eq.3.0) .OR. |
715 |
|
|
& (STREAMICE_umask(i+1,j,bi,bj).eq.3.0) .OR. |
716 |
dgoldberg |
1.5 |
& (STREAMICE_umask(i+1,j+1,bi,bj).eq.3.0) .OR. |
717 |
|
|
& (STREAMICE_vmask(i,j,bi,bj).eq.3.0) .OR. |
718 |
|
|
& (STREAMICE_vmask(i,j+1,bi,bj).eq.3.0) .OR. |
719 |
|
|
& (STREAMICE_vmask(i+1,j,bi,bj).eq.3.0) .OR. |
720 |
|
|
& (STREAMICE_vmask(i+1,j+1,bi,bj).eq.3.0))) THEN |
721 |
heimbach |
1.1 |
|
722 |
|
|
DO iq=1,2 |
723 |
|
|
DO jq = 1,2 |
724 |
|
|
|
725 |
|
|
n = 2*(jq-1)+iq |
726 |
|
|
|
727 |
|
|
uq = u_bdry_values_SI(i,j,bi,bj)*Xquad(3-iq)*Xquad(3-jq)+ |
728 |
|
|
& u_bdry_values_SI(i+1,j,bi,bj)*Xquad(iq)*Xquad(3-jq)+ |
729 |
|
|
& u_bdry_values_SI(i,j+1,bi,bj)*Xquad(3-iq)*Xquad(jq)+ |
730 |
|
|
& u_bdry_values_SI(i+1,j+1,bi,bj)*Xquad(iq)*Xquad(jq) |
731 |
|
|
vq = v_bdry_values_SI(i,j,bi,bj)*Xquad(3-iq)*Xquad(3-jq)+ |
732 |
|
|
& v_bdry_values_SI(i+1,j,bi,bj)*Xquad(iq)*Xquad(3-jq)+ |
733 |
|
|
& v_bdry_values_SI(i,j+1,bi,bj)*Xquad(3-iq)*Xquad(jq)+ |
734 |
|
|
& v_bdry_values_SI(i+1,j+1,bi,bj)*Xquad(iq)*Xquad(jq) |
735 |
|
|
ux = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
736 |
|
|
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
737 |
|
|
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
738 |
|
|
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
739 |
dgoldberg |
1.6 |
uy = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
740 |
heimbach |
1.1 |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
741 |
|
|
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
742 |
|
|
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
743 |
|
|
vx = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
744 |
|
|
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
745 |
|
|
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
746 |
|
|
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
747 |
dgoldberg |
1.6 |
vy = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
748 |
heimbach |
1.1 |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
749 |
|
|
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
750 |
|
|
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
751 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
752 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
753 |
|
|
exy = .5*(uy+vx) + |
754 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
755 |
|
|
|
756 |
dgoldberg |
1.5 |
|
757 |
heimbach |
1.1 |
do inode = 1,2 |
758 |
|
|
do jnode = 1,2 |
759 |
|
|
|
760 |
|
|
m = 2*(jnode-1)+inode |
761 |
|
|
ilq = 1 |
762 |
heimbach |
1.2 |
jlq = 1 |
763 |
heimbach |
1.1 |
if (inode.eq.iq) ilq = 2 |
764 |
|
|
if (jnode.eq.jq) jlq = 2 |
765 |
heimbach |
1.2 |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
766 |
heimbach |
1.1 |
|
767 |
dgoldberg |
1.6 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
768 |
|
|
|
769 |
heimbach |
1.1 |
|
770 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
771 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
772 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
773 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
774 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
775 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
776 |
dgoldberg |
1.5 |
|
777 |
heimbach |
1.1 |
|
778 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
779 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
780 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
781 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
782 |
heimbach |
1.1 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
783 |
|
|
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
784 |
dgoldberg |
1.6 |
|
785 |
dgoldberg |
1.5 |
|
786 |
|
|
! if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then |
787 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
788 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
789 |
|
|
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
790 |
|
|
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
791 |
|
|
|
792 |
dgoldberg |
1.6 |
|
793 |
dgoldberg |
1.5 |
! endif |
794 |
|
|
endif |
795 |
|
|
if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
796 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
797 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
798 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
799 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
800 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
801 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
802 |
heimbach |
1.1 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
803 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
804 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
805 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
806 |
heimbach |
1.1 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
807 |
|
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
808 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
809 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
810 |
heimbach |
1.2 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
811 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
812 |
|
|
endif |
813 |
|
|
enddo |
814 |
|
|
enddo |
815 |
|
|
enddo |
816 |
|
|
enddo |
817 |
|
|
endif |
818 |
|
|
enddo |
819 |
|
|
enddo |
820 |
|
|
enddo |
821 |
|
|
enddo |
822 |
|
|
|
823 |
|
|
#endif |
824 |
|
|
RETURN |
825 |
|
|
END SUBROUTINE |