1 |
dgoldberg |
1.6 |
C $Header: /u/gcmpack/MITgcm_contrib/dgoldberg/streamice/streamice_cg_functions.F,v 1.5 2012/12/23 21:05:08 dgoldberg Exp $ |
2 |
heimbach |
1.1 |
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "STREAMICE_OPTIONS.h" |
5 |
|
|
|
6 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
7 |
|
|
|
8 |
|
|
CBOP |
9 |
|
|
SUBROUTINE STREAMICE_CG_ACTION( myThid, |
10 |
|
|
O uret, |
11 |
|
|
O vret, |
12 |
|
|
I u, |
13 |
|
|
I v, |
14 |
|
|
I is, ie, js, je ) |
15 |
|
|
C /============================================================\ |
16 |
|
|
C | SUBROUTINE | |
17 |
|
|
C | o | |
18 |
|
|
C |============================================================| |
19 |
|
|
C | | |
20 |
|
|
C \============================================================/ |
21 |
|
|
IMPLICIT NONE |
22 |
|
|
|
23 |
|
|
C === Global variables === |
24 |
|
|
#include "SIZE.h" |
25 |
|
|
#include "EEPARAMS.h" |
26 |
|
|
#include "PARAMS.h" |
27 |
|
|
#include "GRID.h" |
28 |
|
|
#include "STREAMICE.h" |
29 |
|
|
#include "STREAMICE_CG.h" |
30 |
|
|
|
31 |
|
|
C !INPUT/OUTPUT ARGUMENTS |
32 |
|
|
C uret, vret - result of matrix operating on u, v |
33 |
|
|
C is, ie, js, je - starting and ending cells |
34 |
|
|
INTEGER myThid |
35 |
|
|
_RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
36 |
|
|
_RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
37 |
|
|
_RL u (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
38 |
|
|
_RL v (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
39 |
|
|
INTEGER is, ie, js, je |
40 |
|
|
|
41 |
|
|
#ifdef ALLOW_STREAMICE |
42 |
|
|
|
43 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
44 |
|
|
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
45 |
|
|
C but this may change pursuant to conversations with others |
46 |
|
|
C |
47 |
|
|
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
48 |
|
|
C in order to make less frequent halo updates |
49 |
|
|
C isym = 1 if grid is symmetric, 0 o.w. |
50 |
|
|
|
51 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
52 |
|
|
C Phi has the form |
53 |
|
|
C Phi (i,j,k,q) - applies to cell i,j |
54 |
|
|
|
55 |
|
|
C 3 - 4 |
56 |
|
|
C | | |
57 |
|
|
C 1 - 2 |
58 |
|
|
|
59 |
|
|
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
60 |
|
|
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
61 |
|
|
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
62 |
|
|
|
63 |
|
|
C !LOCAL VARIABLES: |
64 |
|
|
C == Local variables == |
65 |
|
|
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
66 |
heimbach |
1.2 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
67 |
heimbach |
1.1 |
_RL Ucell (2,2) |
68 |
|
|
_RL Vcell (2,2) |
69 |
|
|
_RL Hcell (2,2) |
70 |
heimbach |
1.2 |
_RL phival(2,2) |
71 |
|
|
|
72 |
|
|
uret(1,1,1,1) = uret(1,1,1,1) |
73 |
|
|
vret(1,1,1,1) = vret(1,1,1,1) |
74 |
heimbach |
1.1 |
|
75 |
|
|
DO j = js, je |
76 |
|
|
DO i = is, ie |
77 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
78 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
79 |
heimbach |
1.2 |
|
80 |
heimbach |
1.1 |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
81 |
heimbach |
1.2 |
DO iq = 1,2 |
82 |
heimbach |
1.1 |
DO jq = 1,2 |
83 |
|
|
|
84 |
|
|
n = 2*(jq-1)+iq |
85 |
|
|
|
86 |
|
|
uq = u(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + |
87 |
|
|
& u(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + |
88 |
|
|
& u(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + |
89 |
|
|
& u(i+1,j+1,bi,bj) * Xquad(iq) * Xquad(jq) |
90 |
|
|
vq = v(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + |
91 |
|
|
& v(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + |
92 |
|
|
& v(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + |
93 |
|
|
& v(i+1,j+1,bi,bj) * Xquad(iq) * Xquad(jq) |
94 |
|
|
ux = u(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
95 |
|
|
& u(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
96 |
|
|
& u(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
97 |
|
|
& u(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
98 |
|
|
uy = u(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
99 |
|
|
& u(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
100 |
|
|
& u(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
101 |
|
|
& u(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
102 |
|
|
vx = v(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
103 |
|
|
& v(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
104 |
|
|
& v(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
105 |
|
|
& v(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
106 |
|
|
vy = v(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
107 |
|
|
& v(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
108 |
|
|
& v(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
109 |
|
|
& v(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
110 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
111 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
112 |
|
|
exy = .5*(uy+vx) + |
113 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
114 |
|
|
|
115 |
|
|
do inode = 1,2 |
116 |
|
|
do jnode = 1,2 |
117 |
|
|
|
118 |
|
|
m = 2*(jnode-1)+inode |
119 |
|
|
ilq = 1 |
120 |
heimbach |
1.2 |
jlq = 1 |
121 |
heimbach |
1.1 |
if (inode.eq.iq) ilq = 2 |
122 |
heimbach |
1.2 |
if (jnode.eq.jq) jlq = 2 |
123 |
|
|
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
124 |
heimbach |
1.1 |
|
125 |
|
|
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
126 |
dgoldberg |
1.6 |
|
127 |
heimbach |
1.1 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
128 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
129 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
130 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
131 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
132 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
133 |
dgoldberg |
1.6 |
|
134 |
|
|
|
135 |
dgoldberg |
1.5 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
136 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
137 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
138 |
|
|
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
139 |
|
|
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
140 |
|
|
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
141 |
dgoldberg |
1.6 |
|
142 |
|
|
|
143 |
dgoldberg |
1.5 |
uret(i-1+inode,j-1+jnode,bi,bj) = |
144 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
145 |
|
|
& phival(inode,jnode) * |
146 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
147 |
|
|
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
148 |
|
|
|
149 |
dgoldberg |
1.6 |
|
150 |
dgoldberg |
1.5 |
endif |
151 |
|
|
|
152 |
|
|
if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
153 |
heimbach |
1.1 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
154 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
155 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
156 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
157 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
158 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
159 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
160 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
161 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
162 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
163 |
heimbach |
1.1 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
164 |
|
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
165 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
166 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
167 |
heimbach |
1.2 |
& phival(inode,jnode) * |
168 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
169 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
170 |
|
|
|
171 |
|
|
endif |
172 |
|
|
enddo |
173 |
|
|
enddo |
174 |
heimbach |
1.2 |
|
175 |
heimbach |
1.1 |
enddo |
176 |
|
|
enddo |
177 |
heimbach |
1.2 |
c-- STREAMICE_hmask |
178 |
heimbach |
1.1 |
endif |
179 |
heimbach |
1.2 |
|
180 |
heimbach |
1.1 |
enddo |
181 |
|
|
enddo |
182 |
|
|
enddo |
183 |
|
|
enddo |
184 |
|
|
|
185 |
|
|
#endif |
186 |
|
|
RETURN |
187 |
|
|
END SUBROUTINE |
188 |
|
|
|
189 |
|
|
SUBROUTINE STREAMICE_CG_MAKE_A( myThid ) |
190 |
|
|
C /============================================================\ |
191 |
|
|
C | SUBROUTINE | |
192 |
|
|
C | o | |
193 |
|
|
C |============================================================| |
194 |
|
|
C | | |
195 |
|
|
C \============================================================/ |
196 |
|
|
IMPLICIT NONE |
197 |
|
|
|
198 |
|
|
C === Global variables === |
199 |
|
|
#include "SIZE.h" |
200 |
|
|
#include "EEPARAMS.h" |
201 |
|
|
#include "PARAMS.h" |
202 |
|
|
#include "GRID.h" |
203 |
|
|
#include "STREAMICE.h" |
204 |
|
|
#include "STREAMICE_CG.h" |
205 |
|
|
|
206 |
|
|
C !INPUT/OUTPUT ARGUMENTS |
207 |
|
|
C uret, vret - result of matrix operating on u, v |
208 |
|
|
C is, ie, js, je - starting and ending cells |
209 |
|
|
INTEGER myThid |
210 |
|
|
|
211 |
|
|
#ifdef ALLOW_STREAMICE |
212 |
|
|
|
213 |
dgoldberg |
1.3 |
#ifdef STREAMICE_CONSTRUCT_MATRIX |
214 |
|
|
|
215 |
heimbach |
1.1 |
C the linear action of the matrix on (u,v) with triangular finite elements |
216 |
|
|
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
217 |
|
|
C but this may change pursuant to conversations with others |
218 |
|
|
C |
219 |
|
|
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
220 |
|
|
C in order to make less frequent halo updates |
221 |
|
|
C isym = 1 if grid is symmetric, 0 o.w. |
222 |
|
|
|
223 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
224 |
|
|
C Phi has the form |
225 |
|
|
C Phi (i,j,k,q) - applies to cell i,j |
226 |
|
|
|
227 |
|
|
C 3 - 4 |
228 |
|
|
C | | |
229 |
|
|
C 1 - 2 |
230 |
|
|
|
231 |
|
|
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
232 |
|
|
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
233 |
|
|
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
234 |
|
|
|
235 |
|
|
C !LOCAL VARIABLES: |
236 |
|
|
C == Local variables == |
237 |
|
|
INTEGER iq, jq, inodx, inody, i, j, bi, bj, ilqx, ilqy, m_i, n |
238 |
|
|
INTEGER jlqx, jlqy, jnodx,jnody, m_j, col_y, col_x, cg_halo, k |
239 |
heimbach |
1.2 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
240 |
|
|
_RL phival(2,2) |
241 |
heimbach |
1.1 |
|
242 |
|
|
! do i=1,3 |
243 |
|
|
! do j=0,2 |
244 |
|
|
! col_index_a = i + j*3 |
245 |
|
|
! enddo |
246 |
|
|
! enddo |
247 |
|
|
|
248 |
|
|
cg_halo = min(OLx-1,OLy-1) |
249 |
|
|
|
250 |
|
|
DO j = 1-cg_halo, sNy+cg_halo |
251 |
|
|
DO i = 1-cg_halo, sNx+cg_halo |
252 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
253 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
254 |
|
|
cc DO k=1,4 |
255 |
|
|
DO col_x=-1,1 |
256 |
|
|
DO col_y=-1,1 |
257 |
|
|
streamice_cg_A1(i,j,bi,bj,col_x,col_y)=0.0 |
258 |
|
|
streamice_cg_A2(i,j,bi,bj,col_x,col_y)=0.0 |
259 |
|
|
streamice_cg_A3(i,j,bi,bj,col_x,col_y)=0.0 |
260 |
|
|
streamice_cg_A4(i,j,bi,bj,col_x,col_y)=0.0 |
261 |
|
|
ENDDO |
262 |
|
|
ENDDO |
263 |
|
|
cc ENDDO |
264 |
|
|
ENDDO |
265 |
|
|
ENDDO |
266 |
|
|
ENDDO |
267 |
|
|
ENDDO |
268 |
|
|
|
269 |
|
|
DO j = 1-cg_halo, sNy+cg_halo |
270 |
|
|
DO i = 1-cg_halo, sNx+cg_halo |
271 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
272 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
273 |
|
|
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
274 |
|
|
DO iq=1,2 |
275 |
|
|
DO jq = 1,2 |
276 |
|
|
|
277 |
|
|
n = 2*(jq-1)+iq |
278 |
|
|
|
279 |
|
|
DO inodx = 1,2 |
280 |
|
|
DO inody = 1,2 |
281 |
|
|
|
282 |
|
|
if (STREAMICE_umask(i-1+inodx,j-1+inody,bi,bj) |
283 |
dgoldberg |
1.5 |
& .eq.1.0 .or. |
284 |
|
|
& streamice_vmask(i-1+inodx,j-1+inody,bi,bj).eq.1.0) |
285 |
heimbach |
1.1 |
& then |
286 |
|
|
|
287 |
|
|
m_i = 2*(inody-1)+inodx |
288 |
|
|
ilqx = 1 |
289 |
|
|
ilqy = 1 |
290 |
|
|
|
291 |
|
|
if (inodx.eq.iq) ilqx = 2 |
292 |
|
|
if (inody.eq.jq) ilqy = 2 |
293 |
heimbach |
1.2 |
phival(inodx,inody) = Xquad(ilqx)*Xquad(ilqy) |
294 |
heimbach |
1.1 |
|
295 |
|
|
DO jnodx = 1,2 |
296 |
|
|
DO jnody = 1,2 |
297 |
|
|
if (STREAMICE_umask(i-1+jnodx,j-1+jnody,bi,bj) |
298 |
dgoldberg |
1.5 |
& .eq.1.0 .or. |
299 |
|
|
& STREAMICE_vmask(i-1+jnodx,j-1+jnody,bi,bj).eq.1.0) |
300 |
heimbach |
1.1 |
& then |
301 |
|
|
|
302 |
|
|
m_j = 2*(jnody-1)+jnodx |
303 |
|
|
ilqx = 1 |
304 |
|
|
ilqy = 1 |
305 |
|
|
if (jnodx.eq.iq) ilqx = 2 |
306 |
|
|
if (jnody.eq.jq) ilqy = 2 |
307 |
|
|
|
308 |
|
|
! col_j = col_index_a ( |
309 |
|
|
! & jnodx+mod(inodx,2), |
310 |
|
|
! & jnody+mod(inody,2) ) |
311 |
|
|
|
312 |
|
|
col_x = mod(inodx,2)+jnodx-2 |
313 |
|
|
col_y = mod(inody,2)+jnody-2 |
314 |
|
|
|
315 |
|
|
c |
316 |
|
|
|
317 |
|
|
ux = DPhi (i,j,bi,bj,m_j,n,1) |
318 |
|
|
uy = DPhi (i,j,bi,bj,m_j,n,2) |
319 |
|
|
vx = 0 |
320 |
|
|
vy = 0 |
321 |
|
|
uq = Xquad(ilqx) * Xquad(ilqy) |
322 |
|
|
vq = 0 |
323 |
|
|
|
324 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
325 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
326 |
|
|
exy = .5*(uy+vx) + |
327 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
328 |
|
|
|
329 |
|
|
streamice_cg_A1 |
330 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
331 |
|
|
& streamice_cg_A1 |
332 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
333 |
|
|
& .25 * |
334 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
335 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
336 |
|
|
& DPhi(i,j,bi,bj,m_i,n,1)*(4*exx+2*eyy) + |
337 |
|
|
& DPhi(i,j,bi,bj,m_i,n,2)*(2*exy)) |
338 |
|
|
|
339 |
|
|
streamice_cg_A3 |
340 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
341 |
|
|
& streamice_cg_A3 |
342 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
343 |
|
|
& .25 * |
344 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
345 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
346 |
|
|
& DPhi(i,j,bi,bj,m_i,n,2)*(4*eyy+2*exx) + |
347 |
|
|
& DPhi(i,j,bi,bj,m_i,n,1)*(2*exy)) |
348 |
|
|
|
349 |
|
|
streamice_cg_A1 |
350 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
351 |
|
|
& streamice_cg_A1 |
352 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
353 |
|
|
& .25 * |
354 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
355 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
356 |
heimbach |
1.1 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
357 |
|
|
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
358 |
|
|
|
359 |
|
|
streamice_cg_A3 |
360 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
361 |
|
|
& streamice_cg_A3 |
362 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
363 |
|
|
& .25 * |
364 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
365 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
366 |
heimbach |
1.1 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
367 |
|
|
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
368 |
|
|
|
369 |
|
|
streamice_cg_A1 |
370 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
371 |
|
|
& streamice_cg_A1 |
372 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
373 |
heimbach |
1.2 |
& .25*phival(inodx,inody) * |
374 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
375 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
376 |
|
|
|
377 |
|
|
streamice_cg_A3 |
378 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
379 |
|
|
& streamice_cg_A3 |
380 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
381 |
heimbach |
1.2 |
& .25*phival(inodx,inody) * |
382 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
383 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
384 |
|
|
|
385 |
|
|
c |
386 |
|
|
|
387 |
|
|
vx = DPhi (i,j,bi,bj,m_j,n,1) |
388 |
|
|
vy = DPhi (i,j,bi,bj,m_j,n,2) |
389 |
|
|
ux = 0 |
390 |
|
|
uy = 0 |
391 |
|
|
vq = Xquad(ilqx) * Xquad(ilqy) |
392 |
|
|
uq = 0 |
393 |
|
|
|
394 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
395 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
396 |
|
|
exy = .5*(uy+vx) + |
397 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
398 |
|
|
|
399 |
|
|
streamice_cg_A2 |
400 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
401 |
|
|
& streamice_cg_A2 |
402 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
403 |
|
|
& .25 * |
404 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
405 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
406 |
|
|
& DPhi(i,j,bi,bj,m_i,n,1)*(4*exx+2*eyy) + |
407 |
|
|
& DPhi(i,j,bi,bj,m_i,n,2)*(2*exy)) |
408 |
|
|
|
409 |
|
|
streamice_cg_A4 |
410 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
411 |
|
|
& streamice_cg_A4 |
412 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
413 |
|
|
& .25 * |
414 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
415 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
416 |
|
|
& DPhi(i,j,bi,bj,m_i,n,2)*(4*eyy+2*exx) + |
417 |
|
|
& DPhi(i,j,bi,bj,m_i,n,1)*(2*exy)) |
418 |
|
|
|
419 |
|
|
streamice_cg_A2 |
420 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
421 |
|
|
& streamice_cg_A2 |
422 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
423 |
|
|
& .25 * |
424 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
425 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
426 |
heimbach |
1.1 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
427 |
|
|
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
428 |
|
|
|
429 |
|
|
streamice_cg_A4 |
430 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
431 |
|
|
& streamice_cg_A4 |
432 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
433 |
|
|
& .25 * |
434 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
435 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
436 |
heimbach |
1.1 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
437 |
|
|
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
438 |
|
|
|
439 |
|
|
streamice_cg_A2 |
440 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
441 |
|
|
& streamice_cg_A2 |
442 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
443 |
heimbach |
1.2 |
& .25*phival(inodx,inody) * |
444 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
445 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
446 |
|
|
|
447 |
|
|
streamice_cg_A4 |
448 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
449 |
|
|
& streamice_cg_A4 |
450 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
451 |
heimbach |
1.2 |
& .25*phival(inodx,inody) * |
452 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
453 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
454 |
|
|
|
455 |
|
|
endif |
456 |
|
|
enddo |
457 |
|
|
enddo |
458 |
|
|
endif |
459 |
|
|
enddo |
460 |
|
|
enddo |
461 |
|
|
enddo |
462 |
|
|
enddo |
463 |
|
|
endif |
464 |
|
|
enddo |
465 |
|
|
enddo |
466 |
|
|
enddo |
467 |
|
|
enddo |
468 |
|
|
|
469 |
|
|
#endif |
470 |
dgoldberg |
1.3 |
#endif |
471 |
heimbach |
1.1 |
RETURN |
472 |
|
|
END SUBROUTINE |
473 |
|
|
|
474 |
|
|
SUBROUTINE STREAMICE_CG_ADIAG( myThid, |
475 |
|
|
O uret, |
476 |
|
|
O vret) |
477 |
|
|
|
478 |
|
|
C /============================================================\ |
479 |
|
|
C | SUBROUTINE | |
480 |
|
|
C | o | |
481 |
|
|
C |============================================================| |
482 |
|
|
C | | |
483 |
|
|
C \============================================================/ |
484 |
|
|
IMPLICIT NONE |
485 |
|
|
|
486 |
|
|
C === Global variables === |
487 |
|
|
#include "SIZE.h" |
488 |
|
|
#include "EEPARAMS.h" |
489 |
|
|
#include "PARAMS.h" |
490 |
|
|
#include "GRID.h" |
491 |
|
|
#include "STREAMICE.h" |
492 |
|
|
#include "STREAMICE_CG.h" |
493 |
|
|
|
494 |
|
|
C !INPUT/OUTPUT ARGUMENTS |
495 |
|
|
C uret, vret - result of matrix operating on u, v |
496 |
|
|
C is, ie, js, je - starting and ending cells |
497 |
|
|
INTEGER myThid |
498 |
|
|
_RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
499 |
|
|
_RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
500 |
|
|
|
501 |
|
|
|
502 |
|
|
#ifdef ALLOW_STREAMICE |
503 |
|
|
|
504 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
505 |
|
|
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
506 |
|
|
C but this may change pursuant to conversations with others |
507 |
|
|
C |
508 |
|
|
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
509 |
|
|
C in order to make less frequent halo updates |
510 |
|
|
C isym = 1 if grid is symmetric, 0 o.w. |
511 |
|
|
|
512 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
513 |
|
|
C Phi has the form |
514 |
|
|
C Phi (i,j,k,q) - applies to cell i,j |
515 |
|
|
|
516 |
|
|
C 3 - 4 |
517 |
|
|
C | | |
518 |
|
|
C 1 - 2 |
519 |
|
|
|
520 |
|
|
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
521 |
|
|
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
522 |
|
|
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
523 |
|
|
|
524 |
|
|
C !LOCAL VARIABLES: |
525 |
|
|
C == Local variables == |
526 |
|
|
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
527 |
heimbach |
1.2 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
528 |
heimbach |
1.1 |
_RL Ucell (2,2) |
529 |
|
|
_RL Vcell (2,2) |
530 |
|
|
_RL Hcell (2,2) |
531 |
heimbach |
1.2 |
_RL phival(2,2) |
532 |
|
|
|
533 |
|
|
uret(1,1,1,1) = uret(1,1,1,1) |
534 |
|
|
vret(1,1,1,1) = vret(1,1,1,1) |
535 |
heimbach |
1.1 |
|
536 |
|
|
DO j = 0, sNy+1 |
537 |
|
|
DO i = 0, sNx+1 |
538 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
539 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
540 |
|
|
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
541 |
|
|
DO iq=1,2 |
542 |
|
|
DO jq = 1,2 |
543 |
|
|
|
544 |
|
|
n = 2*(jq-1)+iq |
545 |
|
|
|
546 |
|
|
DO inode = 1,2 |
547 |
|
|
DO jnode = 1,2 |
548 |
|
|
|
549 |
|
|
m = 2*(jnode-1)+inode |
550 |
heimbach |
1.2 |
|
551 |
dgoldberg |
1.5 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0 .or. |
552 |
|
|
& STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) |
553 |
|
|
& then |
554 |
heimbach |
1.2 |
|
555 |
|
|
ilq = 1 |
556 |
|
|
jlq = 1 |
557 |
heimbach |
1.1 |
|
558 |
heimbach |
1.2 |
if (inode.eq.iq) ilq = 2 |
559 |
|
|
if (jnode.eq.jq) jlq = 2 |
560 |
|
|
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
561 |
|
|
|
562 |
|
|
ux = DPhi (i,j,bi,bj,m,n,1) |
563 |
|
|
uy = DPhi (i,j,bi,bj,m,n,2) |
564 |
|
|
vx = 0 |
565 |
|
|
vy = 0 |
566 |
|
|
uq = Xquad(ilq) * Xquad(jlq) |
567 |
|
|
vq = 0 |
568 |
|
|
|
569 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
570 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
571 |
|
|
exy = .5*(uy+vx) + |
572 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
573 |
heimbach |
1.1 |
|
574 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
575 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
576 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
577 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
578 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
579 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
580 |
|
|
|
581 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
582 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
583 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
584 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
585 |
heimbach |
1.1 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
586 |
|
|
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
587 |
|
|
|
588 |
|
|
|
589 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
590 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
591 |
heimbach |
1.2 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
592 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
593 |
|
|
|
594 |
|
|
|
595 |
|
|
vx = DPhi (i,j,bi,bj,m,n,1) |
596 |
|
|
vy = DPhi (i,j,bi,bj,m,n,2) |
597 |
|
|
ux = 0 |
598 |
|
|
uy = 0 |
599 |
|
|
vq = Xquad(ilq) * Xquad(jlq) |
600 |
|
|
uq = 0 |
601 |
|
|
|
602 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
603 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
604 |
|
|
exy = .5*(uy+vx) + |
605 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
606 |
|
|
|
607 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
608 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
609 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
610 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
611 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
612 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
613 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
614 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
615 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
616 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
617 |
heimbach |
1.1 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
618 |
|
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
619 |
|
|
|
620 |
|
|
|
621 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
622 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
623 |
heimbach |
1.2 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
624 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
625 |
|
|
|
626 |
|
|
endif |
627 |
heimbach |
1.2 |
|
628 |
heimbach |
1.1 |
enddo |
629 |
|
|
enddo |
630 |
|
|
enddo |
631 |
|
|
enddo |
632 |
|
|
endif |
633 |
|
|
enddo |
634 |
|
|
enddo |
635 |
|
|
enddo |
636 |
|
|
enddo |
637 |
|
|
|
638 |
|
|
#endif |
639 |
|
|
RETURN |
640 |
|
|
END SUBROUTINE |
641 |
|
|
|
642 |
|
|
|
643 |
|
|
|
644 |
|
|
SUBROUTINE STREAMICE_CG_BOUND_VALS( myThid, |
645 |
|
|
O uret, |
646 |
|
|
O vret) |
647 |
|
|
C /============================================================\ |
648 |
|
|
C | SUBROUTINE | |
649 |
|
|
C | o | |
650 |
|
|
C |============================================================| |
651 |
|
|
C | | |
652 |
|
|
C \============================================================/ |
653 |
|
|
IMPLICIT NONE |
654 |
|
|
|
655 |
|
|
C === Global variables === |
656 |
|
|
#include "SIZE.h" |
657 |
|
|
#include "EEPARAMS.h" |
658 |
|
|
#include "PARAMS.h" |
659 |
|
|
#include "GRID.h" |
660 |
|
|
#include "STREAMICE.h" |
661 |
|
|
#include "STREAMICE_CG.h" |
662 |
|
|
|
663 |
|
|
C !INPUT/OUTPUT ARGUMENTS |
664 |
|
|
C uret, vret - result of matrix operating on u, v |
665 |
|
|
C is, ie, js, je - starting and ending cells |
666 |
|
|
INTEGER myThid |
667 |
|
|
_RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
668 |
|
|
_RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
669 |
|
|
|
670 |
|
|
#ifdef ALLOW_STREAMICE |
671 |
|
|
|
672 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
673 |
|
|
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
674 |
|
|
C but this may change pursuant to conversations with others |
675 |
|
|
C |
676 |
|
|
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
677 |
|
|
C in order to make less frequent halo updates |
678 |
|
|
C isym = 1 if grid is symmetric, 0 o.w. |
679 |
|
|
|
680 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
681 |
|
|
C Phi has the form |
682 |
|
|
C Phi (i,j,k,q) - applies to cell i,j |
683 |
|
|
|
684 |
|
|
C 3 - 4 |
685 |
|
|
C | | |
686 |
|
|
C 1 - 2 |
687 |
|
|
|
688 |
|
|
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
689 |
|
|
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
690 |
|
|
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
691 |
|
|
|
692 |
|
|
C !LOCAL VARIABLES: |
693 |
|
|
C == Local variables == |
694 |
|
|
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
695 |
heimbach |
1.2 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
696 |
heimbach |
1.1 |
_RL Ucell (2,2) |
697 |
|
|
_RL Vcell (2,2) |
698 |
|
|
_RL Hcell (2,2) |
699 |
heimbach |
1.2 |
_RL phival(2,2) |
700 |
|
|
|
701 |
|
|
uret(1,1,1,1) = uret(1,1,1,1) |
702 |
|
|
vret(1,1,1,1) = vret(1,1,1,1) |
703 |
heimbach |
1.1 |
|
704 |
|
|
DO j = 0, sNy+1 |
705 |
|
|
DO i = 0, sNx+1 |
706 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
707 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
708 |
|
|
IF ((STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) .AND. |
709 |
|
|
& ((STREAMICE_umask(i,j,bi,bj).eq.3.0) .OR. |
710 |
|
|
& (STREAMICE_umask(i,j+1,bi,bj).eq.3.0) .OR. |
711 |
|
|
& (STREAMICE_umask(i+1,j,bi,bj).eq.3.0) .OR. |
712 |
dgoldberg |
1.5 |
& (STREAMICE_umask(i+1,j+1,bi,bj).eq.3.0) .OR. |
713 |
|
|
& (STREAMICE_vmask(i,j,bi,bj).eq.3.0) .OR. |
714 |
|
|
& (STREAMICE_vmask(i,j+1,bi,bj).eq.3.0) .OR. |
715 |
|
|
& (STREAMICE_vmask(i+1,j,bi,bj).eq.3.0) .OR. |
716 |
|
|
& (STREAMICE_vmask(i+1,j+1,bi,bj).eq.3.0))) THEN |
717 |
heimbach |
1.1 |
|
718 |
|
|
DO iq=1,2 |
719 |
|
|
DO jq = 1,2 |
720 |
|
|
|
721 |
|
|
n = 2*(jq-1)+iq |
722 |
|
|
|
723 |
|
|
uq = u_bdry_values_SI(i,j,bi,bj)*Xquad(3-iq)*Xquad(3-jq)+ |
724 |
|
|
& u_bdry_values_SI(i+1,j,bi,bj)*Xquad(iq)*Xquad(3-jq)+ |
725 |
|
|
& u_bdry_values_SI(i,j+1,bi,bj)*Xquad(3-iq)*Xquad(jq)+ |
726 |
|
|
& u_bdry_values_SI(i+1,j+1,bi,bj)*Xquad(iq)*Xquad(jq) |
727 |
|
|
vq = v_bdry_values_SI(i,j,bi,bj)*Xquad(3-iq)*Xquad(3-jq)+ |
728 |
|
|
& v_bdry_values_SI(i+1,j,bi,bj)*Xquad(iq)*Xquad(3-jq)+ |
729 |
|
|
& v_bdry_values_SI(i,j+1,bi,bj)*Xquad(3-iq)*Xquad(jq)+ |
730 |
|
|
& v_bdry_values_SI(i+1,j+1,bi,bj)*Xquad(iq)*Xquad(jq) |
731 |
|
|
ux = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
732 |
|
|
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
733 |
|
|
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
734 |
|
|
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
735 |
dgoldberg |
1.6 |
uy = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
736 |
heimbach |
1.1 |
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
737 |
|
|
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
738 |
|
|
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
739 |
|
|
vx = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
740 |
|
|
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
741 |
|
|
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
742 |
|
|
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
743 |
dgoldberg |
1.6 |
vy = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
744 |
heimbach |
1.1 |
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
745 |
|
|
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
746 |
|
|
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
747 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
748 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
749 |
|
|
exy = .5*(uy+vx) + |
750 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
751 |
|
|
|
752 |
dgoldberg |
1.5 |
|
753 |
heimbach |
1.1 |
do inode = 1,2 |
754 |
|
|
do jnode = 1,2 |
755 |
|
|
|
756 |
|
|
m = 2*(jnode-1)+inode |
757 |
|
|
ilq = 1 |
758 |
heimbach |
1.2 |
jlq = 1 |
759 |
heimbach |
1.1 |
if (inode.eq.iq) ilq = 2 |
760 |
|
|
if (jnode.eq.jq) jlq = 2 |
761 |
heimbach |
1.2 |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
762 |
heimbach |
1.1 |
|
763 |
dgoldberg |
1.6 |
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
764 |
|
|
|
765 |
heimbach |
1.1 |
|
766 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
767 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
768 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
769 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
770 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
771 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
772 |
dgoldberg |
1.5 |
|
773 |
heimbach |
1.1 |
|
774 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
775 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
776 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
777 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
778 |
heimbach |
1.1 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
779 |
|
|
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
780 |
dgoldberg |
1.6 |
|
781 |
dgoldberg |
1.5 |
|
782 |
|
|
! if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then |
783 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
784 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
785 |
|
|
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
786 |
|
|
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
787 |
|
|
|
788 |
dgoldberg |
1.6 |
|
789 |
dgoldberg |
1.5 |
! endif |
790 |
|
|
endif |
791 |
|
|
if (STREAMICE_vmask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
792 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
793 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
794 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
795 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
796 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
797 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
798 |
heimbach |
1.1 |
vret(i-1+inode,j-1+jnode,bi,bj) = |
799 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
800 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
801 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
802 |
heimbach |
1.1 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
803 |
|
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
804 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
805 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
806 |
heimbach |
1.2 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
807 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
808 |
|
|
endif |
809 |
|
|
enddo |
810 |
|
|
enddo |
811 |
|
|
enddo |
812 |
|
|
enddo |
813 |
|
|
endif |
814 |
|
|
enddo |
815 |
|
|
enddo |
816 |
|
|
enddo |
817 |
|
|
enddo |
818 |
|
|
|
819 |
|
|
#endif |
820 |
|
|
RETURN |
821 |
|
|
END SUBROUTINE |