| 1 | dgoldberg | 1.4 | C $Header: /u/gcmpack/MITgcm_contrib/dgoldberg/streamice/streamice_cg_functions.F,v 1.3 2012/05/14 16:53:09 dgoldberg Exp $ | 
| 2 | heimbach | 1.1 | C $Name:  $ | 
| 3 |  |  |  | 
| 4 |  |  | #include "STREAMICE_OPTIONS.h" | 
| 5 |  |  |  | 
| 6 |  |  | C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| | 
| 7 |  |  |  | 
| 8 |  |  | CBOP | 
| 9 |  |  | SUBROUTINE STREAMICE_CG_ACTION( myThid, | 
| 10 |  |  | O    uret, | 
| 11 |  |  | O    vret, | 
| 12 |  |  | I    u, | 
| 13 |  |  | I    v, | 
| 14 |  |  | I    is, ie, js, je ) | 
| 15 |  |  | C     /============================================================\ | 
| 16 |  |  | C     | SUBROUTINE                                                 | | 
| 17 |  |  | C     | o                                                          | | 
| 18 |  |  | C     |============================================================| | 
| 19 |  |  | C     |                                                            | | 
| 20 |  |  | C     \============================================================/ | 
| 21 |  |  | IMPLICIT NONE | 
| 22 |  |  |  | 
| 23 |  |  | C     === Global variables === | 
| 24 |  |  | #include "SIZE.h" | 
| 25 |  |  | #include "EEPARAMS.h" | 
| 26 |  |  | #include "PARAMS.h" | 
| 27 |  |  | #include "GRID.h" | 
| 28 |  |  | #include "STREAMICE.h" | 
| 29 |  |  | #include "STREAMICE_CG.h" | 
| 30 |  |  |  | 
| 31 |  |  | C     !INPUT/OUTPUT ARGUMENTS | 
| 32 |  |  | C     uret, vret - result of matrix operating on u, v | 
| 33 |  |  | C     is, ie, js, je - starting and ending cells | 
| 34 |  |  | INTEGER myThid | 
| 35 |  |  | _RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 36 |  |  | _RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 37 |  |  | _RL u (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 38 |  |  | _RL v (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 39 |  |  | INTEGER is, ie, js, je | 
| 40 |  |  |  | 
| 41 |  |  | #ifdef ALLOW_STREAMICE | 
| 42 |  |  |  | 
| 43 |  |  | C the linear action of the matrix on (u,v) with triangular finite elements | 
| 44 |  |  | C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, | 
| 45 |  |  | C but this may change pursuant to conversations with others | 
| 46 |  |  | C | 
| 47 |  |  | C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine | 
| 48 |  |  | C     in order to make less frequent halo updates | 
| 49 |  |  | C isym = 1 if grid is symmetric, 0 o.w. | 
| 50 |  |  |  | 
| 51 |  |  | C the linear action of the matrix on (u,v) with triangular finite elements | 
| 52 |  |  | C Phi has the form | 
| 53 |  |  | C Phi (i,j,k,q) - applies to cell i,j | 
| 54 |  |  |  | 
| 55 |  |  | C      3 - 4 | 
| 56 |  |  | C      |   | | 
| 57 |  |  | C      1 - 2 | 
| 58 |  |  |  | 
| 59 |  |  | C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q | 
| 60 |  |  | C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q | 
| 61 |  |  | C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear | 
| 62 |  |  |  | 
| 63 |  |  | C     !LOCAL VARIABLES: | 
| 64 |  |  | C     == Local variables == | 
| 65 |  |  | INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n | 
| 66 | heimbach | 1.2 | _RL ux, vx, uy, vy, uq, vq, exx, eyy, exy | 
| 67 | heimbach | 1.1 | _RL Ucell (2,2) | 
| 68 |  |  | _RL Vcell (2,2) | 
| 69 |  |  | _RL Hcell (2,2) | 
| 70 | heimbach | 1.2 | _RL phival(2,2) | 
| 71 |  |  |  | 
| 72 |  |  | uret(1,1,1,1) = uret(1,1,1,1) | 
| 73 |  |  | vret(1,1,1,1) = vret(1,1,1,1) | 
| 74 | heimbach | 1.1 |  | 
| 75 |  |  | DO j = js, je | 
| 76 |  |  | DO i = is, ie | 
| 77 |  |  | DO bj = myByLo(myThid), myByHi(myThid) | 
| 78 |  |  | DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 79 | heimbach | 1.2 |  | 
| 80 | heimbach | 1.1 | IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN | 
| 81 | heimbach | 1.2 | DO iq = 1,2 | 
| 82 | heimbach | 1.1 | DO jq = 1,2 | 
| 83 |  |  |  | 
| 84 |  |  | n = 2*(jq-1)+iq | 
| 85 |  |  |  | 
| 86 |  |  | uq = u(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + | 
| 87 |  |  | &       u(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + | 
| 88 |  |  | &       u(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + | 
| 89 |  |  | &       u(i+1,j+1,bi,bj) * Xquad(iq) * Xquad(jq) | 
| 90 |  |  | vq = v(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + | 
| 91 |  |  | &       v(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + | 
| 92 |  |  | &       v(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + | 
| 93 |  |  | &       v(i+1,j+1,bi,bj) * Xquad(iq) * Xquad(jq) | 
| 94 |  |  | ux = u(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + | 
| 95 |  |  | &       u(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + | 
| 96 |  |  | &       u(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + | 
| 97 |  |  | &       u(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) | 
| 98 |  |  | uy = u(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + | 
| 99 |  |  | &       u(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + | 
| 100 |  |  | &       u(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + | 
| 101 |  |  | &       u(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) | 
| 102 |  |  | vx = v(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + | 
| 103 |  |  | &       v(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + | 
| 104 |  |  | &       v(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + | 
| 105 |  |  | &       v(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) | 
| 106 |  |  | vy = v(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + | 
| 107 |  |  | &       v(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + | 
| 108 |  |  | &       v(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + | 
| 109 |  |  | &       v(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) | 
| 110 |  |  | exx = ux + k1AtC_str(i,j,bi,bj)*vq | 
| 111 |  |  | eyy = vy + k2AtC_str(i,j,bi,bj)*uq | 
| 112 |  |  | exy = .5*(uy+vx) + | 
| 113 |  |  | &       k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq | 
| 114 |  |  |  | 
| 115 |  |  | do inode = 1,2 | 
| 116 |  |  | do jnode = 1,2 | 
| 117 |  |  |  | 
| 118 |  |  | m = 2*(jnode-1)+inode | 
| 119 |  |  | ilq = 1 | 
| 120 | heimbach | 1.2 | jlq = 1 | 
| 121 | heimbach | 1.1 | if (inode.eq.iq) ilq = 2 | 
| 122 | heimbach | 1.2 | if (jnode.eq.jq) jlq = 2 | 
| 123 |  |  | phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) | 
| 124 | heimbach | 1.1 |  | 
| 125 |  |  | if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then | 
| 126 |  |  |  | 
| 127 |  |  | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 128 |  |  | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 129 |  |  | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 130 |  |  | &         visc_streamice(i,j,bi,bj) * ( | 
| 131 |  |  | &          DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + | 
| 132 |  |  | &          DPhi(i,j,bi,bj,m,n,2)*(2*exy)) | 
| 133 |  |  | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 134 |  |  | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 135 |  |  | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 136 |  |  | &         visc_streamice(i,j,bi,bj) * ( | 
| 137 |  |  | &          DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + | 
| 138 |  |  | &          DPhi(i,j,bi,bj,m,n,1)*(2*exy)) | 
| 139 |  |  |  | 
| 140 |  |  | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 141 |  |  | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 142 |  |  | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 143 | heimbach | 1.2 | &         visc_streamice(i,j,bi,bj) * phival(inode,jnode) * | 
| 144 | heimbach | 1.1 | &         (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ | 
| 145 |  |  | &          4*0.5*k1AtC_str(i,j,bi,bj)*exy) | 
| 146 |  |  | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 147 |  |  | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 148 |  |  | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 149 | heimbach | 1.2 | &         visc_streamice(i,j,bi,bj) * phival(inode,jnode) * | 
| 150 | heimbach | 1.1 | &         (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ | 
| 151 |  |  | &          4*0.5*k2AtC_str(i,j,bi,bj)*exy) | 
| 152 |  |  |  | 
| 153 |  |  |  | 
| 154 |  |  |  | 
| 155 |  |  | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 156 |  |  | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 157 | heimbach | 1.2 | &         phival(inode,jnode) * | 
| 158 |  |  | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 159 | heimbach | 1.1 | &         tau_beta_eff_streamice (i,j,bi,bj) * uq | 
| 160 |  |  | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 161 |  |  | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 162 | heimbach | 1.2 | &         phival(inode,jnode) * | 
| 163 |  |  | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 164 | heimbach | 1.1 | &         tau_beta_eff_streamice (i,j,bi,bj) * vq | 
| 165 |  |  |  | 
| 166 |  |  | endif | 
| 167 |  |  | enddo | 
| 168 |  |  | enddo | 
| 169 | heimbach | 1.2 |  | 
| 170 | heimbach | 1.1 | enddo | 
| 171 |  |  | enddo | 
| 172 | heimbach | 1.2 | c-- STREAMICE_hmask | 
| 173 | heimbach | 1.1 | endif | 
| 174 | heimbach | 1.2 |  | 
| 175 | heimbach | 1.1 | enddo | 
| 176 |  |  | enddo | 
| 177 |  |  | enddo | 
| 178 |  |  | enddo | 
| 179 |  |  |  | 
| 180 |  |  | #endif | 
| 181 |  |  | RETURN | 
| 182 |  |  | END SUBROUTINE | 
| 183 |  |  |  | 
| 184 |  |  | SUBROUTINE STREAMICE_CG_MAKE_A( myThid ) | 
| 185 |  |  | C     /============================================================\ | 
| 186 |  |  | C     | SUBROUTINE                                                 | | 
| 187 |  |  | C     | o                                                          | | 
| 188 |  |  | C     |============================================================| | 
| 189 |  |  | C     |                                                            | | 
| 190 |  |  | C     \============================================================/ | 
| 191 |  |  | IMPLICIT NONE | 
| 192 |  |  |  | 
| 193 |  |  | C     === Global variables === | 
| 194 |  |  | #include "SIZE.h" | 
| 195 |  |  | #include "EEPARAMS.h" | 
| 196 |  |  | #include "PARAMS.h" | 
| 197 |  |  | #include "GRID.h" | 
| 198 |  |  | #include "STREAMICE.h" | 
| 199 |  |  | #include "STREAMICE_CG.h" | 
| 200 |  |  |  | 
| 201 |  |  | C     !INPUT/OUTPUT ARGUMENTS | 
| 202 |  |  | C     uret, vret - result of matrix operating on u, v | 
| 203 |  |  | C     is, ie, js, je - starting and ending cells | 
| 204 |  |  | INTEGER myThid | 
| 205 |  |  |  | 
| 206 |  |  | #ifdef ALLOW_STREAMICE | 
| 207 |  |  |  | 
| 208 | dgoldberg | 1.3 | #ifdef STREAMICE_CONSTRUCT_MATRIX | 
| 209 |  |  |  | 
| 210 | heimbach | 1.1 | C the linear action of the matrix on (u,v) with triangular finite elements | 
| 211 |  |  | C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, | 
| 212 |  |  | C but this may change pursuant to conversations with others | 
| 213 |  |  | C | 
| 214 |  |  | C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine | 
| 215 |  |  | C     in order to make less frequent halo updates | 
| 216 |  |  | C isym = 1 if grid is symmetric, 0 o.w. | 
| 217 |  |  |  | 
| 218 |  |  | C the linear action of the matrix on (u,v) with triangular finite elements | 
| 219 |  |  | C Phi has the form | 
| 220 |  |  | C Phi (i,j,k,q) - applies to cell i,j | 
| 221 |  |  |  | 
| 222 |  |  | C      3 - 4 | 
| 223 |  |  | C      |   | | 
| 224 |  |  | C      1 - 2 | 
| 225 |  |  |  | 
| 226 |  |  | C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q | 
| 227 |  |  | C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q | 
| 228 |  |  | C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear | 
| 229 |  |  |  | 
| 230 |  |  | C     !LOCAL VARIABLES: | 
| 231 |  |  | C     == Local variables == | 
| 232 |  |  | INTEGER iq, jq, inodx, inody, i, j, bi, bj, ilqx, ilqy, m_i, n | 
| 233 |  |  | INTEGER jlqx, jlqy, jnodx,jnody, m_j, col_y, col_x, cg_halo, k | 
| 234 | heimbach | 1.2 | _RL ux, vx, uy, vy, uq, vq, exx, eyy, exy | 
| 235 |  |  | _RL phival(2,2) | 
| 236 | heimbach | 1.1 |  | 
| 237 |  |  | !       do i=1,3 | 
| 238 |  |  | !        do j=0,2 | 
| 239 |  |  | !         col_index_a = i + j*3 | 
| 240 |  |  | !        enddo | 
| 241 |  |  | !       enddo | 
| 242 |  |  |  | 
| 243 |  |  | cg_halo = min(OLx-1,OLy-1) | 
| 244 |  |  |  | 
| 245 |  |  | DO j = 1-cg_halo, sNy+cg_halo | 
| 246 |  |  | DO i = 1-cg_halo, sNx+cg_halo | 
| 247 |  |  | DO bj = myByLo(myThid), myByHi(myThid) | 
| 248 |  |  | DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 249 |  |  | cc          DO k=1,4 | 
| 250 |  |  | DO col_x=-1,1 | 
| 251 |  |  | DO col_y=-1,1 | 
| 252 |  |  | streamice_cg_A1(i,j,bi,bj,col_x,col_y)=0.0 | 
| 253 |  |  | streamice_cg_A2(i,j,bi,bj,col_x,col_y)=0.0 | 
| 254 |  |  | streamice_cg_A3(i,j,bi,bj,col_x,col_y)=0.0 | 
| 255 |  |  | streamice_cg_A4(i,j,bi,bj,col_x,col_y)=0.0 | 
| 256 |  |  | ENDDO | 
| 257 |  |  | ENDDO | 
| 258 |  |  | cc          ENDDO | 
| 259 |  |  | ENDDO | 
| 260 |  |  | ENDDO | 
| 261 |  |  | ENDDO | 
| 262 |  |  | ENDDO | 
| 263 |  |  |  | 
| 264 |  |  | DO j = 1-cg_halo, sNy+cg_halo | 
| 265 |  |  | DO i = 1-cg_halo, sNx+cg_halo | 
| 266 |  |  | DO bj = myByLo(myThid), myByHi(myThid) | 
| 267 |  |  | DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 268 |  |  | IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN | 
| 269 |  |  | DO iq=1,2 | 
| 270 |  |  | DO jq = 1,2 | 
| 271 |  |  |  | 
| 272 |  |  | n = 2*(jq-1)+iq | 
| 273 |  |  |  | 
| 274 |  |  | DO inodx = 1,2 | 
| 275 |  |  | DO inody = 1,2 | 
| 276 |  |  |  | 
| 277 |  |  | if (STREAMICE_umask(i-1+inodx,j-1+inody,bi,bj) | 
| 278 |  |  | &          .eq.1.0) | 
| 279 |  |  | &          then | 
| 280 |  |  |  | 
| 281 |  |  | m_i = 2*(inody-1)+inodx | 
| 282 |  |  | ilqx = 1 | 
| 283 |  |  | ilqy = 1 | 
| 284 |  |  |  | 
| 285 |  |  | if (inodx.eq.iq) ilqx = 2 | 
| 286 |  |  | if (inody.eq.jq) ilqy = 2 | 
| 287 | heimbach | 1.2 | phival(inodx,inody) = Xquad(ilqx)*Xquad(ilqy) | 
| 288 | heimbach | 1.1 |  | 
| 289 |  |  | DO jnodx = 1,2 | 
| 290 |  |  | DO jnody = 1,2 | 
| 291 |  |  | if (STREAMICE_umask(i-1+jnodx,j-1+jnody,bi,bj) | 
| 292 |  |  | &             .eq.1.0) | 
| 293 |  |  | &             then | 
| 294 |  |  |  | 
| 295 |  |  | m_j = 2*(jnody-1)+jnodx | 
| 296 |  |  | ilqx = 1 | 
| 297 |  |  | ilqy = 1 | 
| 298 |  |  | if (jnodx.eq.iq) ilqx = 2 | 
| 299 |  |  | if (jnody.eq.jq) ilqy = 2 | 
| 300 |  |  |  | 
| 301 |  |  | !                    col_j = col_index_a ( | 
| 302 |  |  | !      &              jnodx+mod(inodx,2), | 
| 303 |  |  | !      &              jnody+mod(inody,2) ) | 
| 304 |  |  |  | 
| 305 |  |  | col_x = mod(inodx,2)+jnodx-2 | 
| 306 |  |  | col_y = mod(inody,2)+jnody-2 | 
| 307 |  |  |  | 
| 308 |  |  | c | 
| 309 |  |  |  | 
| 310 |  |  | ux = DPhi (i,j,bi,bj,m_j,n,1) | 
| 311 |  |  | uy = DPhi (i,j,bi,bj,m_j,n,2) | 
| 312 |  |  | vx = 0 | 
| 313 |  |  | vy = 0 | 
| 314 |  |  | uq = Xquad(ilqx) * Xquad(ilqy) | 
| 315 |  |  | vq = 0 | 
| 316 |  |  |  | 
| 317 |  |  | exx = ux + k1AtC_str(i,j,bi,bj)*vq | 
| 318 |  |  | eyy = vy + k2AtC_str(i,j,bi,bj)*uq | 
| 319 |  |  | exy = .5*(uy+vx) + | 
| 320 |  |  | &              k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq | 
| 321 |  |  |  | 
| 322 |  |  | streamice_cg_A1 | 
| 323 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 324 |  |  | &             streamice_cg_A1 | 
| 325 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ | 
| 326 |  |  | &              .25 * | 
| 327 |  |  | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 328 |  |  | &              visc_streamice(i,j,bi,bj) * ( | 
| 329 |  |  | &              DPhi(i,j,bi,bj,m_i,n,1)*(4*exx+2*eyy) + | 
| 330 |  |  | &              DPhi(i,j,bi,bj,m_i,n,2)*(2*exy)) | 
| 331 |  |  |  | 
| 332 |  |  | streamice_cg_A3 | 
| 333 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 334 |  |  | &             streamice_cg_A3 | 
| 335 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ | 
| 336 |  |  | &              .25 * | 
| 337 |  |  | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 338 |  |  | &              visc_streamice(i,j,bi,bj) * ( | 
| 339 |  |  | &              DPhi(i,j,bi,bj,m_i,n,2)*(4*eyy+2*exx) + | 
| 340 |  |  | &              DPhi(i,j,bi,bj,m_i,n,1)*(2*exy)) | 
| 341 |  |  |  | 
| 342 |  |  | streamice_cg_A1 | 
| 343 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 344 |  |  | &             streamice_cg_A1 | 
| 345 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ | 
| 346 |  |  | &              .25 * | 
| 347 |  |  | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 348 | heimbach | 1.2 | &              visc_streamice(i,j,bi,bj) * phival(inodx,inody) * | 
| 349 | heimbach | 1.1 | &             (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* | 
| 350 |  |  | &              exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) | 
| 351 |  |  |  | 
| 352 |  |  | streamice_cg_A3 | 
| 353 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 354 |  |  | &             streamice_cg_A3 | 
| 355 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ | 
| 356 |  |  | &              .25 * | 
| 357 |  |  | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 358 | heimbach | 1.2 | &              visc_streamice(i,j,bi,bj) * phival(inodx,inody) * | 
| 359 | heimbach | 1.1 | &             (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* | 
| 360 |  |  | &              eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) | 
| 361 |  |  |  | 
| 362 |  |  | streamice_cg_A1 | 
| 363 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 364 |  |  | &             streamice_cg_A1 | 
| 365 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ | 
| 366 | heimbach | 1.2 | &              .25*phival(inodx,inody) * | 
| 367 |  |  | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 368 | heimbach | 1.1 | &              tau_beta_eff_streamice (i,j,bi,bj) * uq | 
| 369 |  |  |  | 
| 370 |  |  | streamice_cg_A3 | 
| 371 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 372 |  |  | &             streamice_cg_A3 | 
| 373 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ | 
| 374 | heimbach | 1.2 | &              .25*phival(inodx,inody) * | 
| 375 |  |  | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 376 | heimbach | 1.1 | &              tau_beta_eff_streamice (i,j,bi,bj) * vq | 
| 377 |  |  |  | 
| 378 |  |  | c | 
| 379 |  |  |  | 
| 380 |  |  | vx = DPhi (i,j,bi,bj,m_j,n,1) | 
| 381 |  |  | vy = DPhi (i,j,bi,bj,m_j,n,2) | 
| 382 |  |  | ux = 0 | 
| 383 |  |  | uy = 0 | 
| 384 |  |  | vq = Xquad(ilqx) * Xquad(ilqy) | 
| 385 |  |  | uq = 0 | 
| 386 |  |  |  | 
| 387 |  |  | exx = ux + k1AtC_str(i,j,bi,bj)*vq | 
| 388 |  |  | eyy = vy + k2AtC_str(i,j,bi,bj)*uq | 
| 389 |  |  | exy = .5*(uy+vx) + | 
| 390 |  |  | &              k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq | 
| 391 |  |  |  | 
| 392 |  |  | streamice_cg_A2 | 
| 393 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 394 |  |  | &             streamice_cg_A2 | 
| 395 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ | 
| 396 |  |  | &              .25 * | 
| 397 |  |  | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 398 |  |  | &              visc_streamice(i,j,bi,bj) * ( | 
| 399 |  |  | &              DPhi(i,j,bi,bj,m_i,n,1)*(4*exx+2*eyy) + | 
| 400 |  |  | &              DPhi(i,j,bi,bj,m_i,n,2)*(2*exy)) | 
| 401 |  |  |  | 
| 402 |  |  | streamice_cg_A4 | 
| 403 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 404 |  |  | &             streamice_cg_A4 | 
| 405 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ | 
| 406 |  |  | &              .25 * | 
| 407 |  |  | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 408 |  |  | &              visc_streamice(i,j,bi,bj) * ( | 
| 409 |  |  | &              DPhi(i,j,bi,bj,m_i,n,2)*(4*eyy+2*exx) + | 
| 410 |  |  | &              DPhi(i,j,bi,bj,m_i,n,1)*(2*exy)) | 
| 411 |  |  |  | 
| 412 |  |  | streamice_cg_A2 | 
| 413 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 414 |  |  | &             streamice_cg_A2 | 
| 415 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ | 
| 416 |  |  | &              .25 * | 
| 417 |  |  | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 418 | heimbach | 1.2 | &              visc_streamice(i,j,bi,bj) * phival(inodx,inody) * | 
| 419 | heimbach | 1.1 | &             (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* | 
| 420 |  |  | &              exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) | 
| 421 |  |  |  | 
| 422 |  |  | streamice_cg_A4 | 
| 423 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 424 |  |  | &             streamice_cg_A4 | 
| 425 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ | 
| 426 |  |  | &              .25 * | 
| 427 |  |  | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 428 | heimbach | 1.2 | &              visc_streamice(i,j,bi,bj) * phival(inodx,inody) * | 
| 429 | heimbach | 1.1 | &             (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* | 
| 430 |  |  | &              eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) | 
| 431 |  |  |  | 
| 432 |  |  | streamice_cg_A2 | 
| 433 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 434 |  |  | &             streamice_cg_A2 | 
| 435 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ | 
| 436 | heimbach | 1.2 | &              .25*phival(inodx,inody) * | 
| 437 |  |  | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 438 | heimbach | 1.1 | &              tau_beta_eff_streamice (i,j,bi,bj) * uq | 
| 439 |  |  |  | 
| 440 |  |  | streamice_cg_A4 | 
| 441 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= | 
| 442 |  |  | &             streamice_cg_A4 | 
| 443 |  |  | &                 (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ | 
| 444 | heimbach | 1.2 | &              .25*phival(inodx,inody) * | 
| 445 |  |  | &              grid_jacq_streamice(i,j,bi,bj,n) * | 
| 446 | heimbach | 1.1 | &              tau_beta_eff_streamice (i,j,bi,bj) * vq | 
| 447 |  |  |  | 
| 448 |  |  | endif | 
| 449 |  |  | enddo | 
| 450 |  |  | enddo | 
| 451 |  |  | endif | 
| 452 |  |  | enddo | 
| 453 |  |  | enddo | 
| 454 |  |  | enddo | 
| 455 |  |  | enddo | 
| 456 |  |  | endif | 
| 457 |  |  | enddo | 
| 458 |  |  | enddo | 
| 459 |  |  | enddo | 
| 460 |  |  | enddo | 
| 461 |  |  |  | 
| 462 |  |  | #endif | 
| 463 | dgoldberg | 1.3 | #endif | 
| 464 | heimbach | 1.1 | RETURN | 
| 465 |  |  | END SUBROUTINE | 
| 466 |  |  |  | 
| 467 |  |  | SUBROUTINE STREAMICE_CG_ADIAG( myThid, | 
| 468 |  |  | O      uret, | 
| 469 |  |  | O      vret) | 
| 470 |  |  |  | 
| 471 |  |  | C     /============================================================\ | 
| 472 |  |  | C     | SUBROUTINE                                                 | | 
| 473 |  |  | C     | o                                                          | | 
| 474 |  |  | C     |============================================================| | 
| 475 |  |  | C     |                                                            | | 
| 476 |  |  | C     \============================================================/ | 
| 477 |  |  | IMPLICIT NONE | 
| 478 |  |  |  | 
| 479 |  |  | C     === Global variables === | 
| 480 |  |  | #include "SIZE.h" | 
| 481 |  |  | #include "EEPARAMS.h" | 
| 482 |  |  | #include "PARAMS.h" | 
| 483 |  |  | #include "GRID.h" | 
| 484 |  |  | #include "STREAMICE.h" | 
| 485 |  |  | #include "STREAMICE_CG.h" | 
| 486 |  |  |  | 
| 487 |  |  | C     !INPUT/OUTPUT ARGUMENTS | 
| 488 |  |  | C     uret, vret - result of matrix operating on u, v | 
| 489 |  |  | C     is, ie, js, je - starting and ending cells | 
| 490 |  |  | INTEGER myThid | 
| 491 |  |  | _RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 492 |  |  | _RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 493 |  |  |  | 
| 494 |  |  |  | 
| 495 |  |  | #ifdef ALLOW_STREAMICE | 
| 496 |  |  |  | 
| 497 |  |  | C the linear action of the matrix on (u,v) with triangular finite elements | 
| 498 |  |  | C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, | 
| 499 |  |  | C but this may change pursuant to conversations with others | 
| 500 |  |  | C | 
| 501 |  |  | C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine | 
| 502 |  |  | C     in order to make less frequent halo updates | 
| 503 |  |  | C isym = 1 if grid is symmetric, 0 o.w. | 
| 504 |  |  |  | 
| 505 |  |  | C the linear action of the matrix on (u,v) with triangular finite elements | 
| 506 |  |  | C Phi has the form | 
| 507 |  |  | C Phi (i,j,k,q) - applies to cell i,j | 
| 508 |  |  |  | 
| 509 |  |  | C      3 - 4 | 
| 510 |  |  | C      |   | | 
| 511 |  |  | C      1 - 2 | 
| 512 |  |  |  | 
| 513 |  |  | C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q | 
| 514 |  |  | C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q | 
| 515 |  |  | C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear | 
| 516 |  |  |  | 
| 517 |  |  | C     !LOCAL VARIABLES: | 
| 518 |  |  | C     == Local variables == | 
| 519 |  |  | INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n | 
| 520 | heimbach | 1.2 | _RL ux, vx, uy, vy, uq, vq, exx, eyy, exy | 
| 521 | heimbach | 1.1 | _RL Ucell (2,2) | 
| 522 |  |  | _RL Vcell (2,2) | 
| 523 |  |  | _RL Hcell (2,2) | 
| 524 | heimbach | 1.2 | _RL phival(2,2) | 
| 525 |  |  |  | 
| 526 |  |  | uret(1,1,1,1) = uret(1,1,1,1) | 
| 527 |  |  | vret(1,1,1,1) = vret(1,1,1,1) | 
| 528 | heimbach | 1.1 |  | 
| 529 |  |  | DO j = 0, sNy+1 | 
| 530 |  |  | DO i = 0, sNx+1 | 
| 531 |  |  | DO bj = myByLo(myThid), myByHi(myThid) | 
| 532 |  |  | DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 533 |  |  | IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN | 
| 534 |  |  | DO iq=1,2 | 
| 535 |  |  | DO jq = 1,2 | 
| 536 |  |  |  | 
| 537 |  |  | n = 2*(jq-1)+iq | 
| 538 |  |  |  | 
| 539 |  |  | DO inode = 1,2 | 
| 540 |  |  | DO jnode = 1,2 | 
| 541 |  |  |  | 
| 542 |  |  | m = 2*(jnode-1)+inode | 
| 543 | heimbach | 1.2 |  | 
| 544 |  |  | if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then | 
| 545 |  |  |  | 
| 546 |  |  | ilq = 1 | 
| 547 |  |  | jlq = 1 | 
| 548 | heimbach | 1.1 |  | 
| 549 | heimbach | 1.2 | if (inode.eq.iq) ilq = 2 | 
| 550 |  |  | if (jnode.eq.jq) jlq = 2 | 
| 551 |  |  | phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) | 
| 552 |  |  |  | 
| 553 |  |  | ux = DPhi (i,j,bi,bj,m,n,1) | 
| 554 |  |  | uy = DPhi (i,j,bi,bj,m,n,2) | 
| 555 |  |  | vx = 0 | 
| 556 |  |  | vy = 0 | 
| 557 |  |  | uq = Xquad(ilq) * Xquad(jlq) | 
| 558 |  |  | vq = 0 | 
| 559 |  |  |  | 
| 560 |  |  | exx = ux + k1AtC_str(i,j,bi,bj)*vq | 
| 561 |  |  | eyy = vy + k2AtC_str(i,j,bi,bj)*uq | 
| 562 |  |  | exy = .5*(uy+vx) + | 
| 563 |  |  | &         k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq | 
| 564 | heimbach | 1.1 |  | 
| 565 |  |  | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 566 |  |  | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 567 |  |  | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 568 |  |  | &         visc_streamice(i,j,bi,bj) * ( | 
| 569 |  |  | &          DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + | 
| 570 |  |  | &          DPhi(i,j,bi,bj,m,n,2)*(2*exy)) | 
| 571 |  |  |  | 
| 572 |  |  | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 573 |  |  | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 574 |  |  | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 575 | heimbach | 1.2 | &         visc_streamice(i,j,bi,bj) * phival(inode,jnode) * | 
| 576 | heimbach | 1.1 | &         (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ | 
| 577 |  |  | &          4*0.5*k1AtC_str(i,j,bi,bj)*exy) | 
| 578 |  |  |  | 
| 579 |  |  |  | 
| 580 |  |  | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 581 |  |  | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 582 | heimbach | 1.2 | &         phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * | 
| 583 | heimbach | 1.1 | &         tau_beta_eff_streamice (i,j,bi,bj) * uq | 
| 584 |  |  |  | 
| 585 |  |  |  | 
| 586 |  |  | vx = DPhi (i,j,bi,bj,m,n,1) | 
| 587 |  |  | vy = DPhi (i,j,bi,bj,m,n,2) | 
| 588 |  |  | ux = 0 | 
| 589 |  |  | uy = 0 | 
| 590 |  |  | vq = Xquad(ilq) * Xquad(jlq) | 
| 591 |  |  | uq = 0 | 
| 592 |  |  |  | 
| 593 |  |  | exx = ux + k1AtC_str(i,j,bi,bj)*vq | 
| 594 |  |  | eyy = vy + k2AtC_str(i,j,bi,bj)*uq | 
| 595 |  |  | exy = .5*(uy+vx) + | 
| 596 |  |  | &         k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq | 
| 597 |  |  |  | 
| 598 |  |  | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 599 |  |  | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 600 |  |  | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 601 |  |  | &         visc_streamice(i,j,bi,bj) * ( | 
| 602 |  |  | &          DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + | 
| 603 |  |  | &          DPhi(i,j,bi,bj,m,n,1)*(2*exy)) | 
| 604 |  |  | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 605 |  |  | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 606 |  |  | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 607 | heimbach | 1.2 | &         visc_streamice(i,j,bi,bj) * phival(inode,jnode) * | 
| 608 | heimbach | 1.1 | &         (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ | 
| 609 |  |  | &          4*0.5*k2AtC_str(i,j,bi,bj)*exy) | 
| 610 |  |  |  | 
| 611 |  |  |  | 
| 612 |  |  | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 613 |  |  | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 614 | heimbach | 1.2 | &         phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * | 
| 615 | heimbach | 1.1 | &         tau_beta_eff_streamice (i,j,bi,bj) * vq | 
| 616 |  |  |  | 
| 617 |  |  | endif | 
| 618 | heimbach | 1.2 |  | 
| 619 | heimbach | 1.1 | enddo | 
| 620 |  |  | enddo | 
| 621 |  |  | enddo | 
| 622 |  |  | enddo | 
| 623 |  |  | endif | 
| 624 |  |  | enddo | 
| 625 |  |  | enddo | 
| 626 |  |  | enddo | 
| 627 |  |  | enddo | 
| 628 |  |  |  | 
| 629 |  |  | #endif | 
| 630 |  |  | RETURN | 
| 631 |  |  | END SUBROUTINE | 
| 632 |  |  |  | 
| 633 |  |  |  | 
| 634 |  |  |  | 
| 635 |  |  | SUBROUTINE STREAMICE_CG_BOUND_VALS( myThid, | 
| 636 |  |  | O    uret, | 
| 637 |  |  | O    vret) | 
| 638 |  |  | C     /============================================================\ | 
| 639 |  |  | C     | SUBROUTINE                                                 | | 
| 640 |  |  | C     | o                                                          | | 
| 641 |  |  | C     |============================================================| | 
| 642 |  |  | C     |                                                            | | 
| 643 |  |  | C     \============================================================/ | 
| 644 |  |  | IMPLICIT NONE | 
| 645 |  |  |  | 
| 646 |  |  | C     === Global variables === | 
| 647 |  |  | #include "SIZE.h" | 
| 648 |  |  | #include "EEPARAMS.h" | 
| 649 |  |  | #include "PARAMS.h" | 
| 650 |  |  | #include "GRID.h" | 
| 651 |  |  | #include "STREAMICE.h" | 
| 652 |  |  | #include "STREAMICE_CG.h" | 
| 653 |  |  |  | 
| 654 |  |  | C     !INPUT/OUTPUT ARGUMENTS | 
| 655 |  |  | C     uret, vret - result of matrix operating on u, v | 
| 656 |  |  | C     is, ie, js, je - starting and ending cells | 
| 657 |  |  | INTEGER myThid | 
| 658 |  |  | _RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 659 |  |  | _RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) | 
| 660 |  |  |  | 
| 661 |  |  | #ifdef ALLOW_STREAMICE | 
| 662 |  |  |  | 
| 663 |  |  | C the linear action of the matrix on (u,v) with triangular finite elements | 
| 664 |  |  | C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, | 
| 665 |  |  | C but this may change pursuant to conversations with others | 
| 666 |  |  | C | 
| 667 |  |  | C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine | 
| 668 |  |  | C     in order to make less frequent halo updates | 
| 669 |  |  | C isym = 1 if grid is symmetric, 0 o.w. | 
| 670 |  |  |  | 
| 671 |  |  | C the linear action of the matrix on (u,v) with triangular finite elements | 
| 672 |  |  | C Phi has the form | 
| 673 |  |  | C Phi (i,j,k,q) - applies to cell i,j | 
| 674 |  |  |  | 
| 675 |  |  | C      3 - 4 | 
| 676 |  |  | C      |   | | 
| 677 |  |  | C      1 - 2 | 
| 678 |  |  |  | 
| 679 |  |  | C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q | 
| 680 |  |  | C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q | 
| 681 |  |  | C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear | 
| 682 |  |  |  | 
| 683 |  |  | C     !LOCAL VARIABLES: | 
| 684 |  |  | C     == Local variables == | 
| 685 |  |  | INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n | 
| 686 | heimbach | 1.2 | _RL ux, vx, uy, vy, uq, vq, exx, eyy, exy | 
| 687 | heimbach | 1.1 | _RL Ucell (2,2) | 
| 688 |  |  | _RL Vcell (2,2) | 
| 689 |  |  | _RL Hcell (2,2) | 
| 690 | heimbach | 1.2 | _RL phival(2,2) | 
| 691 |  |  |  | 
| 692 |  |  | uret(1,1,1,1) = uret(1,1,1,1) | 
| 693 |  |  | vret(1,1,1,1) = vret(1,1,1,1) | 
| 694 | heimbach | 1.1 |  | 
| 695 |  |  | DO j = 0, sNy+1 | 
| 696 |  |  | DO i = 0, sNx+1 | 
| 697 |  |  | DO bj = myByLo(myThid), myByHi(myThid) | 
| 698 |  |  | DO bi = myBxLo(myThid), myBxHi(myThid) | 
| 699 |  |  | IF ((STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) .AND. | 
| 700 |  |  | &     ((STREAMICE_umask(i,j,bi,bj).eq.3.0) .OR. | 
| 701 |  |  | &      (STREAMICE_umask(i,j+1,bi,bj).eq.3.0) .OR. | 
| 702 |  |  | &      (STREAMICE_umask(i+1,j,bi,bj).eq.3.0) .OR. | 
| 703 |  |  | &      (STREAMICE_umask(i+1,j+1,bi,bj).eq.3.0))) THEN | 
| 704 |  |  |  | 
| 705 |  |  | DO iq=1,2 | 
| 706 |  |  | DO jq = 1,2 | 
| 707 |  |  |  | 
| 708 |  |  | n = 2*(jq-1)+iq | 
| 709 |  |  |  | 
| 710 |  |  | uq = u_bdry_values_SI(i,j,bi,bj)*Xquad(3-iq)*Xquad(3-jq)+ | 
| 711 |  |  | &       u_bdry_values_SI(i+1,j,bi,bj)*Xquad(iq)*Xquad(3-jq)+ | 
| 712 |  |  | &       u_bdry_values_SI(i,j+1,bi,bj)*Xquad(3-iq)*Xquad(jq)+ | 
| 713 |  |  | &       u_bdry_values_SI(i+1,j+1,bi,bj)*Xquad(iq)*Xquad(jq) | 
| 714 |  |  | vq = v_bdry_values_SI(i,j,bi,bj)*Xquad(3-iq)*Xquad(3-jq)+ | 
| 715 |  |  | &       v_bdry_values_SI(i+1,j,bi,bj)*Xquad(iq)*Xquad(3-jq)+ | 
| 716 |  |  | &       v_bdry_values_SI(i,j+1,bi,bj)*Xquad(3-iq)*Xquad(jq)+ | 
| 717 |  |  | &       v_bdry_values_SI(i+1,j+1,bi,bj)*Xquad(iq)*Xquad(jq) | 
| 718 |  |  | ux = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + | 
| 719 |  |  | &       u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + | 
| 720 |  |  | &       u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + | 
| 721 |  |  | &       u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) | 
| 722 |  |  | uy = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + | 
| 723 |  |  | &       u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + | 
| 724 |  |  | &       u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + | 
| 725 |  |  | &       u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) | 
| 726 |  |  | vx = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + | 
| 727 |  |  | &       v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + | 
| 728 |  |  | &       v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + | 
| 729 |  |  | &       v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) | 
| 730 |  |  | vy = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + | 
| 731 |  |  | &       v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + | 
| 732 |  |  | &       v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + | 
| 733 |  |  | &       v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) | 
| 734 |  |  | exx = ux + k1AtC_str(i,j,bi,bj)*vq | 
| 735 |  |  | eyy = vy + k2AtC_str(i,j,bi,bj)*uq | 
| 736 |  |  | exy = .5*(uy+vx) + | 
| 737 |  |  | &       k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq | 
| 738 |  |  |  | 
| 739 |  |  | do inode = 1,2 | 
| 740 |  |  | do jnode = 1,2 | 
| 741 |  |  |  | 
| 742 |  |  | m = 2*(jnode-1)+inode | 
| 743 |  |  | ilq = 1 | 
| 744 | heimbach | 1.2 | jlq = 1 | 
| 745 | heimbach | 1.1 | if (inode.eq.iq) ilq = 2 | 
| 746 |  |  | if (jnode.eq.jq) jlq = 2 | 
| 747 | heimbach | 1.2 | phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) | 
| 748 | heimbach | 1.1 |  | 
| 749 |  |  | if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then | 
| 750 |  |  |  | 
| 751 |  |  | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 752 |  |  | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 753 |  |  | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 754 |  |  | &         visc_streamice(i,j,bi,bj) * ( | 
| 755 |  |  | &          DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + | 
| 756 |  |  | &          DPhi(i,j,bi,bj,m,n,2)*(2*exy)) | 
| 757 |  |  | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 758 |  |  | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 759 |  |  | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 760 |  |  | &         visc_streamice(i,j,bi,bj) * ( | 
| 761 |  |  | &          DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + | 
| 762 |  |  | &          DPhi(i,j,bi,bj,m,n,1)*(2*exy)) | 
| 763 |  |  |  | 
| 764 |  |  | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 765 |  |  | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 766 |  |  | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 767 | heimbach | 1.2 | &         visc_streamice(i,j,bi,bj) * phival(inode,jnode) * | 
| 768 | heimbach | 1.1 | &         (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ | 
| 769 |  |  | &          4*0.5*k1AtC_str(i,j,bi,bj)*exy) | 
| 770 |  |  | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 771 |  |  | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 772 |  |  | &         grid_jacq_streamice(i,j,bi,bj,n) * | 
| 773 | heimbach | 1.2 | &         visc_streamice(i,j,bi,bj) * phival(inode,jnode) * | 
| 774 | heimbach | 1.1 | &         (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ | 
| 775 |  |  | &          4*0.5*k2AtC_str(i,j,bi,bj)*exy) | 
| 776 |  |  |  | 
| 777 |  |  | !               if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then | 
| 778 |  |  | uret(i-1+inode,j-1+jnode,bi,bj) = | 
| 779 |  |  | &         uret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 780 | heimbach | 1.2 | &         phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * | 
| 781 | heimbach | 1.1 | &         tau_beta_eff_streamice (i,j,bi,bj) * uq | 
| 782 |  |  | vret(i-1+inode,j-1+jnode,bi,bj) = | 
| 783 |  |  | &         vret(i-1+inode,j-1+jnode,bi,bj) + .25 * | 
| 784 | heimbach | 1.2 | &         phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * | 
| 785 | heimbach | 1.1 | &         tau_beta_eff_streamice (i,j,bi,bj) * vq | 
| 786 |  |  | !               endif | 
| 787 |  |  | endif | 
| 788 |  |  | enddo | 
| 789 |  |  | enddo | 
| 790 |  |  | enddo | 
| 791 |  |  | enddo | 
| 792 |  |  | endif | 
| 793 |  |  | enddo | 
| 794 |  |  | enddo | 
| 795 |  |  | enddo | 
| 796 |  |  | enddo | 
| 797 |  |  |  | 
| 798 |  |  | #endif | 
| 799 |  |  | RETURN | 
| 800 |  |  | END SUBROUTINE |