| 1 |
heimbach |
1.1 |
C $Header: /u/gcmpack/MITgcm/pkg/streamice/streamice_init_varia.F,v 1.6 2011/06/29 16:24:10 dng Exp $ |
| 2 |
|
|
C $Name: $ |
| 3 |
|
|
|
| 4 |
|
|
#include "STREAMICE_OPTIONS.h" |
| 5 |
|
|
|
| 6 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 7 |
|
|
|
| 8 |
|
|
CBOP |
| 9 |
|
|
SUBROUTINE STREAMICE_CG_ACTION( myThid, |
| 10 |
|
|
O uret, |
| 11 |
|
|
O vret, |
| 12 |
|
|
I u, |
| 13 |
|
|
I v, |
| 14 |
|
|
I is, ie, js, je ) |
| 15 |
|
|
C /============================================================\ |
| 16 |
|
|
C | SUBROUTINE | |
| 17 |
|
|
C | o | |
| 18 |
|
|
C |============================================================| |
| 19 |
|
|
C | | |
| 20 |
|
|
C \============================================================/ |
| 21 |
|
|
IMPLICIT NONE |
| 22 |
|
|
|
| 23 |
|
|
C === Global variables === |
| 24 |
|
|
#include "SIZE.h" |
| 25 |
|
|
#include "EEPARAMS.h" |
| 26 |
|
|
#include "PARAMS.h" |
| 27 |
|
|
#include "GRID.h" |
| 28 |
|
|
#include "STREAMICE.h" |
| 29 |
|
|
#include "STREAMICE_CG.h" |
| 30 |
|
|
|
| 31 |
|
|
C !INPUT/OUTPUT ARGUMENTS |
| 32 |
|
|
C uret, vret - result of matrix operating on u, v |
| 33 |
|
|
C is, ie, js, je - starting and ending cells |
| 34 |
|
|
INTEGER myThid |
| 35 |
|
|
_RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 36 |
|
|
_RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 37 |
|
|
_RL u (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 38 |
|
|
_RL v (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 39 |
|
|
INTEGER is, ie, js, je |
| 40 |
|
|
|
| 41 |
|
|
#ifdef ALLOW_STREAMICE |
| 42 |
|
|
|
| 43 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
| 44 |
|
|
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
| 45 |
|
|
C but this may change pursuant to conversations with others |
| 46 |
|
|
C |
| 47 |
|
|
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
| 48 |
|
|
C in order to make less frequent halo updates |
| 49 |
|
|
C isym = 1 if grid is symmetric, 0 o.w. |
| 50 |
|
|
|
| 51 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
| 52 |
|
|
C Phi has the form |
| 53 |
|
|
C Phi (i,j,k,q) - applies to cell i,j |
| 54 |
|
|
|
| 55 |
|
|
C 3 - 4 |
| 56 |
|
|
C | | |
| 57 |
|
|
C 1 - 2 |
| 58 |
|
|
|
| 59 |
|
|
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
| 60 |
|
|
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
| 61 |
|
|
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
| 62 |
|
|
|
| 63 |
|
|
C !LOCAL VARIABLES: |
| 64 |
|
|
C == Local variables == |
| 65 |
|
|
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
| 66 |
heimbach |
1.2 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
| 67 |
heimbach |
1.1 |
_RL Ucell (2,2) |
| 68 |
|
|
_RL Vcell (2,2) |
| 69 |
|
|
_RL Hcell (2,2) |
| 70 |
heimbach |
1.2 |
_RL phival(2,2) |
| 71 |
|
|
|
| 72 |
|
|
uret(1,1,1,1) = uret(1,1,1,1) |
| 73 |
|
|
vret(1,1,1,1) = vret(1,1,1,1) |
| 74 |
heimbach |
1.1 |
|
| 75 |
|
|
DO j = js, je |
| 76 |
|
|
DO i = is, ie |
| 77 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
| 78 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
| 79 |
heimbach |
1.2 |
|
| 80 |
heimbach |
1.1 |
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
| 81 |
heimbach |
1.2 |
DO iq = 1,2 |
| 82 |
heimbach |
1.1 |
DO jq = 1,2 |
| 83 |
|
|
|
| 84 |
|
|
n = 2*(jq-1)+iq |
| 85 |
|
|
|
| 86 |
|
|
uq = u(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + |
| 87 |
|
|
& u(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + |
| 88 |
|
|
& u(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + |
| 89 |
|
|
& u(i+1,j+1,bi,bj) * Xquad(iq) * Xquad(jq) |
| 90 |
|
|
vq = v(i,j,bi,bj) * Xquad(3-iq) * Xquad(3-jq) + |
| 91 |
|
|
& v(i+1,j,bi,bj) * Xquad(iq) * Xquad(3-jq) + |
| 92 |
|
|
& v(i,j+1,bi,bj) * Xquad(3-iq) * Xquad(jq) + |
| 93 |
|
|
& v(i+1,j+1,bi,bj) * Xquad(iq) * Xquad(jq) |
| 94 |
|
|
ux = u(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
| 95 |
|
|
& u(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
| 96 |
|
|
& u(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
| 97 |
|
|
& u(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
| 98 |
|
|
uy = u(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
| 99 |
|
|
& u(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
| 100 |
|
|
& u(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
| 101 |
|
|
& u(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
| 102 |
|
|
vx = v(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
| 103 |
|
|
& v(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
| 104 |
|
|
& v(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
| 105 |
|
|
& v(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
| 106 |
|
|
vy = v(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,2) + |
| 107 |
|
|
& v(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
| 108 |
|
|
& v(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
| 109 |
|
|
& v(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
| 110 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
| 111 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
| 112 |
|
|
exy = .5*(uy+vx) + |
| 113 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
| 114 |
|
|
|
| 115 |
|
|
do inode = 1,2 |
| 116 |
|
|
do jnode = 1,2 |
| 117 |
|
|
|
| 118 |
|
|
m = 2*(jnode-1)+inode |
| 119 |
|
|
ilq = 1 |
| 120 |
heimbach |
1.2 |
jlq = 1 |
| 121 |
heimbach |
1.1 |
if (inode.eq.iq) ilq = 2 |
| 122 |
heimbach |
1.2 |
if (jnode.eq.jq) jlq = 2 |
| 123 |
|
|
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
| 124 |
heimbach |
1.1 |
|
| 125 |
|
|
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
| 126 |
|
|
|
| 127 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
| 128 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 129 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 130 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
| 131 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
| 132 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
| 133 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
| 134 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 135 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 136 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
| 137 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
| 138 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
| 139 |
|
|
|
| 140 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
| 141 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 142 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 143 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
| 144 |
heimbach |
1.1 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
| 145 |
|
|
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
| 146 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
| 147 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 148 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 149 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
| 150 |
heimbach |
1.1 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
| 151 |
|
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
| 152 |
|
|
|
| 153 |
|
|
! IF (bi.eq.2.and.bj.eq.2.and.i.eq.15.and. |
| 154 |
|
|
! & (exx.ne.0.0 .or. eyy.ne.0.0 .or. exy.ne.0.0)) THEN |
| 155 |
|
|
! PRINT *, "CG_FUNCTION", j, v(i,j,bi,bj),v(i+1,j,bi,bj), |
| 156 |
|
|
! & v(i,j+1,bi,bj),v(i+1,j+1,bi,bj) |
| 157 |
|
|
! ENDIF |
| 158 |
|
|
|
| 159 |
|
|
|
| 160 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
| 161 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 162 |
heimbach |
1.2 |
& phival(inode,jnode) * |
| 163 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 164 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
| 165 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
| 166 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 167 |
heimbach |
1.2 |
& phival(inode,jnode) * |
| 168 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 169 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
| 170 |
|
|
|
| 171 |
|
|
endif |
| 172 |
|
|
enddo |
| 173 |
|
|
enddo |
| 174 |
heimbach |
1.2 |
|
| 175 |
heimbach |
1.1 |
enddo |
| 176 |
|
|
enddo |
| 177 |
heimbach |
1.2 |
c-- STREAMICE_hmask |
| 178 |
heimbach |
1.1 |
endif |
| 179 |
heimbach |
1.2 |
|
| 180 |
heimbach |
1.1 |
enddo |
| 181 |
|
|
enddo |
| 182 |
|
|
enddo |
| 183 |
|
|
enddo |
| 184 |
|
|
|
| 185 |
|
|
#endif |
| 186 |
|
|
RETURN |
| 187 |
|
|
END SUBROUTINE |
| 188 |
|
|
|
| 189 |
|
|
SUBROUTINE STREAMICE_CG_MAKE_A( myThid ) |
| 190 |
|
|
C /============================================================\ |
| 191 |
|
|
C | SUBROUTINE | |
| 192 |
|
|
C | o | |
| 193 |
|
|
C |============================================================| |
| 194 |
|
|
C | | |
| 195 |
|
|
C \============================================================/ |
| 196 |
|
|
IMPLICIT NONE |
| 197 |
|
|
|
| 198 |
|
|
C === Global variables === |
| 199 |
|
|
#include "SIZE.h" |
| 200 |
|
|
#include "EEPARAMS.h" |
| 201 |
|
|
#include "PARAMS.h" |
| 202 |
|
|
#include "GRID.h" |
| 203 |
|
|
#include "STREAMICE.h" |
| 204 |
|
|
#include "STREAMICE_CG.h" |
| 205 |
|
|
|
| 206 |
|
|
C !INPUT/OUTPUT ARGUMENTS |
| 207 |
|
|
C uret, vret - result of matrix operating on u, v |
| 208 |
|
|
C is, ie, js, je - starting and ending cells |
| 209 |
|
|
INTEGER myThid |
| 210 |
|
|
|
| 211 |
|
|
#ifdef ALLOW_STREAMICE |
| 212 |
|
|
|
| 213 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
| 214 |
|
|
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
| 215 |
|
|
C but this may change pursuant to conversations with others |
| 216 |
|
|
C |
| 217 |
|
|
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
| 218 |
|
|
C in order to make less frequent halo updates |
| 219 |
|
|
C isym = 1 if grid is symmetric, 0 o.w. |
| 220 |
|
|
|
| 221 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
| 222 |
|
|
C Phi has the form |
| 223 |
|
|
C Phi (i,j,k,q) - applies to cell i,j |
| 224 |
|
|
|
| 225 |
|
|
C 3 - 4 |
| 226 |
|
|
C | | |
| 227 |
|
|
C 1 - 2 |
| 228 |
|
|
|
| 229 |
|
|
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
| 230 |
|
|
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
| 231 |
|
|
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
| 232 |
|
|
|
| 233 |
|
|
C !LOCAL VARIABLES: |
| 234 |
|
|
C == Local variables == |
| 235 |
|
|
INTEGER iq, jq, inodx, inody, i, j, bi, bj, ilqx, ilqy, m_i, n |
| 236 |
|
|
INTEGER jlqx, jlqy, jnodx,jnody, m_j, col_y, col_x, cg_halo, k |
| 237 |
heimbach |
1.2 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
| 238 |
|
|
_RL phival(2,2) |
| 239 |
heimbach |
1.1 |
|
| 240 |
|
|
! do i=1,3 |
| 241 |
|
|
! do j=0,2 |
| 242 |
|
|
! col_index_a = i + j*3 |
| 243 |
|
|
! enddo |
| 244 |
|
|
! enddo |
| 245 |
|
|
|
| 246 |
|
|
cg_halo = min(OLx-1,OLy-1) |
| 247 |
|
|
|
| 248 |
|
|
DO j = 1-cg_halo, sNy+cg_halo |
| 249 |
|
|
DO i = 1-cg_halo, sNx+cg_halo |
| 250 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
| 251 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
| 252 |
|
|
cc DO k=1,4 |
| 253 |
|
|
DO col_x=-1,1 |
| 254 |
|
|
DO col_y=-1,1 |
| 255 |
|
|
streamice_cg_A1(i,j,bi,bj,col_x,col_y)=0.0 |
| 256 |
|
|
streamice_cg_A2(i,j,bi,bj,col_x,col_y)=0.0 |
| 257 |
|
|
streamice_cg_A3(i,j,bi,bj,col_x,col_y)=0.0 |
| 258 |
|
|
streamice_cg_A4(i,j,bi,bj,col_x,col_y)=0.0 |
| 259 |
|
|
ENDDO |
| 260 |
|
|
ENDDO |
| 261 |
|
|
cc ENDDO |
| 262 |
|
|
ENDDO |
| 263 |
|
|
ENDDO |
| 264 |
|
|
ENDDO |
| 265 |
|
|
ENDDO |
| 266 |
|
|
|
| 267 |
|
|
DO j = 1-cg_halo, sNy+cg_halo |
| 268 |
|
|
DO i = 1-cg_halo, sNx+cg_halo |
| 269 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
| 270 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
| 271 |
|
|
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
| 272 |
|
|
DO iq=1,2 |
| 273 |
|
|
DO jq = 1,2 |
| 274 |
|
|
|
| 275 |
|
|
n = 2*(jq-1)+iq |
| 276 |
|
|
|
| 277 |
|
|
DO inodx = 1,2 |
| 278 |
|
|
DO inody = 1,2 |
| 279 |
|
|
|
| 280 |
|
|
if (STREAMICE_umask(i-1+inodx,j-1+inody,bi,bj) |
| 281 |
|
|
& .eq.1.0) |
| 282 |
|
|
& then |
| 283 |
|
|
|
| 284 |
|
|
m_i = 2*(inody-1)+inodx |
| 285 |
|
|
ilqx = 1 |
| 286 |
|
|
ilqy = 1 |
| 287 |
|
|
|
| 288 |
|
|
if (inodx.eq.iq) ilqx = 2 |
| 289 |
|
|
if (inody.eq.jq) ilqy = 2 |
| 290 |
heimbach |
1.2 |
phival(inodx,inody) = Xquad(ilqx)*Xquad(ilqy) |
| 291 |
heimbach |
1.1 |
|
| 292 |
|
|
DO jnodx = 1,2 |
| 293 |
|
|
DO jnody = 1,2 |
| 294 |
|
|
if (STREAMICE_umask(i-1+jnodx,j-1+jnody,bi,bj) |
| 295 |
|
|
& .eq.1.0) |
| 296 |
|
|
& then |
| 297 |
|
|
|
| 298 |
|
|
m_j = 2*(jnody-1)+jnodx |
| 299 |
|
|
ilqx = 1 |
| 300 |
|
|
ilqy = 1 |
| 301 |
|
|
if (jnodx.eq.iq) ilqx = 2 |
| 302 |
|
|
if (jnody.eq.jq) ilqy = 2 |
| 303 |
|
|
|
| 304 |
|
|
! col_j = col_index_a ( |
| 305 |
|
|
! & jnodx+mod(inodx,2), |
| 306 |
|
|
! & jnody+mod(inody,2) ) |
| 307 |
|
|
|
| 308 |
|
|
col_x = mod(inodx,2)+jnodx-2 |
| 309 |
|
|
col_y = mod(inody,2)+jnody-2 |
| 310 |
|
|
|
| 311 |
|
|
c |
| 312 |
|
|
|
| 313 |
|
|
ux = DPhi (i,j,bi,bj,m_j,n,1) |
| 314 |
|
|
uy = DPhi (i,j,bi,bj,m_j,n,2) |
| 315 |
|
|
vx = 0 |
| 316 |
|
|
vy = 0 |
| 317 |
|
|
uq = Xquad(ilqx) * Xquad(ilqy) |
| 318 |
|
|
vq = 0 |
| 319 |
|
|
|
| 320 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
| 321 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
| 322 |
|
|
exy = .5*(uy+vx) + |
| 323 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
| 324 |
|
|
|
| 325 |
|
|
streamice_cg_A1 |
| 326 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
| 327 |
|
|
& streamice_cg_A1 |
| 328 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
| 329 |
|
|
& .25 * |
| 330 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 331 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
| 332 |
|
|
& DPhi(i,j,bi,bj,m_i,n,1)*(4*exx+2*eyy) + |
| 333 |
|
|
& DPhi(i,j,bi,bj,m_i,n,2)*(2*exy)) |
| 334 |
|
|
|
| 335 |
|
|
streamice_cg_A3 |
| 336 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
| 337 |
|
|
& streamice_cg_A3 |
| 338 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
| 339 |
|
|
& .25 * |
| 340 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 341 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
| 342 |
|
|
& DPhi(i,j,bi,bj,m_i,n,2)*(4*eyy+2*exx) + |
| 343 |
|
|
& DPhi(i,j,bi,bj,m_i,n,1)*(2*exy)) |
| 344 |
|
|
|
| 345 |
|
|
streamice_cg_A1 |
| 346 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
| 347 |
|
|
& streamice_cg_A1 |
| 348 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
| 349 |
|
|
& .25 * |
| 350 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 351 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
| 352 |
heimbach |
1.1 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
| 353 |
|
|
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
| 354 |
|
|
|
| 355 |
|
|
streamice_cg_A3 |
| 356 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
| 357 |
|
|
& streamice_cg_A3 |
| 358 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
| 359 |
|
|
& .25 * |
| 360 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 361 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
| 362 |
heimbach |
1.1 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
| 363 |
|
|
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
| 364 |
|
|
|
| 365 |
|
|
streamice_cg_A1 |
| 366 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
| 367 |
|
|
& streamice_cg_A1 |
| 368 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
| 369 |
heimbach |
1.2 |
& .25*phival(inodx,inody) * |
| 370 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 371 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
| 372 |
|
|
|
| 373 |
|
|
streamice_cg_A3 |
| 374 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
| 375 |
|
|
& streamice_cg_A3 |
| 376 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
| 377 |
heimbach |
1.2 |
& .25*phival(inodx,inody) * |
| 378 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 379 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
| 380 |
|
|
|
| 381 |
|
|
c |
| 382 |
|
|
|
| 383 |
|
|
vx = DPhi (i,j,bi,bj,m_j,n,1) |
| 384 |
|
|
vy = DPhi (i,j,bi,bj,m_j,n,2) |
| 385 |
|
|
ux = 0 |
| 386 |
|
|
uy = 0 |
| 387 |
|
|
vq = Xquad(ilqx) * Xquad(ilqy) |
| 388 |
|
|
uq = 0 |
| 389 |
|
|
|
| 390 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
| 391 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
| 392 |
|
|
exy = .5*(uy+vx) + |
| 393 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
| 394 |
|
|
|
| 395 |
|
|
streamice_cg_A2 |
| 396 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
| 397 |
|
|
& streamice_cg_A2 |
| 398 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
| 399 |
|
|
& .25 * |
| 400 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 401 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
| 402 |
|
|
& DPhi(i,j,bi,bj,m_i,n,1)*(4*exx+2*eyy) + |
| 403 |
|
|
& DPhi(i,j,bi,bj,m_i,n,2)*(2*exy)) |
| 404 |
|
|
|
| 405 |
|
|
streamice_cg_A4 |
| 406 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
| 407 |
|
|
& streamice_cg_A4 |
| 408 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
| 409 |
|
|
& .25 * |
| 410 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 411 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
| 412 |
|
|
& DPhi(i,j,bi,bj,m_i,n,2)*(4*eyy+2*exx) + |
| 413 |
|
|
& DPhi(i,j,bi,bj,m_i,n,1)*(2*exy)) |
| 414 |
|
|
|
| 415 |
|
|
streamice_cg_A2 |
| 416 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
| 417 |
|
|
& streamice_cg_A2 |
| 418 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
| 419 |
|
|
& .25 * |
| 420 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 421 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
| 422 |
heimbach |
1.1 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)* |
| 423 |
|
|
& exx+4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
| 424 |
|
|
|
| 425 |
|
|
streamice_cg_A4 |
| 426 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
| 427 |
|
|
& streamice_cg_A4 |
| 428 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
| 429 |
|
|
& .25 * |
| 430 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 431 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inodx,inody) * |
| 432 |
heimbach |
1.1 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)* |
| 433 |
|
|
& eyy+4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
| 434 |
|
|
|
| 435 |
|
|
streamice_cg_A2 |
| 436 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
| 437 |
|
|
& streamice_cg_A2 |
| 438 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
| 439 |
heimbach |
1.2 |
& .25*phival(inodx,inody) * |
| 440 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 441 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
| 442 |
|
|
|
| 443 |
|
|
streamice_cg_A4 |
| 444 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)= |
| 445 |
|
|
& streamice_cg_A4 |
| 446 |
|
|
& (i-1+inodx,j-1+inody,bi,bj,col_x,col_y)+ |
| 447 |
heimbach |
1.2 |
& .25*phival(inodx,inody) * |
| 448 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 449 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
| 450 |
|
|
|
| 451 |
|
|
endif |
| 452 |
|
|
enddo |
| 453 |
|
|
enddo |
| 454 |
|
|
endif |
| 455 |
|
|
enddo |
| 456 |
|
|
enddo |
| 457 |
|
|
enddo |
| 458 |
|
|
enddo |
| 459 |
|
|
endif |
| 460 |
|
|
enddo |
| 461 |
|
|
enddo |
| 462 |
|
|
enddo |
| 463 |
|
|
enddo |
| 464 |
|
|
|
| 465 |
|
|
#endif |
| 466 |
|
|
RETURN |
| 467 |
|
|
END SUBROUTINE |
| 468 |
|
|
|
| 469 |
|
|
SUBROUTINE STREAMICE_CG_ADIAG( myThid, |
| 470 |
|
|
O uret, |
| 471 |
|
|
O vret) |
| 472 |
|
|
|
| 473 |
|
|
C /============================================================\ |
| 474 |
|
|
C | SUBROUTINE | |
| 475 |
|
|
C | o | |
| 476 |
|
|
C |============================================================| |
| 477 |
|
|
C | | |
| 478 |
|
|
C \============================================================/ |
| 479 |
|
|
IMPLICIT NONE |
| 480 |
|
|
|
| 481 |
|
|
C === Global variables === |
| 482 |
|
|
#include "SIZE.h" |
| 483 |
|
|
#include "EEPARAMS.h" |
| 484 |
|
|
#include "PARAMS.h" |
| 485 |
|
|
#include "GRID.h" |
| 486 |
|
|
#include "STREAMICE.h" |
| 487 |
|
|
#include "STREAMICE_CG.h" |
| 488 |
|
|
|
| 489 |
|
|
C !INPUT/OUTPUT ARGUMENTS |
| 490 |
|
|
C uret, vret - result of matrix operating on u, v |
| 491 |
|
|
C is, ie, js, je - starting and ending cells |
| 492 |
|
|
INTEGER myThid |
| 493 |
|
|
_RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 494 |
|
|
_RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 495 |
|
|
|
| 496 |
|
|
|
| 497 |
|
|
#ifdef ALLOW_STREAMICE |
| 498 |
|
|
|
| 499 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
| 500 |
|
|
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
| 501 |
|
|
C but this may change pursuant to conversations with others |
| 502 |
|
|
C |
| 503 |
|
|
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
| 504 |
|
|
C in order to make less frequent halo updates |
| 505 |
|
|
C isym = 1 if grid is symmetric, 0 o.w. |
| 506 |
|
|
|
| 507 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
| 508 |
|
|
C Phi has the form |
| 509 |
|
|
C Phi (i,j,k,q) - applies to cell i,j |
| 510 |
|
|
|
| 511 |
|
|
C 3 - 4 |
| 512 |
|
|
C | | |
| 513 |
|
|
C 1 - 2 |
| 514 |
|
|
|
| 515 |
|
|
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
| 516 |
|
|
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
| 517 |
|
|
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
| 518 |
|
|
|
| 519 |
|
|
C !LOCAL VARIABLES: |
| 520 |
|
|
C == Local variables == |
| 521 |
|
|
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
| 522 |
heimbach |
1.2 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
| 523 |
heimbach |
1.1 |
_RL Ucell (2,2) |
| 524 |
|
|
_RL Vcell (2,2) |
| 525 |
|
|
_RL Hcell (2,2) |
| 526 |
heimbach |
1.2 |
_RL phival(2,2) |
| 527 |
|
|
|
| 528 |
|
|
uret(1,1,1,1) = uret(1,1,1,1) |
| 529 |
|
|
vret(1,1,1,1) = vret(1,1,1,1) |
| 530 |
heimbach |
1.1 |
|
| 531 |
|
|
DO j = 0, sNy+1 |
| 532 |
|
|
DO i = 0, sNx+1 |
| 533 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
| 534 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
| 535 |
|
|
IF (STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) THEN |
| 536 |
|
|
DO iq=1,2 |
| 537 |
|
|
DO jq = 1,2 |
| 538 |
|
|
|
| 539 |
|
|
n = 2*(jq-1)+iq |
| 540 |
|
|
|
| 541 |
|
|
DO inode = 1,2 |
| 542 |
|
|
DO jnode = 1,2 |
| 543 |
|
|
|
| 544 |
|
|
m = 2*(jnode-1)+inode |
| 545 |
heimbach |
1.2 |
|
| 546 |
|
|
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
| 547 |
|
|
|
| 548 |
|
|
ilq = 1 |
| 549 |
|
|
jlq = 1 |
| 550 |
heimbach |
1.1 |
|
| 551 |
heimbach |
1.2 |
if (inode.eq.iq) ilq = 2 |
| 552 |
|
|
if (jnode.eq.jq) jlq = 2 |
| 553 |
|
|
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
| 554 |
|
|
|
| 555 |
|
|
ux = DPhi (i,j,bi,bj,m,n,1) |
| 556 |
|
|
uy = DPhi (i,j,bi,bj,m,n,2) |
| 557 |
|
|
vx = 0 |
| 558 |
|
|
vy = 0 |
| 559 |
|
|
uq = Xquad(ilq) * Xquad(jlq) |
| 560 |
|
|
vq = 0 |
| 561 |
|
|
|
| 562 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
| 563 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
| 564 |
|
|
exy = .5*(uy+vx) + |
| 565 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
| 566 |
heimbach |
1.1 |
|
| 567 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
| 568 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 569 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 570 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
| 571 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
| 572 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
| 573 |
|
|
|
| 574 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
| 575 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 576 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 577 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
| 578 |
heimbach |
1.1 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
| 579 |
|
|
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
| 580 |
|
|
|
| 581 |
|
|
|
| 582 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
| 583 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 584 |
heimbach |
1.2 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
| 585 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
| 586 |
|
|
|
| 587 |
|
|
|
| 588 |
|
|
vx = DPhi (i,j,bi,bj,m,n,1) |
| 589 |
|
|
vy = DPhi (i,j,bi,bj,m,n,2) |
| 590 |
|
|
ux = 0 |
| 591 |
|
|
uy = 0 |
| 592 |
|
|
vq = Xquad(ilq) * Xquad(jlq) |
| 593 |
|
|
uq = 0 |
| 594 |
|
|
|
| 595 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
| 596 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
| 597 |
|
|
exy = .5*(uy+vx) + |
| 598 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
| 599 |
|
|
|
| 600 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
| 601 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 602 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 603 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
| 604 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
| 605 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
| 606 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
| 607 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 608 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 609 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
| 610 |
heimbach |
1.1 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
| 611 |
|
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
| 612 |
|
|
|
| 613 |
|
|
|
| 614 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
| 615 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 616 |
heimbach |
1.2 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
| 617 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
| 618 |
|
|
|
| 619 |
|
|
endif |
| 620 |
heimbach |
1.2 |
|
| 621 |
heimbach |
1.1 |
enddo |
| 622 |
|
|
enddo |
| 623 |
|
|
enddo |
| 624 |
|
|
enddo |
| 625 |
|
|
endif |
| 626 |
|
|
enddo |
| 627 |
|
|
enddo |
| 628 |
|
|
enddo |
| 629 |
|
|
enddo |
| 630 |
|
|
|
| 631 |
|
|
#endif |
| 632 |
|
|
RETURN |
| 633 |
|
|
END SUBROUTINE |
| 634 |
|
|
|
| 635 |
|
|
|
| 636 |
|
|
|
| 637 |
|
|
SUBROUTINE STREAMICE_CG_BOUND_VALS( myThid, |
| 638 |
|
|
O uret, |
| 639 |
|
|
O vret) |
| 640 |
|
|
C /============================================================\ |
| 641 |
|
|
C | SUBROUTINE | |
| 642 |
|
|
C | o | |
| 643 |
|
|
C |============================================================| |
| 644 |
|
|
C | | |
| 645 |
|
|
C \============================================================/ |
| 646 |
|
|
IMPLICIT NONE |
| 647 |
|
|
|
| 648 |
|
|
C === Global variables === |
| 649 |
|
|
#include "SIZE.h" |
| 650 |
|
|
#include "EEPARAMS.h" |
| 651 |
|
|
#include "PARAMS.h" |
| 652 |
|
|
#include "GRID.h" |
| 653 |
|
|
#include "STREAMICE.h" |
| 654 |
|
|
#include "STREAMICE_CG.h" |
| 655 |
|
|
|
| 656 |
|
|
C !INPUT/OUTPUT ARGUMENTS |
| 657 |
|
|
C uret, vret - result of matrix operating on u, v |
| 658 |
|
|
C is, ie, js, je - starting and ending cells |
| 659 |
|
|
INTEGER myThid |
| 660 |
|
|
_RL uret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 661 |
|
|
_RL vret (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 662 |
|
|
|
| 663 |
|
|
#ifdef ALLOW_STREAMICE |
| 664 |
|
|
|
| 665 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
| 666 |
|
|
C as of now everything is passed in so no grid pointers or anything of the sort have to be dereferenced, |
| 667 |
|
|
C but this may change pursuant to conversations with others |
| 668 |
|
|
C |
| 669 |
|
|
C is & ie are the cells over which the iteration is done; this may change between calls to this subroutine |
| 670 |
|
|
C in order to make less frequent halo updates |
| 671 |
|
|
C isym = 1 if grid is symmetric, 0 o.w. |
| 672 |
|
|
|
| 673 |
|
|
C the linear action of the matrix on (u,v) with triangular finite elements |
| 674 |
|
|
C Phi has the form |
| 675 |
|
|
C Phi (i,j,k,q) - applies to cell i,j |
| 676 |
|
|
|
| 677 |
|
|
C 3 - 4 |
| 678 |
|
|
C | | |
| 679 |
|
|
C 1 - 2 |
| 680 |
|
|
|
| 681 |
|
|
C Phi (i,j,2*k-1,q) gives d(Phi_k)/dx at quadrature point q |
| 682 |
|
|
C Phi (i,j,2*k,q) gives d(Phi_k)/dy at quadrature point q |
| 683 |
|
|
C Phi_k is equal to 1 at vertex k, and 0 at vertex l .ne. k, and bilinear |
| 684 |
|
|
|
| 685 |
|
|
C !LOCAL VARIABLES: |
| 686 |
|
|
C == Local variables == |
| 687 |
|
|
INTEGER iq, jq, inode, jnode, i, j, bi, bj, ilq, jlq, m, n |
| 688 |
heimbach |
1.2 |
_RL ux, vx, uy, vy, uq, vq, exx, eyy, exy |
| 689 |
heimbach |
1.1 |
_RL Ucell (2,2) |
| 690 |
|
|
_RL Vcell (2,2) |
| 691 |
|
|
_RL Hcell (2,2) |
| 692 |
heimbach |
1.2 |
_RL phival(2,2) |
| 693 |
|
|
|
| 694 |
|
|
uret(1,1,1,1) = uret(1,1,1,1) |
| 695 |
|
|
vret(1,1,1,1) = vret(1,1,1,1) |
| 696 |
heimbach |
1.1 |
|
| 697 |
|
|
DO j = 0, sNy+1 |
| 698 |
|
|
DO i = 0, sNx+1 |
| 699 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
| 700 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
| 701 |
|
|
IF ((STREAMICE_hmask (i,j,bi,bj) .eq. 1.0) .AND. |
| 702 |
|
|
& ((STREAMICE_umask(i,j,bi,bj).eq.3.0) .OR. |
| 703 |
|
|
& (STREAMICE_umask(i,j+1,bi,bj).eq.3.0) .OR. |
| 704 |
|
|
& (STREAMICE_umask(i+1,j,bi,bj).eq.3.0) .OR. |
| 705 |
|
|
& (STREAMICE_umask(i+1,j+1,bi,bj).eq.3.0))) THEN |
| 706 |
|
|
|
| 707 |
|
|
DO iq=1,2 |
| 708 |
|
|
DO jq = 1,2 |
| 709 |
|
|
|
| 710 |
|
|
n = 2*(jq-1)+iq |
| 711 |
|
|
|
| 712 |
|
|
uq = u_bdry_values_SI(i,j,bi,bj)*Xquad(3-iq)*Xquad(3-jq)+ |
| 713 |
|
|
& u_bdry_values_SI(i+1,j,bi,bj)*Xquad(iq)*Xquad(3-jq)+ |
| 714 |
|
|
& u_bdry_values_SI(i,j+1,bi,bj)*Xquad(3-iq)*Xquad(jq)+ |
| 715 |
|
|
& u_bdry_values_SI(i+1,j+1,bi,bj)*Xquad(iq)*Xquad(jq) |
| 716 |
|
|
vq = v_bdry_values_SI(i,j,bi,bj)*Xquad(3-iq)*Xquad(3-jq)+ |
| 717 |
|
|
& v_bdry_values_SI(i+1,j,bi,bj)*Xquad(iq)*Xquad(3-jq)+ |
| 718 |
|
|
& v_bdry_values_SI(i,j+1,bi,bj)*Xquad(3-iq)*Xquad(jq)+ |
| 719 |
|
|
& v_bdry_values_SI(i+1,j+1,bi,bj)*Xquad(iq)*Xquad(jq) |
| 720 |
|
|
ux = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
| 721 |
|
|
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
| 722 |
|
|
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
| 723 |
|
|
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
| 724 |
|
|
uy = u_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
| 725 |
|
|
& u_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
| 726 |
|
|
& u_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
| 727 |
|
|
& u_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
| 728 |
|
|
vx = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
| 729 |
|
|
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,1) + |
| 730 |
|
|
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,1) + |
| 731 |
|
|
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,1) |
| 732 |
|
|
vy = v_bdry_values_SI(i,j,bi,bj) * DPhi(i,j,bi,bj,1,n,1) + |
| 733 |
|
|
& v_bdry_values_SI(i+1,j,bi,bj) * DPhi(i,j,bi,bj,2,n,2) + |
| 734 |
|
|
& v_bdry_values_SI(i,j+1,bi,bj) * DPhi(i,j,bi,bj,3,n,2) + |
| 735 |
|
|
& v_bdry_values_SI(i+1,j+1,bi,bj) * DPhi(i,j,bi,bj,4,n,2) |
| 736 |
|
|
exx = ux + k1AtC_str(i,j,bi,bj)*vq |
| 737 |
|
|
eyy = vy + k2AtC_str(i,j,bi,bj)*uq |
| 738 |
|
|
exy = .5*(uy+vx) + |
| 739 |
|
|
& k1AtC_str(i,j,bi,bj)*uq + k2AtC_str(i,j,bi,bj)*vq |
| 740 |
|
|
|
| 741 |
|
|
do inode = 1,2 |
| 742 |
|
|
do jnode = 1,2 |
| 743 |
|
|
|
| 744 |
|
|
m = 2*(jnode-1)+inode |
| 745 |
|
|
ilq = 1 |
| 746 |
heimbach |
1.2 |
jlq = 1 |
| 747 |
heimbach |
1.1 |
if (inode.eq.iq) ilq = 2 |
| 748 |
|
|
if (jnode.eq.jq) jlq = 2 |
| 749 |
heimbach |
1.2 |
phival(inode,jnode) = Xquad(ilq)*Xquad(jlq) |
| 750 |
heimbach |
1.1 |
|
| 751 |
|
|
if (STREAMICE_umask(i-1+inode,j-1+jnode,bi,bj).eq.1.0) then |
| 752 |
|
|
|
| 753 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
| 754 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 755 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 756 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
| 757 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(4*exx+2*eyy) + |
| 758 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(2*exy)) |
| 759 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
| 760 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 761 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 762 |
|
|
& visc_streamice(i,j,bi,bj) * ( |
| 763 |
|
|
& DPhi(i,j,bi,bj,m,n,2)*(4*eyy+2*exx) + |
| 764 |
|
|
& DPhi(i,j,bi,bj,m,n,1)*(2*exy)) |
| 765 |
|
|
|
| 766 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
| 767 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 768 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 769 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
| 770 |
heimbach |
1.1 |
& (4*k2AtC_str(i,j,bi,bj)*eyy+2*k2AtC_str(i,j,bi,bj)*exx+ |
| 771 |
|
|
& 4*0.5*k1AtC_str(i,j,bi,bj)*exy) |
| 772 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
| 773 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 774 |
|
|
& grid_jacq_streamice(i,j,bi,bj,n) * |
| 775 |
heimbach |
1.2 |
& visc_streamice(i,j,bi,bj) * phival(inode,jnode) * |
| 776 |
heimbach |
1.1 |
& (4*k1AtC_str(i,j,bi,bj)*exx+2*k1AtC_str(i,j,bi,bj)*eyy+ |
| 777 |
|
|
& 4*0.5*k2AtC_str(i,j,bi,bj)*exy) |
| 778 |
|
|
|
| 779 |
|
|
! if (STREAMICE_float_cond(i,j,bi,bj) .eq. 1) then |
| 780 |
|
|
uret(i-1+inode,j-1+jnode,bi,bj) = |
| 781 |
|
|
& uret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 782 |
heimbach |
1.2 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
| 783 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * uq |
| 784 |
|
|
vret(i-1+inode,j-1+jnode,bi,bj) = |
| 785 |
|
|
& vret(i-1+inode,j-1+jnode,bi,bj) + .25 * |
| 786 |
heimbach |
1.2 |
& phival(inode,jnode) * grid_jacq_streamice(i,j,bi,bj,n) * |
| 787 |
heimbach |
1.1 |
& tau_beta_eff_streamice (i,j,bi,bj) * vq |
| 788 |
|
|
! endif |
| 789 |
|
|
endif |
| 790 |
|
|
enddo |
| 791 |
|
|
enddo |
| 792 |
|
|
enddo |
| 793 |
|
|
enddo |
| 794 |
|
|
endif |
| 795 |
|
|
enddo |
| 796 |
|
|
enddo |
| 797 |
|
|
enddo |
| 798 |
|
|
enddo |
| 799 |
|
|
|
| 800 |
|
|
#endif |
| 801 |
|
|
RETURN |
| 802 |
|
|
END SUBROUTINE |