24 |
#include "PARAMS.h" |
#include "PARAMS.h" |
25 |
#include "STREAMICE.h" |
#include "STREAMICE.h" |
26 |
#include "STREAMICE_ADV.h" |
#include "STREAMICE_ADV.h" |
27 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
28 |
|
# include "tamc.h" |
29 |
|
#endif |
30 |
|
|
31 |
INTEGER myThid |
INTEGER myThid |
32 |
_RL time_step |
_RL time_step |
36 |
INTEGER i, j, bi, bj |
INTEGER i, j, bi, bj |
37 |
_RL thick_bd |
_RL thick_bd |
38 |
_RL SLOPE_LIMITER |
_RL SLOPE_LIMITER |
39 |
_RL sec_per_year, time_step_loc |
_RL sec_per_year, time_step_loc, MR, SMB, TMB |
40 |
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
41 |
external SLOPE_LIMITER |
external SLOPE_LIMITER |
42 |
|
|
43 |
sec_per_year = 365.*86400. |
sec_per_year = 365.*86400. |
44 |
|
|
45 |
time_step_loc = time_step / sec_per_year |
time_step_loc = time_step / sec_per_year |
46 |
|
|
47 |
|
PRINT *, "time_step_loc ", time_step_loc |
48 |
|
|
49 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
50 |
|
CADJ STORE streamice_hmask = comlev1, key=ikey_dynamics |
51 |
|
#endif |
52 |
|
|
53 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
54 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
55 |
DO j=1-OLy,sNy+OLy |
DO j=1-OLy,sNy+OLy |
56 |
DO i=1-OLx,sNx+OLx |
DO i=1-OLx,sNx+OLx |
57 |
|
H_streamice_prev(i,j,bi,bj) = |
58 |
|
& H_streamice(i,j,bi,bj) |
59 |
hflux_x_SI (i,j,bi,bj) = 0. _d 0 |
hflux_x_SI (i,j,bi,bj) = 0. _d 0 |
60 |
hflux_y_SI (i,j,bi,bj) = 0. _d 0 |
hflux_y_SI (i,j,bi,bj) = 0. _d 0 |
61 |
hflux_x_SI2 (i,j,bi,bj) = 0. _d 0 |
hflux_x_SI2 (i,j,bi,bj) = 0. _d 0 |
74 |
ENDDO |
ENDDO |
75 |
ENDDO |
ENDDO |
76 |
|
|
77 |
! PRINT *, "H in last row ", H_streamice(81,20,1,1) |
|
78 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
79 |
|
CADJ STORE h_after_uflux_si = comlev1, key=ikey_dynamics |
80 |
|
CADJ STORE streamice_hmask = comlev1, key=ikey_dynamics |
81 |
|
#endif |
82 |
|
|
83 |
CALL STREAMICE_ADVECT_THICKNESS_X ( myThid, |
CALL STREAMICE_ADVECT_THICKNESS_X ( myThid, |
84 |
O hflux_x_SI, |
O hflux_x_SI, |
85 |
O h_after_uflux_SI, |
O h_after_uflux_SI, |
86 |
I time_step_loc ) |
I time_step_loc ) |
87 |
|
|
88 |
! PRINT *, "H in last row ", H_streamice(81,20,1,1) |
|
89 |
|
|
90 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
91 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
98 |
ENDDO |
ENDDO |
99 |
ENDDO |
ENDDO |
100 |
|
|
101 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
102 |
|
CADJ STORE h_after_vflux_si = comlev1, key=ikey_dynamics |
103 |
|
CADJ STORE streamice_hmask = comlev1, key=ikey_dynamics |
104 |
|
#endif |
105 |
|
|
106 |
CALL STREAMICE_ADVECT_THICKNESS_Y ( myThid, |
CALL STREAMICE_ADVECT_THICKNESS_Y ( myThid, |
107 |
O hflux_y_SI, |
O hflux_y_SI, |
108 |
O h_after_vflux_SI, |
O h_after_vflux_SI, |
109 |
I time_step_loc ) |
I time_step_loc ) |
110 |
|
|
111 |
! PRINT *, "H in last row ", H_streamice(81,20,1,1) |
|
112 |
|
|
113 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
114 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
123 |
ENDDO |
ENDDO |
124 |
ENDDO |
ENDDO |
125 |
|
|
|
! PRINT *, "H in last row ", H_streamice(81,20,1,1) |
|
|
|
|
|
CALL STREAMICE_ADV_FRONT ( myThid, time_step_loc ) |
|
|
|
|
|
! PRINT *, "H in last row ", H_streamice(81,20,1,1) |
|
|
|
|
|
_EXCH_XY_RL( H_streamice, myThid ) |
|
|
_EXCH_XY_RL( area_shelf_streamice, myThid ) |
|
|
_EXCH_XY_RL( STREAMICE_hmask, myThid ) |
|
|
|
|
|
PRINT *, "END STREAMICE_ADVECT_THICKNESS" |
|
|
|
|
|
#endif |
|
|
RETURN |
|
|
END SUBROUTINE STREAMICE_ADVECT_THICKNESS |
|
|
|
|
|
! NEED TO ADD SOME SORT OF CHECK THAT THE HALOS ARE LARGE ENOUGH |
|
|
|
|
|
SUBROUTINE STREAMICE_ADVECT_THICKNESS_X ( myThid , |
|
|
O hflux_x , |
|
|
O h , |
|
|
I time_step ) |
|
|
|
|
|
IMPLICIT NONE |
|
|
|
|
|
C O hflux_x ! flux per unit width across face |
|
|
C O h |
|
|
C I time_step |
|
|
|
|
|
C === Global variables === |
|
|
#include "SIZE.h" |
|
|
#include "GRID.h" |
|
|
#include "EEPARAMS.h" |
|
|
#include "PARAMS.h" |
|
|
#include "STREAMICE.h" |
|
|
|
|
|
INTEGER myThid |
|
|
_RL hflux_x (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
|
|
_RL h (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
|
|
_RL time_step |
|
|
|
|
|
#ifdef ALLOW_STREAMICE |
|
|
|
|
|
C LOCAL VARIABLES |
|
|
|
|
|
INTEGER i, j, bi, bj, Gi, Gj, k |
|
|
_RL uface, phi |
|
|
_RL stencil (-1:1) |
|
|
LOGICAL H0_valid ! there are valid cells to calculate a |
|
|
! slope-limited 2nd order flux |
|
|
_RL SLOPE_LIMITER |
|
|
_RL total_vol_out |
|
|
external SLOPE_LIMITER |
|
|
|
|
|
total_vol_out = 0.0 |
|
|
|
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
|
|
DO j=1-3,sNy+3 |
|
|
Gj = (myYGlobalLo-1)+(bj-1)*sNy+j |
|
|
IF ((Gj .ge. 1) .and. (Gj .le. Ny)) THEN |
|
|
DO i=1-2,sNx+3 |
|
|
C THESE ARRAY BOUNDS INSURE THAT AFTER THIS STEP, |
|
|
C VALUES WILL BE RELIABLE 2 GRID CELLS OUT IN THE |
|
|
C X DIRECTION AND 3 CELLS OUT IN THE Y DIR |
|
|
IF ((STREAMICE_hmask(i,j,bi,bj).eq.1.0) .or. |
|
|
& ((STREAMICE_hmask(i-1,j,bi,bj).eq.1.0) .and. |
|
|
& (STREAMICE_hmask(i,j,bi,bj).ne.1.0))) THEN |
|
|
|
|
|
Gi = (myXGlobalLo-1)+(bi-1)*sNx+i |
|
|
|
|
|
IF (STREAMICE_ufacemask(i,j,bi,bj).eq.4.0) THEN |
|
|
hflux_x (i,j,bi,bj) = u_flux_bdry_SI (i,j,bi,bj) |
|
|
ELSE |
|
|
|
|
|
uface = .5 * |
|
|
& (U_streamice(i,j,bi,bj)+U_streamice(i,j+1,bi,bj)) |
|
|
|
|
|
|
|
|
IF (uface .gt. 0. _d 0) THEN |
|
|
DO k=-1,1 |
|
|
stencil (k) = h(i+k-1,j,bi,bj) |
|
|
ENDDO |
|
|
IF ((STREAMICE_hmask(i,j,bi,bj).eq.1.0) .and. |
|
|
& (STREAMICE_hmask(i-2,j,bi,bj).eq.1.0)) H0_valid=.true. |
|
|
|
|
|
IF ((Gi.eq.1).and.(STREAMICE_hmask(i-1,j,bi,bj).eq.3.0)) |
|
|
& THEN ! we are at western bdry and there is a thick. bdry cond |
|
|
hflux_x (i,j,bi,bj) = h(i-1,j,bi,bj) * uface |
|
|
ELSEIF (H0_valid) THEN |
|
|
phi = SLOPE_LIMITER ( |
|
|
& stencil(0)-stencil(-1), |
|
|
& stencil(1)-stencil(0)) |
|
|
hflux_x (i,j,bi,bj) = uface * |
|
|
& (stencil(0) - phi * .5 * (stencil(0)-stencil(1))) |
|
|
ELSE ! one of the two cells needed for a HO scheme is missing, use FO scheme |
|
|
hflux_x (i,j,bi,bj) = uface * stencil(0) |
|
|
ENDIF |
|
|
|
|
|
ELSE ! uface <= 0 |
|
|
|
|
|
DO k=-1,1 |
|
|
stencil (k) = h(i-k,j,bi,bj) |
|
|
ENDDO |
|
|
IF ((STREAMICE_hmask(i-1,j,bi,bj).eq.1.0) .and. |
|
|
& (STREAMICE_hmask(i+1,j,bi,bj).eq.1.0)) H0_valid=.true. |
|
|
|
|
|
IF ((Gi.eq.Nx).and.(STREAMICE_hmask(i+1,j,bi,bj).eq.3.0)) |
|
|
& THEN ! we are at western bdry and there is a thick. bdry cond |
|
|
hflux_x (i,j,bi,bj) = h(i+1,j,bi,bj) * uface |
|
|
ELSEIF (H0_valid) THEN |
|
|
phi = SLOPE_LIMITER ( |
|
|
& stencil(0)-stencil(-1), |
|
|
& stencil(1)-stencil(0)) |
|
|
hflux_x (i,j,bi,bj) = uface * |
|
|
& (stencil(0) - phi * .5 * (stencil(0)-stencil(1))) |
|
|
ELSE ! one of the two cells needed for a HO scheme is missing, use FO scheme |
|
|
hflux_x (i,j,bi,bj) = uface * stencil(0) |
|
|
ENDIF |
|
|
|
|
|
ENDIF |
|
|
|
|
|
ENDIF |
|
|
|
|
|
if (streamice_ufacemask(i,j,bi,bj).eq.2.0) THEN |
|
|
total_vol_out = total_vol_out + |
|
|
& hflux_x (i,j,bi,bj) * time_step |
|
|
ENDIF |
|
|
|
|
|
ENDIF |
|
|
ENDDO |
|
|
ENDIF |
|
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
|
|
|
|
C X-FLUXES AT CELL BOUNDARIES CALCULATED; NOW TAKE FLUX DIVERGENCE TO INCREMENT THICKNESS |
|
|
|
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
|
|
DO j=1-3,sNy+3 |
|
|
Gj = (myYGlobalLo-1)+(bj-1)*sNy+j |
|
|
IF ((Gj .ge. 1) .and. (Gj .le. Ny)) THEN |
|
|
DO i=1-2,sNx+2 |
|
|
IF (STREAMICE_hmask(i,j,bi,bj).eq.1.0) THEN |
|
|
h(i,j,bi,bj) = h(i,j,bi,bj) - time_step * |
|
|
& (hflux_x(i+1,j,bi,bj)*dyG(i+1,j,bi,bj) - |
|
|
& hflux_x(i,j,bi,bj)*dyG(i,j,bi,bj)) * |
|
|
& recip_rA (i,j,bi,bj) |
|
|
ENDIF |
|
|
ENDDO |
|
|
ENDIF |
|
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
126 |
|
|
|
! PRINT *, "TOTAL VOLUME OUT: ", total_vol_out |
|
|
|
|
|
#endif |
|
|
RETURN |
|
|
END SUBROUTINE STREAMICE_ADVECT_THICKNESS_X |
|
127 |
|
|
128 |
SUBROUTINE STREAMICE_ADVECT_THICKNESS_Y ( myThid , |
CALL STREAMICE_ADV_FRONT ( myThid, time_step_loc ) |
|
O hflux_y , |
|
|
O h , |
|
|
I time_step ) |
|
|
|
|
|
IMPLICIT NONE |
|
|
|
|
|
C O hflux_y ! flux per unit width across face |
|
|
C O h |
|
|
C I time_step |
|
|
|
|
|
C === Global variables === |
|
|
#include "SIZE.h" |
|
|
#include "GRID.h" |
|
|
#include "EEPARAMS.h" |
|
|
#include "PARAMS.h" |
|
|
#include "STREAMICE.h" |
|
|
|
|
|
INTEGER myThid |
|
|
_RL hflux_y (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
|
|
_RL h (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
|
|
_RL time_step |
|
|
|
|
|
#ifdef ALLOW_STREAMICE |
|
129 |
|
|
|
C LOCAL VARIABLES |
|
130 |
|
|
131 |
INTEGER i, j, bi, bj, Gi, Gj, k |
! NOW WE APPLY MELT RATES !! |
132 |
_RL vface, phi |
! THIS MAY BE MOVED TO A SEPARATE SUBROUTINE |
|
_RL stencil (-1:1) |
|
|
LOGICAL H0_valid ! there are valid cells to calculate a |
|
|
! slope-limited 2nd order flux |
|
|
_RL SLOPE_LIMITER |
|
|
external SLOPE_LIMITER |
|
133 |
|
|
134 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
135 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
136 |
DO j=1-1,sNy+2 |
DO j=1-OLy,sNy+OLy |
137 |
Gj = (myYGlobalLo-1)+(bj-1)*sNy+j |
DO i=1-OLx,sNx+OLx |
138 |
DO i=1-2,sNx+2 |
IF (STREAMICE_hmask(i,j,bi,bj).eq.1.0 .or. |
139 |
Gi = (myXGlobalLo-1)+(bi-1)*sNx+i |
& STREAMICE_hmask(i,j,bi,bj).eq.2.0) THEN |
140 |
IF ((Gi.ge.1) .and. (Gi.le.Nx)) THEN |
MR = (1.-float_frac_streamice(i,j,bi,bj)) * |
141 |
C THESE ARRAY BOUNDS INSURE THAT AFTER THIS STEP, |
& BDOT_STREAMICE(i,j,bi,bj) |
142 |
C VALUES WILL BE RELIABLE 1 GRID CELLS OUT IN THE |
SMB = ADOT_STREAMICE(i,j,bi,bj) |
143 |
C Y DIRECTION |
TMB = SMB - MR |
144 |
IF ((STREAMICE_hmask(i,j,bi,bj).eq.1.0) .or. |
IF ((TMB.lt.0.0) .and. |
145 |
& ((STREAMICE_hmask(i,j-1,bi,bj).eq.1.0) .and. |
& (MR * time_step_loc .gt. |
146 |
& (STREAMICE_hmask(i,j,bi,bj).ne.1.0))) THEN |
& H_streamice (i,j,bi,bj))) THEN |
147 |
|
H_streamice (i,j,bi,bj) = 0. _d 0 |
148 |
IF (STREAMICE_vfacemask(i,j,bi,bj).eq.4.0) THEN |
STREAMICE_hmask(i,j,bi,bj) = 0. |
149 |
hflux_y (i,j,bi,bj) = v_flux_bdry_SI (i,j,bi,bj) |
ELSE |
150 |
ELSE |
H_streamice (i,j,bi,bj) = |
151 |
|
& H_streamice (i,j,bi,bj) + TMB * time_step_loc |
152 |
vface = .5 * |
ENDIF |
|
& (V_streamice(i,j,bi,bj)+V_streamice(i+1,j,bi,bj)) |
|
|
|
|
|
IF (vface .gt. 0. _d 0) THEN |
|
|
DO k=-1,1 |
|
|
stencil (k) = h(i,j+k-1,bi,bj) |
|
|
ENDDO |
|
|
IF ((STREAMICE_hmask(i,j,bi,bj).eq.1.0) .and. |
|
|
& (STREAMICE_hmask(i,j-2,bi,bj).eq.1.0)) H0_valid=.true. |
|
|
|
|
|
IF ((Gj.eq.1).and.(STREAMICE_hmask(i,j-1,bi,bj).eq.3.0)) |
|
|
& THEN ! we are at western bdry and there is a thick. bdry cond |
|
|
hflux_y (i,j,bi,bj) = h(i,j-1,bi,bj) * vface |
|
|
ELSEIF (H0_valid) THEN |
|
|
phi = SLOPE_LIMITER ( |
|
|
& stencil(0)-stencil(-1), |
|
|
& stencil(1)-stencil(0)) |
|
|
hflux_y (i,j,bi,bj) = vface * |
|
|
& (stencil(0) - phi * .5 * (stencil(0)-stencil(1))) |
|
|
ELSE ! one of the two cells needed for a HO scheme is missing, use FO scheme |
|
|
hflux_y (i,j,bi,bj) = vface * stencil(0) |
|
|
ENDIF |
|
|
ELSE ! uface <= 0 |
|
|
DO k=-1,1 |
|
|
stencil (k) = h(i,j-k,bi,bj) |
|
|
ENDDO |
|
|
IF ((STREAMICE_hmask(i,j-1,bi,bj).eq.1.0) .and. |
|
|
& (STREAMICE_hmask(i,j+1,bi,bj).eq.1.0)) H0_valid=.true. |
|
|
|
|
|
IF ((Gj.eq.Ny).and.(STREAMICE_hmask(i,j+1,bi,bj).eq.3.0)) |
|
|
& THEN ! we are at western bdry and there is a thick. bdry cond |
|
|
hflux_y (i,j,bi,bj) = h(i,j+1,bi,bj) * vface |
|
|
ELSEIF (H0_valid) THEN |
|
|
phi = SLOPE_LIMITER ( |
|
|
& stencil(0)-stencil(-1), |
|
|
& stencil(1)-stencil(0)) |
|
|
hflux_y (i,j,bi,bj) = vface * |
|
|
& (stencil(0) - phi * .5 * (stencil(0)-stencil(1))) |
|
|
ELSE ! one of the two cells needed for a HO scheme is missing, use FO scheme |
|
|
hflux_y (i,j,bi,bj) = vface * stencil(0) |
|
|
ENDIF |
|
|
|
|
|
ENDIF ! uface 0 |
|
|
|
|
|
ENDIF |
|
153 |
ENDIF |
ENDIF |
|
ENDIF |
|
154 |
ENDDO |
ENDDO |
155 |
ENDDO |
ENDDO |
156 |
ENDDO |
ENDDO |
157 |
ENDDO |
ENDDO |
158 |
|
|
|
C X-FLUXES AT CELL BOUNDARIES CALCULATED; NOW TAKE FLUX DIVERGENCE TO INCREMENT THICKNESS |
|
|
|
|
159 |
|
|
160 |
|
WRITE(msgBuf,'(A)') 'END STREAMICE_ADVECT_THICKNESS' |
161 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
162 |
|
& SQUEEZE_RIGHT , 1) |
163 |
|
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
|
|
DO j=1-1,sNy+1 |
|
|
DO i=1-2,sNx+2 |
|
|
Gi = (myXGlobalLo-1)+(bi-1)*sNx+i |
|
|
IF ((Gi .ge. 1) .and. (Gi .le. Nx)) THEN |
|
|
IF (STREAMICE_hmask(i,j,bi,bj).eq.1.0) THEN |
|
|
h(i,j,bi,bj) = h(i,j,bi,bj) - time_step * |
|
|
& (hflux_y(i,j+1,bi,bj)*dxG(i,j+1,bi,bj) - |
|
|
& hflux_y(i,j,bi,bj)*dxG(i,j,bi,bj)) * |
|
|
& recip_rA (i,j,bi,bj) |
|
|
ENDIF |
|
|
ENDIF |
|
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
|
|
|
|
! CALL WRITE_FLD_XY_RL ("h_after_yflux","", |
|
|
! & h, 0, myThid) |
|
|
|
|
164 |
#endif |
#endif |
165 |
RETURN |
END |
|
END SUBROUTINE STREAMICE_ADVECT_THICKNESS_Y |
|
166 |
|
|