6 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
7 |
|
|
8 |
CBOP |
CBOP |
9 |
SUBROUTINE STREAMICE_ADV_FRONT ( myThid, time_step ) |
SUBROUTINE STREAMICE_ADV_FRONT ( |
10 |
|
& myThid, |
11 |
|
& time_step, |
12 |
|
& hflux_x_si, |
13 |
|
& hflux_y_si ) |
14 |
|
|
15 |
C /============================================================\ |
C /============================================================\ |
16 |
C | SUBROUTINE | |
C | SUBROUTINE | |
27 |
#include "PARAMS.h" |
#include "PARAMS.h" |
28 |
#include "STREAMICE.h" |
#include "STREAMICE.h" |
29 |
#include "STREAMICE_ADV.h" |
#include "STREAMICE_ADV.h" |
30 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
31 |
|
# include "tamc.h" |
32 |
|
#endif |
33 |
|
|
34 |
INTEGER myThid |
INTEGER myThid |
35 |
_RL time_step |
_RL time_step |
36 |
|
_RL hflux_x_SI (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
37 |
|
_RL hflux_y_SI (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
38 |
|
|
39 |
#ifdef ALLOW_STREAMICE |
#ifdef ALLOW_STREAMICE |
40 |
|
|
41 |
INTEGER i, j, bi, bj, k, n_flux, iter_count, iter_flag |
INTEGER i, j, bi, bj, k, iter_count, iter_rpt |
42 |
INTEGER Gi, Gj |
INTEGER Gi, Gj |
43 |
INTEGER new_partial(4) |
INTEGER new_partial(4) |
44 |
|
INTEGER ikey_front, ikey_1 |
45 |
|
_RL iter_flag |
46 |
|
_RL n_flux_1, n_flux_2 |
47 |
_RL href, rho, partial_vol, tot_flux, hpot |
_RL href, rho, partial_vol, tot_flux, hpot |
48 |
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
49 |
|
_RL hflux_x_SI2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
50 |
|
_RL hflux_y_SI2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
51 |
|
|
52 |
|
|
53 |
rho = streamice_density |
rho = streamice_density |
54 |
iter_count = 0 |
cph iter_count = 0 |
55 |
iter_flag = 1 |
iter_flag = 1. _d 0 |
56 |
|
iter_rpt = 0 |
57 |
|
|
58 |
|
DO bj=myByLo(myThid),myByHi(myThid) |
59 |
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
60 |
|
DO j=1-OLy,sNy+OLy |
61 |
|
DO i=1-OLx,sNx+OLx |
62 |
|
hflux_x_SI2(i,j,bi,bj) = 0. _d 0 |
63 |
|
hflux_y_SI2(i,j,bi,bj) = 0. _d 0 |
64 |
|
ENDDO |
65 |
|
ENDDO |
66 |
|
ENDDO |
67 |
|
ENDDO |
68 |
|
|
69 |
|
|
70 |
|
DO iter_count = 0, 3 |
71 |
|
|
72 |
DO WHILE (iter_flag .eq. 1) |
#ifdef ALLOW_AUTODIFF_TAMC |
73 |
|
ikey_front = (ikey_dynamics-1)*4 + iter_count + 1 |
74 |
iter_flag = 0 |
CADJ STORE area_shelf_streamice |
75 |
|
CADJ & = comlev1_stream_front, key = ikey_front |
76 |
|
CADJ STORE h_streamice |
77 |
|
CADJ & = comlev1_stream_front, key = ikey_front |
78 |
|
CADJ STORE hflux_x_si |
79 |
|
CADJ & = comlev1_stream_front, key = ikey_front |
80 |
|
CADJ STORE hflux_x_si2 |
81 |
|
CADJ & = comlev1_stream_front, key = ikey_front |
82 |
|
CADJ STORE hflux_y_si |
83 |
|
CADJ & = comlev1_stream_front, key = ikey_front |
84 |
|
CADJ STORE hflux_y_si2 |
85 |
|
CADJ & = comlev1_stream_front, key = ikey_front |
86 |
|
CADJ STORE streamice_hmask |
87 |
|
CADJ & = comlev1_stream_front, key = ikey_front |
88 |
|
CADJ STORE iter_flag |
89 |
|
CADJ & = comlev1_stream_front, key = ikey_front |
90 |
|
#endif |
91 |
|
|
92 |
|
IF ( iter_flag .GT. 0. ) THEN |
93 |
|
|
94 |
|
iter_flag = 0. _d 0 |
95 |
|
|
96 |
IF (iter_count .gt. 0) then |
IF (iter_count .gt. 0) then |
97 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
108 |
ENDDO |
ENDDO |
109 |
ENDIF |
ENDIF |
110 |
|
|
111 |
iter_count = iter_count + 1 |
! iter_count = iter_count + 1 |
112 |
|
iter_rpt = iter_rpt + 1 |
113 |
|
|
114 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
115 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
116 |
|
|
117 |
DO j=1-1,sNy+1 |
DO j=1-1,sNy+1 |
118 |
Gj = (myYGlobalLo-1)+(bj-1)*sNy+j |
Gj = (myYGlobalLo-1)+(bj-1)*sNy+j |
119 |
IF ((Gj .ge. 1) .and. (Gj .le. Ny)) THEN |
IF ((Gj .ge. 1) .and. (Gj .le. Ny)) THEN |
120 |
DO i=1-1,sNx+1 |
DO i=1-1,sNx+1 |
121 |
Gi = (myXGlobalLo-1)+(bi-1)*sNx+i |
Gi = (myXGlobalLo-1)+(bi-1)*sNx+i |
122 |
IF ((Gi .ge. 1) .and. (Gi .le. Nx) .and. |
|
123 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
124 |
|
act1 = bi - myBxLo(myThid) |
125 |
|
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
126 |
|
act2 = bj - myByLo(myThid) |
127 |
|
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
128 |
|
act3 = myThid - 1 |
129 |
|
max3 = nTx*nTy |
130 |
|
act4 = ikey_front - 1 |
131 |
|
ikey_1 = i + 1 |
132 |
|
& + (sNx+2)*(j) |
133 |
|
& + (sNx+2)*(sNy+2)*act1 |
134 |
|
& + (sNx+2)*(sNy+2)*max1*act2 |
135 |
|
& + (sNx+2)*(sNy+2)*max1*max2*act3 |
136 |
|
& + (sNx+2)*(sNy+2)*max1*max2*max3*act4 |
137 |
|
CADJ STORE area_shelf_streamice(i,j,bi,bj) |
138 |
|
CADJ & = comlev1_stream_ij, key = ikey_1 |
139 |
|
CADJ STORE h_streamice(i,j,bi,bj) |
140 |
|
CADJ & = comlev1_stream_ij, key = ikey_1 |
141 |
|
CADJ STORE hflux_x_si(i,j,bi,bj) |
142 |
|
CADJ & = comlev1_stream_ij, key = ikey_1 |
143 |
|
CADJ STORE hflux_y_si(i,j,bi,bj) |
144 |
|
CADJ & = comlev1_stream_ij, key = ikey_1 |
145 |
|
CADJ STORE streamice_hmask(i,j,bi,bj) |
146 |
|
CADJ & = comlev1_stream_ij, key = ikey_1 |
147 |
|
#endif |
148 |
|
|
149 |
|
IF ((Gi .ge. 1) .and. (Gi .le. Nx) .and. |
150 |
& (STREAMICE_Hmask(i,j,bi,bj).eq.0.0 .or. |
& (STREAMICE_Hmask(i,j,bi,bj).eq.0.0 .or. |
151 |
& STREAMICE_Hmask(i,j,bi,bj).eq.2.0)) THEN |
& STREAMICE_Hmask(i,j,bi,bj).eq.2.0)) THEN |
152 |
n_flux = 0 |
n_flux_1 = 0. _d 0 |
153 |
href = 0. _d 0 |
href = 0. _d 0 |
154 |
tot_flux = 0. _d 0 |
tot_flux = 0. _d 0 |
155 |
|
|
156 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
157 |
|
CADJ STORE hflux_x_SI(i,j,bi,bj) |
158 |
|
CADJ & = comlev1_stream_ij, key = ikey_1 |
159 |
|
#endif |
160 |
IF (hflux_x_SI(i,j,bi,bj).gt. 0. _d 0) THEN |
IF (hflux_x_SI(i,j,bi,bj).gt. 0. _d 0) THEN |
161 |
n_flux = n_flux + 1 |
n_flux_1 = n_flux_1 + 1. _d 0 |
162 |
href = href + H_streamice(i-1,j,bi,bj) |
href = href + H_streamice(i-1,j,bi,bj) |
163 |
tot_flux = tot_flux + hflux_x_SI(i,j,bi,bj) * |
tot_flux = tot_flux + hflux_x_SI(i,j,bi,bj) * |
164 |
& dxG(i,j,bi,bj) * time_step |
& dxG(i,j,bi,bj) * time_step |
165 |
hflux_x_SI(i,j,bi,bj) = 0. _d 0 |
hflux_x_SI(i,j,bi,bj) = 0. _d 0 |
166 |
ENDIF |
ENDIF |
167 |
|
|
168 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
169 |
|
CADJ STORE hflux_x_SI(i,j,bi,bj) |
170 |
|
CADJ & = comlev1_stream_ij, key = ikey_1 |
171 |
|
#endif |
172 |
IF (hflux_x_SI(i+1,j,bi,bj).lt. 0. _d 0) THEN |
IF (hflux_x_SI(i+1,j,bi,bj).lt. 0. _d 0) THEN |
173 |
n_flux = n_flux + 1 |
n_flux_1 = n_flux_1 + 1. _d 0 |
174 |
href = href + H_streamice(i+1,j,bi,bj) |
href = href + H_streamice(i+1,j,bi,bj) |
175 |
tot_flux = tot_flux - hflux_x_SI(i+1,j,bi,bj) * |
tot_flux = tot_flux - hflux_x_SI(i+1,j,bi,bj) * |
176 |
& dxG(i+1,j,bi,bj) * time_step |
& dxG(i+1,j,bi,bj) * time_step |
177 |
hflux_x_SI(i+1,j,bi,bj) = 0. _d 0 |
hflux_x_SI(i+1,j,bi,bj) = 0. _d 0 |
178 |
ENDIF |
ENDIF |
179 |
|
|
180 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
181 |
|
CADJ STORE hflux_y_SI(i,j,bi,bj) |
182 |
|
CADJ & = comlev1_stream_ij, key = ikey_1 |
183 |
|
#endif |
184 |
IF (hflux_y_SI(i,j,bi,bj).gt. 0. _d 0) THEN |
IF (hflux_y_SI(i,j,bi,bj).gt. 0. _d 0) THEN |
185 |
n_flux = n_flux + 1 |
n_flux_1 = n_flux_1 + 1. _d 0 |
186 |
href = href + H_streamice(i,j-1,bi,bj) |
href = href + H_streamice(i,j-1,bi,bj) |
187 |
tot_flux = tot_flux + hflux_y_SI(i,j,bi,bj) * |
tot_flux = tot_flux + hflux_y_SI(i,j,bi,bj) * |
188 |
& dyG(i,j,bi,bj) * time_step |
& dyG(i,j,bi,bj) * time_step |
189 |
hflux_y_SI(i,j,bi,bj) = 0. _d 0 |
hflux_y_SI(i,j,bi,bj) = 0. _d 0 |
190 |
ENDIF |
ENDIF |
191 |
|
|
192 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
193 |
|
CADJ STORE hflux_y_SI(i,j,bi,bj) |
194 |
|
CADJ & = comlev1_stream_ij, key = ikey_1 |
195 |
|
#endif |
196 |
IF (hflux_y_SI(i,j+1,bi,bj).lt. 0. _d 0) THEN |
IF (hflux_y_SI(i,j+1,bi,bj).lt. 0. _d 0) THEN |
197 |
n_flux = n_flux + 1 |
n_flux_1 = n_flux_1 + 1. _d 0 |
198 |
href = href + H_streamice(i,j+1,bi,bj) |
href = href + H_streamice(i,j+1,bi,bj) |
199 |
tot_flux = tot_flux - hflux_y_SI(i,j+1,bi,bj) * |
tot_flux = tot_flux - hflux_y_SI(i,j+1,bi,bj) * |
200 |
& dyG(i,j+1,bi,bj) * time_step |
& dyG(i,j+1,bi,bj) * time_step |
201 |
hflux_y_SI(i,j+1,bi,bj) = 0. _d 0 |
hflux_y_SI(i,j+1,bi,bj) = 0. _d 0 |
202 |
ENDIF |
ENDIF |
203 |
|
|
204 |
IF (n_flux .gt. 0) THEN |
IF (n_flux_1 .gt. 0.) THEN |
205 |
|
|
206 |
href = href / real(n_flux) |
href = href / n_flux_1 |
207 |
partial_vol = H_streamice (i,j,bi,bj) * |
partial_vol = H_streamice (i,j,bi,bj) * |
208 |
& area_shelf_streamice (i,j,bi,bj) + tot_flux |
& area_shelf_streamice (i,j,bi,bj) + tot_flux |
209 |
hpot = partial_vol * recip_rA(i,j,bi,bj) |
hpot = partial_vol * recip_rA(i,j,bi,bj) |
215 |
& rA(i,j,bi,bj) |
& rA(i,j,bi,bj) |
216 |
ELSEIF (hpot .lt. href) THEN ! cell still unfilled |
ELSEIF (hpot .lt. href) THEN ! cell still unfilled |
217 |
|
|
218 |
! PRINT *, "PARTIAL CELL INCREASED", tot_flux, i, |
|
|
! & area_shelf_streamice (i,j,bi,bj), |
|
|
! & H_streamice (i,j,bi,bj) |
|
219 |
|
|
220 |
STREAMICE_hmask (i,j,bi,bj) = 2.0 |
STREAMICE_hmask (i,j,bi,bj) = 2.0 |
221 |
area_shelf_streamice (i,j,bi,bj) = partial_vol / href |
area_shelf_streamice (i,j,bi,bj) = partial_vol / href |
222 |
H_streamice (i,j,bi,bj) = href |
H_streamice (i,j,bi,bj) = href |
223 |
ELSE ! cell is filled - do overflow |
ELSE ! cell is filled - do overflow |
224 |
|
|
|
! PRINT *, "CELL FILLED" |
|
225 |
|
|
226 |
STREAMICE_hmask (i,j,bi,bj) = 1.0 |
STREAMICE_hmask (i,j,bi,bj) = 1.0 |
227 |
area_shelf_streamice(i,j,bi,bj) = |
area_shelf_streamice(i,j,bi,bj) = |
230 |
|
|
231 |
partial_vol = partial_vol - href * rA(i,j,bi,bj) |
partial_vol = partial_vol - href * rA(i,j,bi,bj) |
232 |
|
|
233 |
iter_flag = 1 |
iter_flag = 1. _d 0 |
234 |
|
|
235 |
n_flux = 0 ; |
n_flux_2 = 0. _d 0 ; |
236 |
DO k=1,4 |
DO k=1,4 |
237 |
new_partial (:) = 0 |
new_partial (:) = 0 |
238 |
ENDDO |
ENDDO |
239 |
|
|
240 |
DO k=1,2 |
DO k=1,2 |
241 |
IF (STREAMICE_ufacemask(i-1+k,j,bi,bj).eq.2.0) THEN ! at a permanent calving boundary - no advance allowed |
IF (STREAMICE_ufacemask(i-1+k,j,bi,bj).eq.2.0) THEN ! at a permanent calving boundary - no advance allowed |
242 |
n_flux = n_flux + 1 |
n_flux_2 = n_flux_2 + 1. _d 0 |
243 |
ELSEIF (STREAMICE_hmask(i+2*k-3,j,bi,bj).eq.0 _d 0) THEN ! adjacent cell is completely ice free |
ELSEIF (STREAMICE_hmask(i+2*k-3,j,bi,bj).eq.0 _d 0) THEN ! adjacent cell is completely ice free |
244 |
n_flux = n_flux + 1 |
n_flux_2 = n_flux_2 + 1. _d 0 |
245 |
new_partial (k) = 1 |
new_partial (k) = 1 |
246 |
ENDIF |
ENDIF |
247 |
ENDDO |
ENDDO |
248 |
DO k=1,2 |
DO k=1,2 |
249 |
IF (STREAMICE_vfacemask (i,j-1+k,bi,bj).eq.2.0) THEN |
IF (STREAMICE_vfacemask (i,j-1+k,bi,bj).eq.2.0) THEN |
250 |
n_flux = n_flux + 1 |
n_flux_2 = n_flux_2 + 1. _d 0 |
251 |
ELSEIF (STREAMICE_hmask(i,j+2*k-3,bi,bj).eq.0 _d 0) THEN |
ELSEIF (STREAMICE_hmask(i,j+2*k-3,bi,bj).eq.0 _d 0) THEN |
252 |
n_flux = n_flux + 1 |
n_flux_2 = n_flux_2 + 1. _d 0 |
253 |
new_partial (k+2) = 1 |
new_partial (k+2) = 1 |
254 |
ENDIF |
ENDIF |
255 |
ENDDO |
ENDDO |
256 |
|
|
257 |
IF (n_flux .eq. 0) THEN ! there is nowhere to put the extra ice! |
IF (n_flux_2 .eq. 0.) THEN ! there is nowhere to put the extra ice! |
258 |
H_streamice(i,j,bi,bj) = href + partial_vol * |
H_streamice(i,j,bi,bj) = href + partial_vol * |
259 |
& recip_rA(i,j,bi,bj) |
& recip_rA(i,j,bi,bj) |
260 |
ELSE |
ELSE |
263 |
DO k=1,2 |
DO k=1,2 |
264 |
IF (new_partial(k) .eq. 1) THEN |
IF (new_partial(k) .eq. 1) THEN |
265 |
hflux_x_SI2(i-1+k,j,bi,bj) = |
hflux_x_SI2(i-1+k,j,bi,bj) = |
266 |
& partial_vol/time_step/real(n_flux)/ |
& partial_vol/time_step/n_flux_2/ |
267 |
& dxG(i-1+k,j,bi,bj) |
& dxG(i-1+k,j,bi,bj) |
268 |
ENDIF |
ENDIF |
269 |
ENDDO |
ENDDO |
271 |
DO k=1,2 |
DO k=1,2 |
272 |
IF (new_partial(k+2) .eq. 1) THEN |
IF (new_partial(k+2) .eq. 1) THEN |
273 |
hflux_y_SI2(i,j-1+k,bi,bj) = |
hflux_y_SI2(i,j-1+k,bi,bj) = |
274 |
& partial_vol/time_step/real(n_flux)/ |
& partial_vol/time_step/n_flux_2/ |
275 |
& dxG(i,j-1+k,bi,bj) |
& dxG(i,j-1+k,bi,bj) |
276 |
ENDIF |
ENDIF |
277 |
ENDDO |
ENDDO |
279 |
ENDIF |
ENDIF |
280 |
ENDIF |
ENDIF |
281 |
ENDIF |
ENDIF |
282 |
|
|
283 |
ENDIF |
ENDIF |
284 |
ENDDO |
ENDDO |
285 |
ENDIF |
ENDIF |
286 |
ENDDO |
ENDDO |
287 |
|
c |
288 |
ENDDO |
ENDDO |
289 |
ENDDO |
ENDDO |
290 |
|
c |
291 |
|
ENDIF |
292 |
ENDDO |
ENDDO |
293 |
|
|
294 |
IF (iter_count.gt.1) THEN |
IF (iter_rpt.gt.1) THEN |
295 |
PRINT *, "FRONT ADVANCE: ", iter_count, " ITERATIONS" |
WRITE(msgBuf,'(A,I5,A)') 'FRONT ADVANCE: ',iter_rpt, |
296 |
|
& ' ITERATIONS' |
297 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
298 |
|
& SQUEEZE_RIGHT , 1) |
299 |
ENDIF |
ENDIF |
300 |
|
|
301 |
|
|