1 |
heimbach |
1.1 |
C $Header: /u/gcmpack/MITgcm/pkg/streamice/streamice_init_varia.F,v 1.6 2011/06/29 16:24:10 dng Exp $ |
2 |
|
|
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "STREAMICE_OPTIONS.h" |
5 |
|
|
|
6 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
7 |
|
|
|
8 |
|
|
CBOP |
9 |
|
|
SUBROUTINE STREAMICE_ADV_FRONT ( myThid, time_step ) |
10 |
|
|
|
11 |
|
|
C /============================================================\ |
12 |
|
|
C | SUBROUTINE | |
13 |
|
|
C | o | |
14 |
|
|
C |============================================================| |
15 |
|
|
C | | |
16 |
|
|
C \============================================================/ |
17 |
|
|
IMPLICIT NONE |
18 |
|
|
|
19 |
|
|
C === Global variables === |
20 |
|
|
#include "SIZE.h" |
21 |
|
|
#include "GRID.h" |
22 |
|
|
#include "EEPARAMS.h" |
23 |
|
|
#include "PARAMS.h" |
24 |
|
|
#include "STREAMICE.h" |
25 |
|
|
#include "STREAMICE_ADV.h" |
26 |
|
|
|
27 |
|
|
INTEGER myThid |
28 |
|
|
_RL time_step |
29 |
|
|
|
30 |
|
|
#ifdef ALLOW_STREAMICE |
31 |
|
|
|
32 |
|
|
INTEGER i, j, bi, bj, k, n_flux, iter_count, iter_flag |
33 |
|
|
INTEGER Gi, Gj |
34 |
|
|
INTEGER new_partial(4) |
35 |
|
|
_RL href, rho, partial_vol, tot_flux, hpot |
36 |
|
|
|
37 |
|
|
rho = streamice_density |
38 |
|
|
iter_count = 0 |
39 |
|
|
iter_flag = 1 |
40 |
|
|
|
41 |
|
|
DO WHILE (iter_flag .eq. 1) |
42 |
|
|
|
43 |
|
|
iter_flag = 0 |
44 |
|
|
|
45 |
|
|
IF (iter_count .gt. 0) then |
46 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
47 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
48 |
|
|
DO j=1-OLy,sNy+OLy |
49 |
|
|
DO i=1-OLx,sNx+OLx |
50 |
|
|
hflux_x_SI(i,j,bi,bj)=hflux_x_SI2(i,j,bi,bj) |
51 |
|
|
hflux_y_SI(i,j,bi,bj)=hflux_y_SI2(i,j,bi,bj) |
52 |
|
|
hflux_x_SI2(i,j,bi,bj) = 0. _d 0 |
53 |
|
|
hflux_y_SI2(i,j,bi,bj) = 0. _d 0 |
54 |
|
|
ENDDO |
55 |
|
|
ENDDO |
56 |
|
|
ENDDO |
57 |
|
|
ENDDO |
58 |
|
|
ENDIF |
59 |
|
|
|
60 |
|
|
iter_count = iter_count + 1 |
61 |
|
|
|
62 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
63 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
64 |
|
|
DO j=1-1,sNy+1 |
65 |
|
|
Gj = (myYGlobalLo-1)+(bj-1)*sNy+j |
66 |
|
|
IF ((Gj .ge. 1) .and. (Gj .le. Ny)) THEN |
67 |
|
|
DO i=1-1,sNx+1 |
68 |
|
|
Gi = (myXGlobalLo-1)+(bi-1)*sNx+i |
69 |
|
|
IF ((Gi .ge. 1) .and. (Gi .le. Nx) .and. |
70 |
|
|
& (STREAMICE_Hmask(i,j,bi,bj).eq.0.0 .or. |
71 |
|
|
& STREAMICE_Hmask(i,j,bi,bj).eq.2.0)) THEN |
72 |
|
|
n_flux = 0 |
73 |
|
|
href = 0. _d 0 |
74 |
|
|
tot_flux = 0. _d 0 |
75 |
|
|
|
76 |
|
|
IF (hflux_x_SI(i,j,bi,bj).gt. 0. _d 0) THEN |
77 |
|
|
n_flux = n_flux + 1 |
78 |
|
|
href = href + H_streamice(i-1,j,bi,bj) |
79 |
|
|
tot_flux = tot_flux + hflux_x_SI(i,j,bi,bj) * |
80 |
|
|
& dxG(i,j,bi,bj) * time_step |
81 |
|
|
hflux_x_SI(i,j,bi,bj) = 0. _d 0 |
82 |
|
|
ENDIF |
83 |
|
|
|
84 |
|
|
IF (hflux_x_SI(i+1,j,bi,bj).lt. 0. _d 0) THEN |
85 |
|
|
n_flux = n_flux + 1 |
86 |
|
|
href = href + H_streamice(i+1,j,bi,bj) |
87 |
|
|
tot_flux = tot_flux - hflux_x_SI(i+1,j,bi,bj) * |
88 |
|
|
& dxG(i+1,j,bi,bj) * time_step |
89 |
|
|
hflux_x_SI(i+1,j,bi,bj) = 0. _d 0 |
90 |
|
|
ENDIF |
91 |
|
|
|
92 |
|
|
IF (hflux_y_SI(i,j,bi,bj).gt. 0. _d 0) THEN |
93 |
|
|
n_flux = n_flux + 1 |
94 |
|
|
href = href + H_streamice(i,j-1,bi,bj) |
95 |
|
|
tot_flux = tot_flux + hflux_y_SI(i,j,bi,bj) * |
96 |
|
|
& dyG(i,j,bi,bj) * time_step |
97 |
|
|
hflux_y_SI(i,j,bi,bj) = 0. _d 0 |
98 |
|
|
ENDIF |
99 |
|
|
|
100 |
|
|
IF (hflux_y_SI(i,j+1,bi,bj).lt. 0. _d 0) THEN |
101 |
|
|
n_flux = n_flux + 1 |
102 |
|
|
href = href + H_streamice(i,j+1,bi,bj) |
103 |
|
|
tot_flux = tot_flux - hflux_y_SI(i,j+1,bi,bj) * |
104 |
|
|
& dyG(i,j+1,bi,bj) * time_step |
105 |
|
|
hflux_y_SI(i,j+1,bi,bj) = 0. _d 0 |
106 |
|
|
ENDIF |
107 |
|
|
|
108 |
|
|
IF (n_flux .gt. 0) THEN |
109 |
|
|
|
110 |
|
|
href = href / real(n_flux) |
111 |
|
|
partial_vol = H_streamice (i,j,bi,bj) * |
112 |
|
|
& area_shelf_streamice (i,j,bi,bj) + tot_flux |
113 |
|
|
hpot = partial_vol * recip_rA(i,j,bi,bj) |
114 |
|
|
|
115 |
|
|
IF (hpot .eq. href) THEN ! cell is exactly covered, no overflow |
116 |
|
|
STREAMICE_hmask (i,j,bi,bj) = 1.0 |
117 |
|
|
H_streamice (i,j,bi,bj) = href |
118 |
|
|
area_shelf_streamice(i,j,bi,bj) = |
119 |
|
|
& rA(i,j,bi,bj) |
120 |
|
|
ELSEIF (hpot .lt. href) THEN ! cell still unfilled |
121 |
|
|
|
122 |
|
|
! PRINT *, "PARTIAL CELL INCREASED", tot_flux, i, |
123 |
|
|
! & area_shelf_streamice (i,j,bi,bj), |
124 |
|
|
! & H_streamice (i,j,bi,bj) |
125 |
|
|
|
126 |
|
|
STREAMICE_hmask (i,j,bi,bj) = 2.0 |
127 |
|
|
area_shelf_streamice (i,j,bi,bj) = partial_vol / href |
128 |
|
|
H_streamice (i,j,bi,bj) = href |
129 |
|
|
ELSE ! cell is filled - do overflow |
130 |
|
|
|
131 |
|
|
! PRINT *, "CELL FILLED" |
132 |
|
|
|
133 |
|
|
STREAMICE_hmask (i,j,bi,bj) = 1.0 |
134 |
|
|
area_shelf_streamice(i,j,bi,bj) = |
135 |
|
|
& rA(i,j,bi,bj) |
136 |
|
|
|
137 |
|
|
|
138 |
|
|
partial_vol = partial_vol - href * rA(i,j,bi,bj) |
139 |
|
|
|
140 |
|
|
iter_flag = 1 |
141 |
|
|
|
142 |
|
|
n_flux = 0 ; |
143 |
|
|
DO k=1,4 |
144 |
|
|
new_partial (:) = 0 |
145 |
|
|
ENDDO |
146 |
|
|
|
147 |
|
|
DO k=1,2 |
148 |
|
|
IF (STREAMICE_ufacemask(i-1+k,j,bi,bj).eq.2.0) THEN ! at a permanent calving boundary - no advance allowed |
149 |
|
|
n_flux = n_flux + 1 |
150 |
|
|
ELSEIF (STREAMICE_hmask(i+2*k-3,j,bi,bj).eq.0 _d 0) THEN ! adjacent cell is completely ice free |
151 |
|
|
n_flux = n_flux + 1 |
152 |
|
|
new_partial (k) = 1 |
153 |
|
|
ENDIF |
154 |
|
|
ENDDO |
155 |
|
|
DO k=1,2 |
156 |
|
|
IF (STREAMICE_vfacemask (i,j-1+k,bi,bj).eq.2.0) THEN |
157 |
|
|
n_flux = n_flux + 1 |
158 |
|
|
ELSEIF (STREAMICE_hmask(i,j+2*k-3,bi,bj).eq.0 _d 0) THEN |
159 |
|
|
n_flux = n_flux + 1 |
160 |
|
|
new_partial (k+2) = 1 |
161 |
|
|
ENDIF |
162 |
|
|
ENDDO |
163 |
|
|
|
164 |
|
|
IF (n_flux .eq. 0) THEN ! there is nowhere to put the extra ice! |
165 |
|
|
H_streamice(i,j,bi,bj) = href + partial_vol * |
166 |
|
|
& recip_rA(i,j,bi,bj) |
167 |
|
|
ELSE |
168 |
|
|
H_streamice(i,j,bi,bj) = href |
169 |
|
|
|
170 |
|
|
DO k=1,2 |
171 |
|
|
IF (new_partial(k) .eq. 1) THEN |
172 |
|
|
hflux_x_SI2(i-1+k,j,bi,bj) = |
173 |
|
|
& partial_vol/time_step/real(n_flux)/ |
174 |
|
|
& dxG(i-1+k,j,bi,bj) |
175 |
|
|
ENDIF |
176 |
|
|
ENDDO |
177 |
|
|
|
178 |
|
|
DO k=1,2 |
179 |
|
|
IF (new_partial(k+2) .eq. 1) THEN |
180 |
|
|
hflux_y_SI2(i,j-1+k,bi,bj) = |
181 |
|
|
& partial_vol/time_step/real(n_flux)/ |
182 |
|
|
& dxG(i,j-1+k,bi,bj) |
183 |
|
|
ENDIF |
184 |
|
|
ENDDO |
185 |
|
|
|
186 |
|
|
ENDIF |
187 |
|
|
ENDIF |
188 |
|
|
ENDIF |
189 |
|
|
ENDIF |
190 |
|
|
ENDDO |
191 |
|
|
ENDIF |
192 |
|
|
ENDDO |
193 |
|
|
ENDDO |
194 |
|
|
ENDDO |
195 |
|
|
ENDDO |
196 |
|
|
|
197 |
|
|
IF (iter_count.gt.1) THEN |
198 |
|
|
PRINT *, "FRONT ADVANCE: ", iter_count, " ITERATIONS" |
199 |
|
|
ENDIF |
200 |
|
|
|
201 |
|
|
|
202 |
|
|
|
203 |
|
|
#endif |
204 |
|
|
RETURN |
205 |
|
|
END |