1 |
C $Header: /u/gcmpack/MITgcm_contrib/verification_other/shelfice_remeshing/code/ini_masks_etc.F,v 1.3 2017/04/10 23:55:33 jmc Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "PACKAGES_CONFIG.h" |
5 |
#include "CPP_OPTIONS.h" |
6 |
#ifdef ALLOW_SHELFICE |
7 |
# include "SHELFICE_OPTIONS.h" |
8 |
#endif /* ALLOW_SHELFICE */ |
9 |
|
10 |
CBOP |
11 |
C !ROUTINE: INI_MASKS_ETC |
12 |
C !INTERFACE: |
13 |
SUBROUTINE INI_MASKS_ETC( myThid ) |
14 |
C !DESCRIPTION: \bv |
15 |
C *==========================================================* |
16 |
C | SUBROUTINE INI_MASKS_ETC |
17 |
C | o Initialise masks and topography factors |
18 |
C *==========================================================* |
19 |
C | These arrays are used throughout the code and describe |
20 |
C | the topography of the domain through masks (0s and 1s) |
21 |
C | and fractional height factors (0<hFac<1). The latter |
22 |
C | distinguish between the lopped-cell and full-step |
23 |
C | topographic representations. |
24 |
C *==========================================================* |
25 |
C \ev |
26 |
|
27 |
C !USES: |
28 |
IMPLICIT NONE |
29 |
C === Global variables === |
30 |
#include "SIZE.h" |
31 |
#include "EEPARAMS.h" |
32 |
#include "PARAMS.h" |
33 |
#include "GRID.h" |
34 |
#ifdef NONLIN_FRSURF |
35 |
# include "SURFACE.h" |
36 |
#endif /* NONLIN_FRSURF */ |
37 |
|
38 |
C !INPUT/OUTPUT PARAMETERS: |
39 |
C == Routine arguments == |
40 |
C myThid :: Number of this instance of INI_MASKS_ETC |
41 |
INTEGER myThid |
42 |
|
43 |
C !LOCAL VARIABLES: |
44 |
C == Local variables == |
45 |
C bi,bj :: tile indices |
46 |
C i,j,k :: Loop counters |
47 |
C tmpFld :: Temporary array used to compute & write Total Depth |
48 |
_RS tmpFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
49 |
INTEGER bi, bj |
50 |
INTEGER i, j, k |
51 |
_RL hFacCtmp |
52 |
_RL hFacMnSz |
53 |
CEOP |
54 |
|
55 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
56 |
|
57 |
#ifdef ALLOW_SHELFICE |
58 |
IF ( useShelfIce ) THEN |
59 |
C-- Modify ocean upper boundary position according to ice-shelf topography |
60 |
CALL SHELFICE_INIT_DEPTHS( |
61 |
U R_low, Ro_surf, |
62 |
I myThid ) |
63 |
ENDIF |
64 |
#endif /* ALLOW_SHELFICE */ |
65 |
|
66 |
IF ( selectSigmaCoord.EQ.0 ) THEN |
67 |
C--- r-coordinate with partial-cell or full cell mask |
68 |
|
69 |
C-- Calculate lopping factor hFacC : over-estimate the part inside of the domain |
70 |
C taking into account the lower_R Boundary (Bathymetrie / Top of Atmos) |
71 |
DO bj=myByLo(myThid), myByHi(myThid) |
72 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
73 |
DO k=1, Nr |
74 |
hFacMnSz = MAX( hFacMin, MIN(hFacMinDr*recip_drF(k),oneRL) ) |
75 |
DO j=1-OLy,sNy+OLy |
76 |
DO i=1-OLx,sNx+OLx |
77 |
C o Non-dimensional distance between grid bound. and domain lower_R bound. |
78 |
hFacCtmp = (rF(k)-R_low(i,j,bi,bj))*recip_drF(k) |
79 |
C o Select between, closed, open or partial (0,1,0-1) |
80 |
hFacCtmp = MIN( MAX( hFacCtmp, zeroRL ) , oneRL ) |
81 |
C o Impose minimum fraction and/or size (dimensional) |
82 |
IF ( hFacCtmp.LT.hFacMnSz ) THEN |
83 |
IF ( hFacCtmp.LT.hFacMnSz*0.5 ) THEN |
84 |
hFacC(i,j,k,bi,bj) = 0. |
85 |
ELSE |
86 |
hFacC(i,j,k,bi,bj) = hFacMnSz |
87 |
ENDIF |
88 |
ELSE |
89 |
hFacC(i,j,k,bi,bj) = hFacCtmp |
90 |
ENDIF |
91 |
ENDDO |
92 |
ENDDO |
93 |
ENDDO |
94 |
|
95 |
C- Re-calculate lower-R Boundary position, taking into account hFacC |
96 |
DO j=1-OLy,sNy+OLy |
97 |
DO i=1-OLx,sNx+OLx |
98 |
R_low(i,j,bi,bj) = rF(1) |
99 |
ENDDO |
100 |
ENDDO |
101 |
DO k=Nr,1,-1 |
102 |
DO j=1-OLy,sNy+OLy |
103 |
DO i=1-OLx,sNx+OLx |
104 |
R_low(i,j,bi,bj) = R_low(i,j,bi,bj) |
105 |
& - drF(k)*hFacC(i,j,k,bi,bj) |
106 |
ENDDO |
107 |
ENDDO |
108 |
ENDDO |
109 |
C- end bi,bj loops. |
110 |
ENDDO |
111 |
ENDDO |
112 |
|
113 |
C-- Calculate lopping factor hFacC : Remove part outside of the domain |
114 |
C taking into account the Reference (=at rest) Surface Position Ro_surf |
115 |
DO bj=myByLo(myThid), myByHi(myThid) |
116 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
117 |
DO k=1, Nr |
118 |
hFacMnSz = MAX( hFacMin, MIN(hFacMinDr*recip_drF(k),oneRL) ) |
119 |
DO j=1-OLy,sNy+OLy |
120 |
DO i=1-OLx,sNx+OLx |
121 |
C o Non-dimensional distance between grid boundary and model surface |
122 |
hFacCtmp = (rF(k)-Ro_surf(i,j,bi,bj))*recip_drF(k) |
123 |
C o Reduce the previous fraction : substract the outside part. |
124 |
hFacCtmp = hFacC(i,j,k,bi,bj) - MAX( hFacCtmp, zeroRL ) |
125 |
C o set to zero if empty Column : |
126 |
hFacCtmp = MAX( hFacCtmp, zeroRL ) |
127 |
C o Impose minimum fraction and/or size (dimensional) |
128 |
IF ( hFacCtmp.LT.hFacMnSz ) THEN |
129 |
IF ( hFacCtmp.LT.hFacMnSz*0.5 ) THEN |
130 |
hFacC(i,j,k,bi,bj) = 0. |
131 |
ELSE |
132 |
hFacC(i,j,k,bi,bj) = hFacMnSz |
133 |
ENDIF |
134 |
ELSE |
135 |
hFacC(i,j,k,bi,bj) = hFacCtmp |
136 |
ENDIF |
137 |
ENDDO |
138 |
ENDDO |
139 |
ENDDO |
140 |
ENDDO |
141 |
ENDDO |
142 |
|
143 |
c#ifdef ALLOW_SHELFICE |
144 |
c IF ( useShelfIce ) THEN |
145 |
C-- Modify lopping factor hFacC : Remove part outside of the domain |
146 |
C taking into account the Reference (=at rest) Surface Position Ro_shelfIce |
147 |
c CALL SHELFICE_UPDATE_MASKS( |
148 |
c I rF, recip_drF, |
149 |
c U hFacC, |
150 |
c I myThid ) |
151 |
c ENDIF |
152 |
c#endif /* ALLOW_SHELFICE */ |
153 |
|
154 |
C- Re-calculate Reference surface position, taking into account hFacC |
155 |
C initialize Total column fluid thickness and surface k index |
156 |
C Note: if no fluid (continent) ==> kSurf = Nr+1 |
157 |
DO bj=myByLo(myThid), myByHi(myThid) |
158 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
159 |
DO j=1-OLy,sNy+OLy |
160 |
DO i=1-OLx,sNx+OLx |
161 |
tmpFld(i,j,bi,bj) = 0. |
162 |
kSurfC(i,j,bi,bj) = Nr+1 |
163 |
Ro_surf(i,j,bi,bj) = R_low(i,j,bi,bj) |
164 |
DO k=Nr,1,-1 |
165 |
Ro_surf(i,j,bi,bj) = Ro_surf(i,j,bi,bj) |
166 |
& + drF(k)*hFacC(i,j,k,bi,bj) |
167 |
IF ( hFacC(i,j,k,bi,bj).NE.zeroRS ) THEN |
168 |
kSurfC(i,j,bi,bj) = k |
169 |
tmpFld(i,j,bi,bj) = tmpFld(i,j,bi,bj) + 1. |
170 |
ENDIF |
171 |
ENDDO |
172 |
kLowC(i,j,bi,bj) = 0 |
173 |
DO k= 1, Nr |
174 |
IF ( hFacC(i,j,k,bi,bj).NE.zeroRS ) THEN |
175 |
kLowC(i,j,bi,bj) = k |
176 |
ENDIF |
177 |
ENDDO |
178 |
maskInC(i,j,bi,bj) = 0. |
179 |
IF ( kSurfC(i,j,bi,bj).LE.Nr ) maskInC(i,j,bi,bj) = 1. |
180 |
ENDDO |
181 |
ENDDO |
182 |
C- end bi,bj loops. |
183 |
ENDDO |
184 |
ENDDO |
185 |
|
186 |
#ifdef ALLOW_SHELFICE |
187 |
#ifdef ALLOW_SHELFICE_REMESHING |
188 |
IF ( useShelfIce ) THEN |
189 |
C-- Modify lopping factor hFacC : Remove part outside of the domain |
190 |
C taking into account the Reference (=at rest) Surface Position Ro_shelfIce |
191 |
CALL SHELFICE_DIG_SHELF( myThid ) |
192 |
ENDIF |
193 |
#endif |
194 |
#endif /* ALLOW_SHELFICE */ |
195 |
|
196 |
IF ( plotLevel.GE.debLevB ) THEN |
197 |
c CALL PLOT_FIELD_XYRS( tmpFld, |
198 |
c & 'Model Depths K Index' , -1, myThid ) |
199 |
CALL PLOT_FIELD_XYRS(R_low, |
200 |
& 'Model R_low (ini_masks_etc)', -1, myThid ) |
201 |
CALL PLOT_FIELD_XYRS(Ro_surf, |
202 |
& 'Model Ro_surf (ini_masks_etc)', -1, myThid ) |
203 |
ENDIF |
204 |
|
205 |
C-- Calculate quantities derived from XY depth map |
206 |
DO bj = myByLo(myThid), myByHi(myThid) |
207 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
208 |
DO j=1-OLy,sNy+OLy |
209 |
DO i=1-OLx,sNx+OLx |
210 |
C Total fluid column thickness (r_unit) : |
211 |
tmpFld(i,j,bi,bj) = Ro_surf(i,j,bi,bj) - R_low(i,j,bi,bj) |
212 |
C Inverse of fluid column thickness (1/r_unit) |
213 |
IF ( tmpFld(i,j,bi,bj) .LE. zeroRS ) THEN |
214 |
recip_Rcol(i,j,bi,bj) = 0. |
215 |
ELSE |
216 |
recip_Rcol(i,j,bi,bj) = 1. _d 0 / tmpFld(i,j,bi,bj) |
217 |
ENDIF |
218 |
ENDDO |
219 |
ENDDO |
220 |
ENDDO |
221 |
ENDDO |
222 |
|
223 |
DO bj=myByLo(myThid), myByHi(myThid) |
224 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
225 |
|
226 |
C-- rLow & reference rSurf at Western & Southern edges (U and V points) |
227 |
i = 1-OLx |
228 |
DO j=1-OLy,sNy+OLy |
229 |
rLowW (i,j,bi,bj) = rF(1) |
230 |
rSurfW(i,j,bi,bj) = rF(1) |
231 |
ENDDO |
232 |
j = 1-OLy |
233 |
DO i=1-OLx,sNx+OLx |
234 |
rLowS (i,j,bi,bj) = rF(1) |
235 |
rSurfS(i,j,bi,bj) = rF(1) |
236 |
ENDDO |
237 |
DO j=1-OLy,sNy+OLy |
238 |
DO i=2-OLx,sNx+OLx |
239 |
rLowW(i,j,bi,bj) = |
240 |
& MAX( R_low(i-1,j,bi,bj), R_low(i,j,bi,bj) ) |
241 |
rSurfW(i,j,bi,bj) = |
242 |
& MIN( Ro_surf(i-1,j,bi,bj), Ro_surf(i,j,bi,bj) ) |
243 |
rSurfW(i,j,bi,bj) = |
244 |
& MAX( rSurfW(i,j,bi,bj), rLowW(i,j,bi,bj) ) |
245 |
ENDDO |
246 |
ENDDO |
247 |
DO j=2-OLy,sNy+OLy |
248 |
DO i=1-OLx,sNx+OLx |
249 |
rLowS(i,j,bi,bj) = |
250 |
& MAX( R_low(i,j-1,bi,bj), R_low(i,j,bi,bj) ) |
251 |
rSurfS(i,j,bi,bj) = |
252 |
& MIN( Ro_surf(i,j-1,bi,bj), Ro_surf(i,j,bi,bj) ) |
253 |
rSurfS(i,j,bi,bj) = |
254 |
& MAX( rSurfS(i,j,bi,bj), rLowS(i,j,bi,bj) ) |
255 |
ENDDO |
256 |
ENDDO |
257 |
|
258 |
C-- hFacW and hFacS (at U and V points) |
259 |
DO k=1, Nr |
260 |
DO j=1-OLy,sNy+OLy |
261 |
hFacW(1-OLx,j,k,bi,bj) = 0. |
262 |
DO i=2-OLx,sNx+OLx |
263 |
hFacW(i,j,k,bi,bj) = |
264 |
& MIN( hFacC(i,j,k,bi,bj), hFacC(i-1,j,k,bi,bj) ) |
265 |
ENDDO |
266 |
ENDDO |
267 |
DO i=1-OLx,sNx+OLx |
268 |
hFacS(i,1-OLy,k,bi,bj) = 0. |
269 |
ENDDO |
270 |
DO j=2-OLy,sNy+OLy |
271 |
DO i=1-OLx,sNx+OLx |
272 |
hFacS(i,j,k,bi,bj) = |
273 |
& MIN( hFacC(i,j,k,bi,bj), hFacC(i,j-1,k,bi,bj) ) |
274 |
ENDDO |
275 |
ENDDO |
276 |
ENDDO |
277 |
|
278 |
IF ( useShelfIce ) THEN |
279 |
C Adjust reference rSurf at U and V points in order to get consistent |
280 |
C column thickness from Sum_k(hFac*drF) and rSurf-rLow |
281 |
DO j=1-OLy,sNy+OLy |
282 |
DO i=1-OLx,sNx+OLx |
283 |
rSurfW(i,j,bi,bj) = rLowW(i,j,bi,bj) |
284 |
rSurfS(i,j,bi,bj) = rLowS(i,j,bi,bj) |
285 |
ENDDO |
286 |
ENDDO |
287 |
DO k=1,Nr |
288 |
DO j=1-OLy,sNy+OLy |
289 |
DO i=1-OLx,sNx+OLx |
290 |
rSurfW(i,j,bi,bj) = rSurfW(i,j,bi,bj) |
291 |
& + hFacW(i,j,k,bi,bj)*drF(k) |
292 |
rSurfS(i,j,bi,bj) = rSurfS(i,j,bi,bj) |
293 |
& + hFacS(i,j,k,bi,bj)*drF(k) |
294 |
ENDDO |
295 |
ENDDO |
296 |
ENDDO |
297 |
ENDIF |
298 |
|
299 |
C- end bi,bj loops. |
300 |
ENDDO |
301 |
ENDDO |
302 |
CALL EXCH_UV_XYZ_RS( hFacW, hFacS, .FALSE., myThid ) |
303 |
CALL EXCH_UV_XY_RS( rSurfW, rSurfS, .FALSE., myThid ) |
304 |
CALL EXCH_UV_XY_RS( rLowW, rLowS, .FALSE., myThid ) |
305 |
|
306 |
C-- Addtional closing of Western and Southern grid-cell edges: for example, |
307 |
C a) might add some "thin walls" in specific location |
308 |
C-- b) close non-periodic N & S boundaries of lat-lon grid at the N/S poles. |
309 |
CALL ADD_WALLS2MASKS( myThid ) |
310 |
|
311 |
C-- Calculate surface k index for interface W & S (U & V points) |
312 |
DO bj=myByLo(myThid), myByHi(myThid) |
313 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
314 |
DO j=1-OLy,sNy+OLy |
315 |
DO i=1-OLx,sNx+OLx |
316 |
kSurfW(i,j,bi,bj) = Nr+1 |
317 |
kSurfS(i,j,bi,bj) = Nr+1 |
318 |
DO k=Nr,1,-1 |
319 |
IF (hFacW(i,j,k,bi,bj).NE.zeroRS) kSurfW(i,j,bi,bj) = k |
320 |
IF (hFacS(i,j,k,bi,bj).NE.zeroRS) kSurfS(i,j,bi,bj) = k |
321 |
ENDDO |
322 |
maskInW(i,j,bi,bj)= 0. |
323 |
IF ( kSurfW(i,j,bi,bj).LE.Nr ) maskInW(i,j,bi,bj)= 1. |
324 |
maskInS(i,j,bi,bj)= 0. |
325 |
IF ( kSurfS(i,j,bi,bj).LE.Nr ) maskInS(i,j,bi,bj)= 1. |
326 |
ENDDO |
327 |
ENDDO |
328 |
ENDDO |
329 |
ENDDO |
330 |
|
331 |
ELSE |
332 |
#ifndef DISABLE_SIGMA_CODE |
333 |
C--- Sigma and Hybrid-Sigma set-up: |
334 |
CALL INI_SIGMA_HFAC( myThid ) |
335 |
#endif /* DISABLE_SIGMA_CODE */ |
336 |
ENDIF |
337 |
|
338 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
339 |
|
340 |
C-- Write to disk: Total Column Thickness & hFac(C,W,S): |
341 |
C This I/O is now done in write_grid.F |
342 |
c CALL WRITE_FLD_XY_RS( 'Depth',' ',tmpFld,0,myThid) |
343 |
c CALL WRITE_FLD_XYZ_RS( 'hFacC',' ',hFacC,0,myThid) |
344 |
c CALL WRITE_FLD_XYZ_RS( 'hFacW',' ',hFacW,0,myThid) |
345 |
c CALL WRITE_FLD_XYZ_RS( 'hFacS',' ',hFacS,0,myThid) |
346 |
|
347 |
IF ( plotLevel.GE.debLevB ) THEN |
348 |
CALL PLOT_FIELD_XYZRS( hFacC, 'hFacC' , Nr, 0, myThid ) |
349 |
CALL PLOT_FIELD_XYZRS( hFacW, 'hFacW' , Nr, 0, myThid ) |
350 |
CALL PLOT_FIELD_XYZRS( hFacS, 'hFacS' , Nr, 0, myThid ) |
351 |
ENDIF |
352 |
|
353 |
C-- Masks and reciprocals of hFac[CWS] |
354 |
DO bj = myByLo(myThid), myByHi(myThid) |
355 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
356 |
DO k=1,Nr |
357 |
DO j=1-OLy,sNy+OLy |
358 |
DO i=1-OLx,sNx+OLx |
359 |
IF ( hFacC(i,j,k,bi,bj).NE.zeroRS ) THEN |
360 |
recip_hFacC(i,j,k,bi,bj) = 1. _d 0 / hFacC(i,j,k,bi,bj) |
361 |
maskC(i,j,k,bi,bj) = 1. |
362 |
ELSE |
363 |
recip_hFacC(i,j,k,bi,bj) = 0. |
364 |
maskC(i,j,k,bi,bj) = 0. |
365 |
ENDIF |
366 |
IF ( hFacW(i,j,k,bi,bj).NE.zeroRS ) THEN |
367 |
recip_hFacW(i,j,k,bi,bj) = 1. _d 0 / hFacW(i,j,k,bi,bj) |
368 |
maskW(i,j,k,bi,bj) = 1. |
369 |
ELSE |
370 |
recip_hFacW(i,j,k,bi,bj) = 0. |
371 |
maskW(i,j,k,bi,bj) = 0. |
372 |
ENDIF |
373 |
IF ( hFacS(i,j,k,bi,bj).NE.zeroRS ) THEN |
374 |
recip_hFacS(i,j,k,bi,bj) = 1. _d 0 / hFacS(i,j,k,bi,bj) |
375 |
maskS(i,j,k,bi,bj) = 1. |
376 |
ELSE |
377 |
recip_hFacS(i,j,k,bi,bj) = 0. |
378 |
maskS(i,j,k,bi,bj) = 0. |
379 |
ENDIF |
380 |
ENDDO |
381 |
ENDDO |
382 |
ENDDO |
383 |
#ifdef NONLIN_FRSURF |
384 |
C-- Save initial geometrical hFac factor into h0Fac (fixed in time): |
385 |
C Note: In case 1 pkg modifies hFac (from packages_init_fixed, called |
386 |
C later in sequence of calls) this pkg would need also to update h0Fac. |
387 |
DO k=1,Nr |
388 |
DO j=1-OLy,sNy+OLy |
389 |
DO i=1-OLx,sNx+OLx |
390 |
h0FacC(i,j,k,bi,bj) = _hFacC(i,j,k,bi,bj) |
391 |
h0FacW(i,j,k,bi,bj) = _hFacW(i,j,k,bi,bj) |
392 |
h0FacS(i,j,k,bi,bj) = _hFacS(i,j,k,bi,bj) |
393 |
ENDDO |
394 |
ENDDO |
395 |
ENDDO |
396 |
#endif /* NONLIN_FRSURF */ |
397 |
C- end bi,bj loops. |
398 |
ENDDO |
399 |
ENDDO |
400 |
|
401 |
c #ifdef ALLOW_NONHYDROSTATIC |
402 |
C-- Calculate "recip_hFacU" = reciprocal hfac distance/volume for W cells |
403 |
C NOTE: not used ; computed locally in CALC_GW |
404 |
c #endif |
405 |
|
406 |
RETURN |
407 |
END |