1 |
C $Header: /u/gcmpack/MITgcm/pkg/shelfice/shelfice_v_drag.F,v 1.11 2015/02/14 21:58:05 jmc Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "SHELFICE_OPTIONS.h" |
5 |
|
6 |
CBOP |
7 |
C !ROUTINE: SHELFICE_V_DRAG |
8 |
|
9 |
C !INTERFACE: ========================================================== |
10 |
SUBROUTINE SHELFICE_V_DRAG( |
11 |
I bi, bj, k, |
12 |
I uFld, vFld, KE, kappaRV, |
13 |
O vDragTerms, |
14 |
I myThid ) |
15 |
|
16 |
C !DESCRIPTION: |
17 |
C Calculates the drag due to friction and the no-slip condition at the |
18 |
C bottom of the shelf-ice (in analogy to bottom drag) |
19 |
C \begin{equation*} |
20 |
C G^v_{drag} = - ( r_b + C_D |v| + \frac{2}{\Delta r_c} ) v |
21 |
C \end{equation*} |
22 |
|
23 |
C !USES: =============================================================== |
24 |
IMPLICIT NONE |
25 |
#include "SIZE.h" |
26 |
#include "EEPARAMS.h" |
27 |
#include "PARAMS.h" |
28 |
#include "GRID.h" |
29 |
#include "SHELFICE.h" |
30 |
|
31 |
C !INPUT PARAMETERS: =================================================== |
32 |
C bi,bj :: tile indices |
33 |
C k :: vertical level |
34 |
C uFld :: zonal flow |
35 |
C vFld :: meridional flow |
36 |
C KE :: Kinetic energy |
37 |
C kappaRV :: vertical viscosity |
38 |
C myThid :: thread number |
39 |
INTEGER bi,bj,k |
40 |
_RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
41 |
_RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
42 |
_RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
43 |
_RL kappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) |
44 |
INTEGER myThid |
45 |
|
46 |
C !OUTPUT PARAMETERS: ================================================== |
47 |
C vDragTerms :: drag term |
48 |
_RL vDragTerms(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
49 |
|
50 |
#ifdef ALLOW_SHELFICE |
51 |
C !LOCAL VARIABLES : ==================================================== |
52 |
C i,j :: loop indices |
53 |
C Kp1 :: =k+1 for k<Nr, =Nr for k>=Nr |
54 |
INTEGER i,j,kUpC,kTop |
55 |
_RL viscFac, vSq |
56 |
_RL rdrckp1 |
57 |
CEOP |
58 |
|
59 |
C- No-slip BCs impose a drag at top |
60 |
IF ( usingZCoords ) THEN |
61 |
kTop = 1 |
62 |
kUpC = k |
63 |
ELSE |
64 |
kTop = Nr |
65 |
kUpC = k+1 |
66 |
ENDIF |
67 |
rdrckp1=recip_drC(kUpC) |
68 |
CML IF (k.EQ.kTop) rdrckp1=recip_drF(k) |
69 |
viscFac=0. |
70 |
IF (no_slip_shelfice) viscFac=2. |
71 |
|
72 |
C-- Friction at the bottom of ice-shelf (no-slip BC) |
73 |
IF ( no_slip_shelfice ) THEN |
74 |
C- ignores partial-cell reduction of the distance to the surface |
75 |
DO j=1-OLy+1,sNy+OLy-1 |
76 |
DO i=1-OLx,sNx+OLx-1 |
77 |
IF ( k.EQ.MAX( kTopC(i,j-1,bi,bj),kTopC(i,j,bi,bj) ) ) THEN |
78 |
vDragTerms(i,j) = |
79 |
& - _recip_hFacS(i,j,k,bi,bj)*recip_drF(k) |
80 |
& * kappaRV(i,j,kUpC)*rdrckp1*viscFac |
81 |
#ifndef IMPLICIT_BOTTOMSIDEDRAG |
82 |
& * vFld(i,j) |
83 |
#endif |
84 |
ELSE |
85 |
vDragTerms(i,j) = 0. _d 0 |
86 |
ENDIF |
87 |
ENDDO |
88 |
ENDDO |
89 |
ELSE |
90 |
DO j=1-OLy,sNy+OLy |
91 |
DO i=1-OLx,sNx+OLx |
92 |
vDragTerms(i,j) = 0. _d 0 |
93 |
ENDDO |
94 |
ENDDO |
95 |
ENDIF |
96 |
IF ( no_slip_shelfice .AND. bottomVisc_pCell ) THEN |
97 |
C- friction accounts for true distance (including hFac) to the surface |
98 |
DO j=1-OLy+1,sNy+OLy-1 |
99 |
DO i=1-OLx,sNx+OLx-1 |
100 |
vDragTerms(i,j) = vDragTerms(i,j) |
101 |
& * _recip_hFacS(i,j,k,bi,bj) |
102 |
ENDDO |
103 |
ENDDO |
104 |
ENDIF |
105 |
|
106 |
C-- Add Linear drag: |
107 |
IF ( SHELFICEDragLinear.NE.zeroRL ) THEN |
108 |
DO j=1-OLy+1,sNy+OLy-1 |
109 |
DO i=1-OLx,sNx+OLx-1 |
110 |
IF ( k.EQ.MAX( kTopC(i,j-1,bi,bj),kTopC(i,j,bi,bj) ) ) THEN |
111 |
vDragTerms(i,j) = vDragTerms(i,j) |
112 |
& - _recip_hFacS(i,j,k,bi,bj)*recip_drF(k) |
113 |
& * SHELFICEDragLinear |
114 |
#ifndef IMPLICIT_BOTTOMSIDEDRAG |
115 |
& * vFld(i,j) |
116 |
#endif |
117 |
|
118 |
ENDIF |
119 |
ENDDO |
120 |
ENDDO |
121 |
ENDIF |
122 |
|
123 |
C-- Add quadratic drag |
124 |
IF ( SHELFICEselectDragQuadr.EQ.0 ) THEN |
125 |
C- average grid-cell-center KE to get velocity norm @ U.pt |
126 |
DO j=1-OLy+1,sNy+OLy-1 |
127 |
DO i=1-OLx,sNx+OLx-1 |
128 |
vSq = 0. _d 0 |
129 |
IF ( k.EQ.MAX( kTopC(i,j-1,bi,bj),kTopC(i,j,bi,bj) ) ) THEN |
130 |
vSq = KE(i,j)+KE(i,j-1) |
131 |
ENDIF |
132 |
IF ( vSq.GT.zeroRL ) THEN |
133 |
vDragTerms(i,j) = vDragTerms(i,j) |
134 |
& - _recip_hFacS(i,j,k,bi,bj)*recip_drF(k) |
135 |
& * SHELFICEDragQuadratic*SQRT(vSq) |
136 |
#ifndef IMPLICIT_BOTTOMSIDEDRAG |
137 |
& * vFld(i,j) |
138 |
#endif |
139 |
|
140 |
ENDIF |
141 |
ENDDO |
142 |
ENDDO |
143 |
ELSEIF ( SHELFICEselectDragQuadr.EQ.1 ) THEN |
144 |
C- calculate locally velocity norm @ U.pt (local U & 4 V averaged) |
145 |
DO j=1-OLy+1,sNy+OLy-1 |
146 |
DO i=1-OLx,sNx+OLx-1 |
147 |
vSq = 0. _d 0 |
148 |
IF ( k.EQ.MAX( kTopC(i,j-1,bi,bj),kTopC(i,j,bi,bj) ) ) THEN |
149 |
vSq = vFld(i,j)*vFld(i,j) |
150 |
& + ( (uFld( i ,j-1)*uFld( i ,j-1)*hFacW( i ,j-1,k,bi,bj) |
151 |
& +uFld( i , j )*uFld( i , j )*hFacW( i , j ,k,bi,bj)) |
152 |
& + (uFld(i+1,j-1)*uFld(i+1,j-1)*hFacW(i+1,j-1,k,bi,bj) |
153 |
& +uFld(i+1, j )*uFld(i+1, j )*hFacW(i+1, j ,k,bi,bj)) |
154 |
& )*recip_hFacS(i,j,k,bi,bj)*0.25 _d 0 |
155 |
ENDIF |
156 |
IF ( vSq.GT.zeroRL ) THEN |
157 |
vDragTerms(i,j) = vDragTerms(i,j) |
158 |
& - _recip_hFacS(i,j,k,bi,bj)*recip_drF(k) |
159 |
& * SHELFICEDragQuadratic*SQRT(vSq) |
160 |
#ifndef IMPLICIT_BOTTOMSIDEDRAG |
161 |
& * vFld(i,j) |
162 |
#endif |
163 |
|
164 |
ENDIF |
165 |
ENDDO |
166 |
ENDDO |
167 |
ELSEIF ( SHELFICEselectDragQuadr.EQ.2 ) THEN |
168 |
C- same as above but using wet-point method to average 4 V |
169 |
DO j=1-OLy+1,sNy+OLy-1 |
170 |
DO i=1-OLx,sNx+OLx-1 |
171 |
vSq = 0. _d 0 |
172 |
IF ( k.EQ.MAX( kTopC(i,j-1,bi,bj),kTopC(i,j,bi,bj) ) ) THEN |
173 |
vSq = ( hFacW( i ,j-1,k,bi,bj) + hFacW( i , j ,k,bi,bj) ) |
174 |
& + ( hFacW(i+1,j-1,k,bi,bj) + hFacW(i+1, j ,k,bi,bj) ) |
175 |
IF ( vSq.GT.zeroRL ) THEN |
176 |
vSq = vFld(i,j)*vFld(i,j) |
177 |
& +( (uFld( i ,j-1)*uFld( i ,j-1)*hFacW( i ,j-1,k,bi,bj) |
178 |
& +uFld( i , j )*uFld( i , j )*hFacW( i , j ,k,bi,bj)) |
179 |
& + (uFld(i+1,j-1)*uFld(i+1,j-1)*hFacW(i+1,j-1,k,bi,bj) |
180 |
& +uFld(i+1, j )*uFld(i+1, j )*hFacW(i+1, j ,k,bi,bj)) |
181 |
& )/vSq |
182 |
ELSE |
183 |
vSq = vFld(i,j)*vFld(i,j) |
184 |
ENDIF |
185 |
ENDIF |
186 |
IF ( vSq.GT.zeroRL ) THEN |
187 |
vDragTerms(i,j) = vDragTerms(i,j) |
188 |
& - _recip_hFacS(i,j,k,bi,bj)*recip_drF(k) |
189 |
& * SHELFICEDragQuadratic*SQRT(vSq) |
190 |
#ifndef IMPLICIT_BOTTOMSIDEDRAG |
191 |
& * vFld(i,j) |
192 |
#endif |
193 |
|
194 |
ENDIF |
195 |
ENDDO |
196 |
ENDDO |
197 |
ENDIF |
198 |
|
199 |
#ifdef IMPLICIT_BOTTOMSIDEDRAG |
200 |
DO j=1-OLy+1,sNy+OLy-1 |
201 |
DO i=1-OLx,sNx+OLx-1 |
202 |
vDragTerms(i,j) = vDragTerms(i,j)*vFld(i,j) / |
203 |
& (1. - deltaTmom*vDragTerms(i,j)) |
204 |
ENDDO |
205 |
ENDDO |
206 |
#endif |
207 |
|
208 |
#ifdef ALLOW_DIAGNOSTICS |
209 |
IF ( useDiagnostics .AND. |
210 |
& ( no_slip_shelfice .OR. SHELFICEDragLinear.NE.zeroRL |
211 |
& .OR. SHELFICEselectDragQuadr.GE.0 ) |
212 |
& ) THEN |
213 |
CALL DIAGNOSTICS_FILL(vDragTerms,'SHIVDrag',k,1,2,bi,bj,myThid) |
214 |
ENDIF |
215 |
#endif /* ALLOW_DIAGNOSTICS */ |
216 |
#endif /* ALLOW_SHELFICE */ |
217 |
|
218 |
RETURN |
219 |
END |