1 |
dgoldberg |
1.1 |
C $Header: /u/gcmpack/MITgcm/pkg/mom_common/mom_v_bottomdrag.F,v 1.17 2015/01/04 16:16:32 jmc Exp $ |
2 |
|
|
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "MOM_COMMON_OPTIONS.h" |
5 |
|
|
#ifdef ALLOW_CTRL |
6 |
|
|
# include "CTRL_OPTIONS.h" |
7 |
|
|
#endif |
8 |
|
|
|
9 |
|
|
CBOP |
10 |
|
|
C !ROUTINE: MOM_V_BOTTOMDRAG |
11 |
|
|
|
12 |
|
|
C !INTERFACE: ========================================================== |
13 |
|
|
SUBROUTINE MOM_V_BOTTOMDRAG( |
14 |
|
|
I bi, bj, k, |
15 |
|
|
I uFld, vFld, KE, kappaRV, |
16 |
|
|
O vDragTerms, |
17 |
|
|
I myThid ) |
18 |
|
|
|
19 |
|
|
C !DESCRIPTION: |
20 |
|
|
C Calculates the drag due to friction and the no-slip condition at bottom: |
21 |
|
|
C \begin{equation*} |
22 |
|
|
C G^v_{drag} = - \frac{1}{\Delta r_f} ( r_b + C_D |v| + \frac{2}{\Delta r_c} ) v |
23 |
|
|
C \end{equation*} |
24 |
|
|
|
25 |
|
|
C !USES: =============================================================== |
26 |
|
|
IMPLICIT NONE |
27 |
|
|
#include "SIZE.h" |
28 |
|
|
#include "EEPARAMS.h" |
29 |
|
|
#include "PARAMS.h" |
30 |
|
|
#include "GRID.h" |
31 |
|
|
#ifdef ALLOW_CTRL |
32 |
|
|
# include "CTRL_FIELDS.h" |
33 |
|
|
#endif |
34 |
|
|
|
35 |
|
|
C !INPUT PARAMETERS: =================================================== |
36 |
|
|
C bi,bj :: tile indices |
37 |
|
|
C k :: vertical level |
38 |
|
|
C uFld :: zonal flow |
39 |
|
|
C vFld :: meridional flow |
40 |
|
|
C KE :: Kinetic energy |
41 |
|
|
C kappaRV :: vertical viscosity |
42 |
|
|
C myThid :: thread number |
43 |
|
|
INTEGER bi,bj,k |
44 |
|
|
_RL uFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
45 |
|
|
_RL vFld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
46 |
|
|
_RL KE(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
47 |
|
|
_RL kappaRV(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr+1) |
48 |
|
|
INTEGER myThid |
49 |
|
|
|
50 |
|
|
C !OUTPUT PARAMETERS: ================================================== |
51 |
|
|
C vDragTerms :: drag term |
52 |
|
|
_RL vDragTerms(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
53 |
|
|
|
54 |
|
|
C !LOCAL VARIABLES: ==================================================== |
55 |
|
|
C i,j :: loop indices |
56 |
|
|
INTEGER i,j,kDown,kLowF,kBottom |
57 |
|
|
_RL viscFac, dragFac, vSq |
58 |
|
|
_RL recDrC |
59 |
|
|
_RL recDrF_bot(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
60 |
|
|
CEOP |
61 |
|
|
|
62 |
|
|
C- No-slip BCs impose a drag at bottom |
63 |
|
|
viscFac = 0. |
64 |
|
|
IF (no_slip_bottom) viscFac = 2. |
65 |
|
|
IF ( usingZCoords ) THEN |
66 |
|
|
kBottom = Nr |
67 |
|
|
kDown = MIN(k+1,Nr) |
68 |
|
|
kLowF = k+1 |
69 |
|
|
c dragFac = mass2rUnit*rhoConst |
70 |
|
|
c dragFac = wUnit2rVel(k+1) |
71 |
|
|
dragFac = 1. _d 0 |
72 |
|
|
ELSE |
73 |
|
|
kBottom = 1 |
74 |
|
|
kDown = MAX(k-1,1) |
75 |
|
|
kLowF = k |
76 |
|
|
dragFac = mass2rUnit*rhoConst |
77 |
|
|
c dragFac = wUnit2rVel(k) |
78 |
|
|
ENDIF |
79 |
|
|
IF ( k.EQ.kBottom ) THEN |
80 |
|
|
recDrC = recip_drF(k) |
81 |
|
|
DO j=1-OLy,sNy+OLy |
82 |
|
|
DO i=1-OLx,sNx+OLx |
83 |
|
|
recDrF_bot(i,j) = _recip_hFacS(i,j,k,bi,bj)*recip_drF(k) |
84 |
|
|
ENDDO |
85 |
|
|
ENDDO |
86 |
|
|
ELSE |
87 |
|
|
recDrC = recip_drC(kLowF) |
88 |
|
|
DO j=1-OLy,sNy+OLy |
89 |
|
|
DO i=1-OLx,sNx+OLx |
90 |
|
|
recDrF_bot(i,j) = _recip_hFacS(i,j,k,bi,bj)*recip_drF(k) |
91 |
|
|
& * ( 1. _d 0 -_maskS(i,j,kDown,bi,bj) ) |
92 |
|
|
ENDDO |
93 |
|
|
ENDDO |
94 |
|
|
ENDIF |
95 |
|
|
|
96 |
|
|
C-- Linear bottom drag: |
97 |
|
|
DO j=1-OLy+1,sNy+OLy-1 |
98 |
|
|
DO i=1-OLx,sNx+OLx-1 |
99 |
|
|
vDragTerms(i,j) = |
100 |
|
|
& - recDrF_bot(i,j) |
101 |
|
|
& *( bottomDragLinear*dragFac |
102 |
|
|
#ifdef ALLOW_BOTTOMDRAG_CONTROL |
103 |
|
|
& + halfRL*( bottomDragFld(i,j-1,bi,bj) |
104 |
|
|
& + bottomDragFld(i,j,bi,bj) )*dragFac |
105 |
|
|
#endif |
106 |
|
|
& ) |
107 |
|
|
#ifndef IMPLICIT_BOTTOMSIDEDRAG |
108 |
|
|
& * vFld(i,j) |
109 |
|
|
#endif |
110 |
|
|
ENDDO |
111 |
|
|
ENDDO |
112 |
|
|
|
113 |
|
|
C-- Add friction at the bottom (no-slip BC) |
114 |
|
|
IF ( no_slip_bottom .AND. bottomVisc_pCell ) THEN |
115 |
|
|
C- bottom friction accounts for true distance (including hFac) to the bottom |
116 |
|
|
DO j=1-OLy+1,sNy+OLy-1 |
117 |
|
|
DO i=1-OLx,sNx+OLx-1 |
118 |
|
|
vDragTerms(i,j) = vDragTerms(i,j) |
119 |
|
|
& - recDrF_bot(i,j) |
120 |
|
|
& *( kappaRV(i,j,kLowF)*recDrC*viscFac |
121 |
|
|
& *_recip_hFacS(i,j,k,bi,bj) |
122 |
|
|
& ) |
123 |
|
|
#ifndef IMPLICIT_BOTTOMSIDEDRAG |
124 |
|
|
& * vFld(i,j) |
125 |
|
|
#endif |
126 |
|
|
|
127 |
|
|
ENDDO |
128 |
|
|
ENDDO |
129 |
|
|
ELSEIF ( no_slip_bottom ) THEN |
130 |
|
|
C- ignore partial-cell reduction of the distance to the bottom |
131 |
|
|
DO j=1-OLy+1,sNy+OLy-1 |
132 |
|
|
DO i=1-OLx,sNx+OLx-1 |
133 |
|
|
vDragTerms(i,j) = vDragTerms(i,j) |
134 |
|
|
& - recDrF_bot(i,j) |
135 |
|
|
& *( kappaRV(i,j,kLowF)*recDrC*viscFac |
136 |
|
|
& ) |
137 |
|
|
#ifndef IMPLICIT_BOTTOMSIDEDRAG |
138 |
|
|
& * vFld(i,j) |
139 |
|
|
#endif |
140 |
|
|
|
141 |
|
|
ENDDO |
142 |
|
|
ENDDO |
143 |
|
|
ENDIF |
144 |
|
|
|
145 |
|
|
C-- Add quadratic bottom drag |
146 |
|
|
IF ( selectBotDragQuadr.EQ.0 ) THEN |
147 |
|
|
C- average grid-cell-center KE to get velocity norm @ V.pt |
148 |
|
|
DO j=1-OLy+1,sNy+OLy-1 |
149 |
|
|
DO i=1-OLx,sNx+OLx-1 |
150 |
|
|
IF ( (KE(i,j)+KE(i,j-1)) .GT. 0. ) THEN |
151 |
|
|
vDragTerms(i,j) = vDragTerms(i,j) |
152 |
|
|
& - recDrF_bot(i,j) |
153 |
|
|
& *bottomDragQuadratic*SQRT(KE(i,j)+KE(i,j-1))*dragFac |
154 |
|
|
#ifndef IMPLICIT_BOTTOMSIDEDRAG |
155 |
|
|
& * vFld(i,j) |
156 |
|
|
#endif |
157 |
|
|
|
158 |
|
|
ENDIF |
159 |
|
|
ENDDO |
160 |
|
|
ENDDO |
161 |
|
|
ELSEIF ( selectBotDragQuadr.EQ.1 ) THEN |
162 |
|
|
C- calculate locally velocity norm @ V.pt (local V & 4 U averaged) |
163 |
|
|
DO j=1-OLy+1,sNy+OLy-1 |
164 |
|
|
DO i=1-OLx,sNx+OLx-1 |
165 |
|
|
vSq = vFld(i,j)*vFld(i,j) |
166 |
|
|
& + ( (uFld( i ,j-1)*uFld( i ,j-1)*hFacW( i ,j-1,k,bi,bj) |
167 |
|
|
& +uFld( i , j )*uFld( i , j )*hFacW( i , j ,k,bi,bj)) |
168 |
|
|
& + (uFld(i+1,j-1)*uFld(i+1,j-1)*hFacW(i+1,j-1,k,bi,bj) |
169 |
|
|
& +uFld(i+1, j )*uFld(i+1, j )*hFacW(i+1, j ,k,bi,bj)) |
170 |
|
|
& )*recip_hFacS(i,j,k,bi,bj)*0.25 _d 0 |
171 |
|
|
IF ( vSq.GT.zeroRL ) THEN |
172 |
|
|
vDragTerms(i,j) = vDragTerms(i,j) |
173 |
|
|
& - recDrF_bot(i,j) |
174 |
|
|
& *bottomDragQuadratic*SQRT(vSq)*dragFac |
175 |
|
|
#ifndef IMPLICIT_BOTTOMSIDEDRAG |
176 |
|
|
& * vFld(i,j) |
177 |
|
|
#endif |
178 |
|
|
|
179 |
|
|
ENDIF |
180 |
|
|
ENDDO |
181 |
|
|
ENDDO |
182 |
|
|
ELSEIF ( selectBotDragQuadr.EQ.2 ) THEN |
183 |
|
|
C- same as above but using wet-point method to average 4 U |
184 |
|
|
DO j=1-OLy+1,sNy+OLy-1 |
185 |
|
|
DO i=1-OLx,sNx+OLx-1 |
186 |
|
|
vSq = ( hFacW( i ,j-1,k,bi,bj) + hFacW( i , j ,k,bi,bj) ) |
187 |
|
|
& + ( hFacW(i+1,j-1,k,bi,bj) + hFacW(i+1, j ,k,bi,bj) ) |
188 |
|
|
IF ( vSq.GT.zeroRL ) THEN |
189 |
|
|
vSq = vFld(i,j)*vFld(i,j) |
190 |
|
|
& +( (uFld( i ,j-1)*uFld( i ,j-1)*hFacW( i ,j-1,k,bi,bj) |
191 |
|
|
& +uFld( i , j )*uFld( i , j )*hFacW( i , j ,k,bi,bj)) |
192 |
|
|
& + (uFld(i+1,j-1)*uFld(i+1,j-1)*hFacW(i+1,j-1,k,bi,bj) |
193 |
|
|
& +uFld(i+1, j )*uFld(i+1, j )*hFacW(i+1, j ,k,bi,bj)) |
194 |
|
|
& )/vSq |
195 |
|
|
ELSE |
196 |
|
|
vSq = vFld(i,j)*vFld(i,j) |
197 |
|
|
ENDIF |
198 |
|
|
IF ( vSq.GT.zeroRL ) THEN |
199 |
|
|
vDragTerms(i,j) = vDragTerms(i,j) |
200 |
|
|
& - recDrF_bot(i,j) |
201 |
|
|
& *bottomDragQuadratic*SQRT(vSq)*dragFac |
202 |
|
|
#ifndef IMPLICIT_BOTTOMSIDEDRAG |
203 |
|
|
& * vFld(i,j) |
204 |
|
|
#endif |
205 |
|
|
|
206 |
|
|
ENDIF |
207 |
|
|
ENDDO |
208 |
|
|
ENDDO |
209 |
|
|
ELSEIF ( selectBotDragQuadr.NE.-1 ) THEN |
210 |
|
|
STOP 'MOM_V_BOTTOMDRAG: invalid selectBotDragQuadr value' |
211 |
|
|
ENDIF |
212 |
|
|
|
213 |
|
|
#ifdef IMPLICIT_BOTTOMSIDEDRAG |
214 |
|
|
DO j=1-OLy+1,sNy+OLy-1 |
215 |
|
|
DO i=1-OLx,sNx+OLx-1 |
216 |
|
|
vDragTerms(i,j) = vDragTerms(i,j)*vFld(i,j) / |
217 |
|
|
& (1. - deltaTmom*vDragTerms(i,j)) |
218 |
|
|
ENDDO |
219 |
|
|
ENDDO |
220 |
|
|
#endif |
221 |
|
|
|
222 |
|
|
|
223 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
224 |
|
|
IF (useDiagnostics) THEN |
225 |
|
|
CALL DIAGNOSTICS_FILL(vDragTerms,'VBotDrag',k,1,2,bi,bj,myThid) |
226 |
|
|
ENDIF |
227 |
|
|
#endif /* ALLOW_DIAGNOSTICS */ |
228 |
|
|
|
229 |
|
|
RETURN |
230 |
|
|
END |