1 |
C $Header: /u/gcmpack/MITgcm_contrib/verification_other/shelfice_remeshing/code/shelfice_massmin.F,v 1.2 2016/05/26 11:32:17 ksnow Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
C KS_dens------ |
5 |
|
6 |
#include "SHELFICE_OPTIONS.h" |
7 |
|
8 |
CBOP |
9 |
SUBROUTINE SHELFICE_MASSMIN( R_min, massMin, myThid ) |
10 |
C *============================================================* |
11 |
C | SUBROUTINE SHELFICE_MASSMIN |
12 |
C | o Routine to determine the minimum mass based on MCWT |
13 |
C *============================================================* |
14 |
IMPLICIT NONE |
15 |
|
16 |
C === Global variables === |
17 |
#include "SIZE.h" |
18 |
#include "EEPARAMS.h" |
19 |
#include "PARAMS.h" |
20 |
#include "GRID.h" |
21 |
#include "SHELFICE.h" |
22 |
#include "DYNVARS.h" |
23 |
#ifdef ALLOW_COST |
24 |
# include "SHELFICE_COST.h" |
25 |
#endif /* ALLOW_COST */ |
26 |
|
27 |
C === Routine arguments === |
28 |
C myThid - Number of this instance |
29 |
C |
30 |
C This subroutine calculates the minimum mass to allow MWCT space |
31 |
C under the grounded ice. |
32 |
|
33 |
_RL massMin(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
34 |
_RL R_min(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
35 |
INTEGER myThid |
36 |
|
37 |
CEndOfInterface |
38 |
|
39 |
#ifdef ALLOW_SHELFICE |
40 |
C === Local variables === |
41 |
C i,j,bi,bj - Loop counters |
42 |
INTEGER i, j, k, bi, bj, k2 |
43 |
_RL drho (Nr) |
44 |
_RL phiHydF(Nr+1) |
45 |
_RL phiHydC(Nr) |
46 |
_RL vert_rho(Nr) |
47 |
_RL drLoc, pLoad_min, sum_hFac |
48 |
_RL SEALEVEL, ETA |
49 |
CEOP |
50 |
|
51 |
C Initialize variables |
52 |
R_min = 0 _d 0 |
53 |
drLoc = 0 _d 0 |
54 |
pLoad_min = 0 _d 0 |
55 |
DO k=1,Nr |
56 |
vert_rho(k) = 0 _d 0 |
57 |
ENDDO |
58 |
DO bj = myByLo(myThid), myByHi(myThid) |
59 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
60 |
DO j=1-OLy,sNy+OLy |
61 |
DO i=1-OLx,sNx+OLx |
62 |
massMin(i,j,bi,bj) = 0 _d 0 |
63 |
ENDDO |
64 |
ENDDO |
65 |
ENDDO |
66 |
ENDDO |
67 |
|
68 |
C First need vertical profile of density anomaly; |
69 |
CALL SHELFICE_VERT_DENS( vert_rho, myThid ) |
70 |
C Get the average open ocean ssh |
71 |
SEALEVEL = 0. _d 0 |
72 |
ETA = 0. _d 0 |
73 |
CALL SHELFICE_SEA_LEVEL_AVG( SEALEVEL,ETA, myThid ) |
74 |
C calcaulte hydrostatic pressure based on density profile |
75 |
DO k = 1,Nr |
76 |
drho(k) = vert_rho(k) |
77 |
IF (k.EQ.1) THEN |
78 |
phiHydF(k) = 0. |
79 |
C phiHydF(k) = SEALEVEL*gravity*drho(k)*recip_rhoConst |
80 |
ENDIF |
81 |
phiHydC(k)=phiHydF(k) + halfRL*drF(k)*gravity*drho(k) |
82 |
& *recip_rhoConst |
83 |
phiHydF(k+1)=phiHydC(k) + halfRL*drF(k)*gravity*drho(k) |
84 |
& *recip_rhoConst |
85 |
ENDDO |
86 |
|
87 |
C calculate the level of minimum pressure and from that massMin |
88 |
C based on R_MCWT |
89 |
DO bj = myByLo(myThid), myByHi(myThid) |
90 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
91 |
DO j=1-OLy,sNy+OLy |
92 |
DO i=1-OLx,sNx+OLx |
93 |
R_min(i,j,bi,bj)=R_Low(i,j,bi,bi)+R_MWCT(i,j,bi,bj) |
94 |
DO k =1,Nr |
95 |
IF ((R_min(i,j,bi,bj) .GT. rF(k+1)) .AND. |
96 |
& (R_min(i,j,bi,bj) .LE. rF(k))) THEN |
97 |
drLoc = (rF(k)-R_min(i,j,bi,bj))/drF(k) |
98 |
|
99 |
pLoad_min = (phiHydF(k) + drLoc* |
100 |
& (phiHydF(k+1)-phiHydF(k)))*rhoConst |
101 |
& + gravity*rhoConst*(drLoc*drF(k)) |
102 |
|
103 |
massMin(i,j,bi,bj) = pLoad_min*recip_gravity - |
104 |
& rF(k)*rhoConst |
105 |
ENDIF |
106 |
ENDDO |
107 |
ENDDO |
108 |
ENDDO |
109 |
ENDDO |
110 |
ENDDO |
111 |
|
112 |
#endif /* ALLOW_SHELFICE */ |
113 |
|
114 |
RETURN |
115 |
END |