/[MITgcm]/MITgcm_contrib/dfer/matlab_stuff/calcHeatTransDirect.m
ViewVC logotype

Contents of /MITgcm_contrib/dfer/matlab_stuff/calcHeatTransDirect.m

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (show annotations) (download)
Wed Mar 7 22:01:18 2018 UTC (7 years, 4 months ago) by dfer
Branch: MAIN
Changes since 1.1: +12 -78 lines
Update with various little adjustments.

1 function HT = calcHeatTransDirect(varargin)
2
3 % HT = calcHeatTransDirect(d,g,dE,GM,time,flu,blkFile,[mask,phi_ref]);
4 %
5 % Input arguements:
6 % The incoming field data (d) and grid data (g) must be in a structured
7 % array format (which is the format that comes from rdmnc):
8 % d [Structure] Various inputs depending on oceanic or
9 % atmospheric computation, rstar or not,
10 % and GM form/ouputs
11 % g [Structure] drF,dxG,dyG,dxC,dyC,HFacW,HFacS,rA
12 % dE [Structure] More field data
13 % GM [Structure] Gent anf McWilliams data
14 % Other input parameters:
15 % time [vector] Time levels to analyze ([] for all)
16 % flu [string] 'O' or 'A' for ocean or atmosphere
17 % blkFile [string] Broken line file (eg 'isoLat_cs32_59.mat')
18 % Optional parameters:
19 % mask [Structure] W and S mask
20 % phi_ref [vector] Reference geopotential height
21 %
22 % Output:
23 % HT_Out is a structured array with the following fields:
24 % time ([nt,1]) Time axis
25 % ylatHT ([ny,1]) Heat transport latitude axis
26 % ylatSF ([ny-1,1]) Implied heating latitude axis
27 % AreaZon ([ny,1]) Area in zonal bands
28 % SenHT ([ny,nBas,nt,nFld]) Sensible heat transport
29 % SenSF ([ny-1,nBas,nt,nFld]) Implied heating above
30 % LatHT ([ny,nBas,nt,nFld]) Latent heat transport (atm only)
31 % LatSF ([ny-1,nBas,nt,nFld]) Implied heating from aboce (atm only)
32 % Currently, the routine is only configured to handle the global basin,
33 % so nBas = 1 for the output. ny is defined by the broken line file used
34 % for the cube calculation. nFld is the heat transport component:
35 % nFld = 1 = Eulerian circulation HT
36 % nFld = 2 = HT by time mean circulation
37 % nFld = 3 = Residual [3=1-2]
38 % nFld = 4 = HT by zonal mean circulation
39 % nFld = 5 = Residual [5=2-4]
40 % Ocn only:
41 % If GM advective form:
42 % nFld = 6 = HT by horizontal diffusion
43 % If Skew flux form:
44 % nFld = 6 = total (GM+Redi) eddy transport
45 % nFld = 7 = GM (advective) eddy transport
46 %
47 % Description:
48 % Calculation heat transport, and to degree possible, decomposition.
49 % Heat transport is given in PW and the implied surface heating/flux
50 % in W/m^2. The incoming data arrays are all assumed to be of the
51 % dimensions [6*nc,nc,nr,nt].
52 %
53 % Original Author: Jean-Michel Campin
54 % Modifications: Daniel Enderton
55
56 % Default constants
57 LhVap = 2501;
58 grav = 9.81;
59 CpO = 3994;
60 RhoO = 1030;
61 CpA = 1004;
62 kappa = 2/7;
63 masking=0;
64
65 PHIref = grav * [ 431.199 2105.998 5536.327 10440.915 18190.889];
66 %PHIref = grav * [ 173.888 529.598 896.724 1276.210 1669.052 ...
67 % 2076.380 2499.554 2940.137 3399.937 3881.061 ...
68 % 4385.993 4917.689 5480.084 6078.962 6722.700 ...
69 % 7420.744 8183.151 9023.181 9959.131 11019.028...
70 % 12253.003 13723.604 15599.238 18412.089 24539.570];
71
72 % Read input parameters.
73 d = varargin{1};
74 g = varargin{2};
75 dE= varargin{3};
76 GM= varargin{4};
77 nt= varargin{5};
78 flu = varargin{6};
79 blkFile = varargin{7};
80 if length(varargin) >= 8 & ~isempty(varargin{8})
81 mask = varargin{8};
82 masking = 1;
83 disp('Masking is on...')
84 end
85 if length(varargin) == 9
86 PHIref= varargin{9};
87 end
88
89 nBas = 0;
90 if isequal(flu,'A'), nout = 5; end
91 if isequal(flu,'O'), nout = 7; end
92 flag_tot=0;
93 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
94 % Prepare / reform incoming data %
95 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
96
97 % Determine time indecies.
98 %if isempty(time), time = d.iters_read_from_file; i_time = 1:length(time);
99 %else [dump,i_time] = ismember(time,d.iters_read_from_file); end
100
101 nc = size(g.HFacC,2);
102 nr = size(g.HFacC,3);
103 i_time=1:nt;
104
105 if nr~=5
106 LhVap = 2500e3;
107 grav = 9.79764;
108 RDGAS = 287.04;
109 CpA = RDGAS/kappa;
110 end
111
112 ac = reshape(g.rA ,[6*nc*nc, 1]);
113 hw = reshape(g.HFacW(1:6*nc,1:nc,1:nr),[6*nc*nc,nr]);
114 hs = reshape(g.HFacS(1:6*nc,1:nc,1:nr),[6*nc*nc,nr]);
115 dxc = reshape(g.dxC(1:6*nc,1:nc) ,[6*nc*nc, 1]);
116 dyc = reshape(g.dyC(1:6*nc,1:nc) ,[6*nc*nc, 1]);
117 dxg = reshape(g.dxG(1:6*nc,1:nc) ,[6*nc*nc, 1]);
118 dyg = reshape(g.dyG(1:6*nc,1:nc) ,[6*nc*nc, 1]);
119 drf = reshape(g.drF,[1,length(g.drF)]);
120 Z = reshape(g.Z,[1,length(g.Z)]);
121
122 %u = reshape(d.UVEL(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
123 %v = reshape(d.VVEL(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
124 ut = reshape(dE.UTHMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
125 vt = reshape(dE.VTHMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
126 hu = reshape(dE.UVELMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
127 hv = reshape(dE.VVELMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
128 t = d.THETA(1:6*nc,1:nc,:,i_time);
129 if isequal(flu,'O')
130 Kux = reshape(GM.GM_Kux(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
131 Kvy = reshape(GM.GM_Kvy(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
132
133 if isfield(GM,'GM_ubT') %%% if advective form of GM
134 UbTgm = reshape(GM.GM_ubT(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
135 VbTgm = reshape(GM.GM_vbT(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
136 elseif isfield(GM,'GM_KuzTz') %%% if skew-flux form of GM
137 UbTgm = reshape(GM.GM_KuzTz(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
138 VbTgm = reshape(GM.GM_KvzTz(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
139 elseif isfield(dE,'ADVx_TH') %%% if total advective field
140 flag_tot = 1;
141 UbTgm = reshape(dE.ADVx_TH(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
142 VbTgm = reshape(dE.ADVy_TH(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
143 else
144 UbTgm = zeros(6*nc*nc,nr,nt);
145 VbTgm = zeros(6*nc*nc,nr,nt);
146 end
147 end
148
149 if isequal(flu,'A')
150 up = reshape(dE.UVELPHI(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
151 vp = reshape(dE.VVELPHI(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
152 uq = reshape(dE.USLTMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
153 vq = reshape(dE.VSLTMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
154 q = d.SALT(1:6*nc,1:nc,:,i_time);
155 p = d.PHIHYD(1:6*nc,1:nc,:,i_time);
156 ut = ut .* ( repmat(Z,[6*nc*nc 1 nt]) / 1e5 ).^kappa;
157 vt = vt .* ( repmat(Z,[6*nc*nc 1 nt]) / 1e5 ).^kappa;
158 t = t .* ( repmat(reshape(Z,[1 1 nr]),[6*nc nc 1 nt]) / 1e5 ).^kappa;
159 end
160
161 if masking == 1
162 hu = repmat(reshape(mask.maskW(:,:,1),6*nc*nc,1),[1 nr nt]) .* hu;
163 hv = repmat(reshape(mask.maskS(:,:,1),6*nc*nc,1),[1 nr nt]) .* hv;
164 ut = repmat(reshape(mask.maskW(:,:,1),6*nc*nc,1),[1 nr nt]) .* ut;
165 vt = repmat(reshape(mask.maskS(:,:,1),6*nc*nc,1),[1 nr nt]) .* vt;
166 if isequal(flu,'O')
167 Kux = repmat(reshape(mask.maskW(:,:,1),6*nc*nc,1),[1 nr nt]) .* Kux;
168 Kvy = repmat(reshape(mask.maskS(:,:,1),6*nc*nc,1),[1 nr nt]) .* Kvy;
169 UbTgm = repmat(reshape(mask.maskW(:,:,1),6*nc*nc,1),[1 nr nt]) .* UbTgm;
170 VbTgm = repmat(reshape(mask.maskS(:,:,1),6*nc*nc,1),[1 nr nt]) .* VbTgm;
171 end
172 end
173
174
175 % Load broken line information. Compute (tracer point) cell area between
176 % broken lines for each basin. There are nbkl broken lines and nbkl+1
177 % bands between broken lines. The variable "bkl_Zon" gives the zone number
178 % (nbkl+1 total) for a given index between 0 and nbkl, that is, nbkl+1
179 % total zones. Comments block is for eventual addition of multiple basin
180 % calculations.
181 load(blkFile);
182 ydim=length(bkl_Ylat);
183 AreaZon=zeros(ydim+1,1+nBas);
184 for j = 1:ydim+1
185 izon = find(bkl_Zon == j-1);
186 AreaZon(j,1) = sum(ac(izon));
187 % for b = 1:nBas,
188 % tmp = ac.*mskBc(:,b);
189 % AreaZon(j,1+b) = sum(tmp(izon));
190 % end
191 end
192
193 % Latitute plotting information. Average latitude of a broken line
194 % (ylatHF) is calculated from a mean value of the y value of all the edges.
195 % The latitude at the surface flux points is a mean of the broken line mean
196 % values.
197 YlatAv=sum(bkl_Ysg,1)./(1+bkl_Npts'); %'
198 ylatHT = [-90,YlatAv,90];
199 ylatSF = ( ylatHT(2:ydim+2) + ylatHT(1:ydim+1) )./2;
200
201 % The variable "bkl_Flg" is -1/1 if edge (on a given broken) has a u point
202 % and -2/2 if it has a v point. Positive/negative values contribute
203 % positively/negatively to northward heat transport (this depends on the
204 % orientation of the cell). A zero value indicates an end of edges that
205 % contribute to a broken line. The u and v information is parced into two
206 % seperate fields, ufac and vfac (-2/2 are reduced to -1/1 for vfac).
207 ufac = zeros([size(bkl_Flg),1+nBas]);
208 vfac = zeros([size(bkl_Flg),1+nBas]);
209 ufac(:,:,1) = rem(bkl_Flg,2);
210 vfac(:,:,1) = fix(bkl_Flg/2);
211 % for jl=1:ydim,
212 % ie=bkl_Npts(jl);
213 % for b=1:nBas,
214 % ufac(1:ie,jl,1+b)=mskBw(bkl_IJuv(1:ie,jl),b).*ufac(1:ie,jl,1);
215 % vfac(1:ie,jl,1+b)=mskBs(bkl_IJuv(1:ie,jl),b).*vfac(1:ie,jl,1);
216 % end
217 % end
218 ufacabs = abs(ufac);
219 vfacabs = abs(vfac);
220
221 % Prepare mask(s).
222 % ??? I temporarily took out the code to configure the masks beyond this
223 % global one. Does this need to account for a ridge if present?
224 mskG=ones(ydim+1,1+nBas);
225
226 % Area factors. "ArW_Dif" and "ArS_Dif" the areas for the western and
227 % southern edge of cells, respectively The "_Dif" suffix indicates the
228 % areas used for the diffusivity because there is an extra "dxc" or "dyc"
229 % from the gradient (here for computational efficiency reasons). The
230 % division by "dxc" and "dyc" is associates with gradient of temperature.
231 %
232 % ??? Why is the land mask (hw and hs) only in the diffusive area term?
233 ArW = dyg*reshape(drf,[1,length(drf)]);
234 ArS = dxg*reshape(drf,[1,length(drf)]);
235 ArW_Dif=hw.*((dyg./dxc)*reshape(drf,[1,length(drf)]));
236 ArS_Dif=hs.*((dxg./dyc)*reshape(drf,[1,length(drf)]));
237
238 % Compute the temperature and its gradient and the velocity points:
239 % tbi/tdi = temperature between/difference i points (at u points)
240 % tbj/tdj = temperature between/difference j points (at v points)
241 % The cube is first split and the extra points are added to the files.
242 % Then the means and differences are taken. Note that the division of dxc
243 % and dyc for the gradient is not applied until later for computational
244 % efficiency purposes. The arrays are then croped and reshaped to the
245 % format for the other field variables, [6*nc*nc,nr]. Note that the
246 % split_C_cub function adds a row/column of tracer points in front of the
247 % first row/column of the tile matries. This, when the differences and
248 % gradients are computed and cropped, the off indecies are selected from
249 % [2:nc+1] rather than [1:nc]. (This was a bit mystifying to me).
250 t6bi=zeros(nc,nc+1,nr,nt,6); t6di=t6bi; q6bi=t6bi;
251 t6bj=zeros(nc+1,nc,nr,nt,6); t6dj=t6bj; q6bj=t6bj;
252 t6t=split_C_cub(t);
253 t6bi([1:nc],:,:,:,:) = ( t6t([1:nc],:,:,:,:) + t6t([2:nc+1],:,:,:,:) )./2;
254 t6bj(:,[1:nc],:,:,:) = ( t6t(:,[1:nc],:,:,:) + t6t(:,[2:nc+1],:,:,:) )./2;
255 t6di([1:nc],:,:,:,:) = ( t6t([1:nc],:,:,:,:) - t6t([2:nc+1],:,:,:,:) );
256 t6dj(:,[1:nc],:,:,:) = ( t6t(:,[1:nc],:,:,:) - t6t(:,[2:nc+1],:,:,:) );
257 tbi = t6bi([1:nc],[2:nc+1],:,:,:);
258 tbj = t6bj([2:nc+1],[1:nc],:,:,:);
259 tdi = t6di([1:nc],[2:nc+1],:,:,:);
260 tdj = t6dj([2:nc+1],[1:nc],:,:,:);
261 tbi=reshape(permute(tbi,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
262 tbj=reshape(permute(tbj,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
263 tdi=reshape(permute(tdi,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
264 tdj=reshape(permute(tdj,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
265 if isequal(flu,'A')
266 q6t=split_C_cub(q);
267 q6bi([1:nc],:,:,:,:) = (q6t([1:nc],:,:,:,:)+q6t([2:nc+1],:,:,:,:))./2;
268 q6bj(:,[1:nc],:,:,:) = (q6t(:,[1:nc],:,:,:)+q6t(:,[2:nc+1],:,:,:))./2;
269 qbi = q6bi([1:nc],[2:nc+1],:,:,:);
270 qbj = q6bj([2:nc+1],[1:nc],:,:,:);
271 qbi=reshape(permute(qbi,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
272 qbj=reshape(permute(qbj,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
273
274 p6t=split_C_cub(p);
275 p6bi([1:nc],:,:,:,:) = (p6t([1:nc],:,:,:,:)+p6t([2:nc+1],:,:,:,:))./2;
276 p6bj(:,[1:nc],:,:,:) = (p6t(:,[1:nc],:,:,:)+p6t(:,[2:nc+1],:,:,:))./2;
277 pbi = p6bi([1:nc],[2:nc+1],:,:,:);
278 pbj = p6bj([2:nc+1],[1:nc],:,:,:);
279 pbi=reshape(permute(pbi,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
280 pbj=reshape(permute(pbj,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
281 end
282
283 % Prepare output arrays. "nout" is the number of transport output fields.
284 % It is currently hard-coded, but could eventually be an input parameters
285 % to set which output fields are desired if some of then become
286 % computationally expensive.
287 % SenHT = Sensible heat transport
288 % SenSF = Sensible implied surface flux
289 % IntV = Integrated volume transport
290 % IntT = Integrated temperature
291 SenHT = zeros(ydim+2,1+nBas,nt,nout);
292 SenSF = zeros(ydim+1,1+nBas,nt,nout);
293 IntV = zeros(ydim,nr,1+nBas,nt);
294 IntT = zeros(ydim,nr,1+nBas,nt);
295 IntM = zeros(ydim,nr,1+nBas,nt);
296 if isequal(flu,'A')
297 LatHT = zeros(ydim+2,1+nBas,nt,nout);
298 PotHT = zeros(ydim+2,1+nBas,nt,nout);
299 LatSF = zeros(ydim+1,1+nBas,nt,nout);
300 IntQ = zeros(ydim,nr,1+nBas,nt);
301 IntP = zeros(ydim,nr,1+nBas,nt);
302 end
303 Psi = zeros(ydim+2,1+nBas,nt);
304
305 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
306 % Make heat transport calculations %
307 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
308
309 % Preparation for calculation of zonal average temperature. The
310 % tempereature multiplied by the appropriate length scale ("tbi_temp",
311 % "tbj_temp") is summed up ("IntT" in the next section) and
312 % divided by the total length ("IntM", composed from summing "hw_temp",
313 % "hs_temp").
314 hw_temp = zeros(size(hw));
315 hs_temp = zeros(size(hs));
316 for k=1:nr,
317 hw_temp(:,k) = dyg.*hw(:,k);
318 hs_temp(:,k) = dxg.*hs(:,k);
319 end
320
321 for it = 1:length(i_time)
322
323 % uz / vz = Volume transport though cell faces (velocity times area).
324 % Used for zonal mean volume transport (4).
325 % utz1/vtz1 = Eulerian sensible heat transport through cell faces (1).
326 % utz2/vtz2 = Sensible heat transport through cell faces by Eulerian
327 % mean circulations (2).
328 % dtx1/dty1 = Temperatude gradient at cell face times the area (when
329 % multiplied by the diffusion will be the horizontal
330 % diffusion heat transport) (6).
331 uz = ArW.*hu(:,:,it);
332 vz = ArS.*hv(:,:,it);
333 utz1 = sum(ArW.*ut(:,:,it),2);
334 vtz1 = sum(ArS.*vt(:,:,it),2);
335 utz2 = sum(ArW.*hu(:,:,it).*tbi(:,:,it),2);
336 vtz2 = sum(ArS.*hv(:,:,it).*tbj(:,:,it),2);
337 if isequal(flu,'A')
338 uqz1 = sum(ArW.*uq(:,:,it),2);
339 vqz1 = sum(ArS.*vq(:,:,it),2);
340 uqz2 = sum(ArW.*hu(:,:,it).*qbi(:,:,it),2);
341 vqz2 = sum(ArS.*hv(:,:,it).*qbj(:,:,it),2);
342 upz1 = sum(ArW.*(up(:,:,it)+hu(:,:,it).*repmat(PHIref,[6*nc*nc 1])),2);
343 vpz1 = sum(ArS.*(vp(:,:,it)+hv(:,:,it).*repmat(PHIref,[6*nc*nc 1])),2);
344 upz2 = sum(ArW.*hu(:,:,it).*(pbi(:,:,it)+repmat(PHIref,[6*nc*nc 1])),2);
345 vpz2 = sum(ArS.*hv(:,:,it).*(pbj(:,:,it)+repmat(PHIref,[6*nc*nc 1])),2);
346 end
347 if isequal(flu,'O')
348 dtx1 = sum(ArW_Dif.*Kux(:,:,it).*tdi(:,:,it),2);
349 dty1 = sum(ArS_Dif.*Kvy(:,:,it).*tdj(:,:,it),2);
350 Kuztz1 = sum(UbTgm(:,:,it),2);
351 Kvztz1 = sum(VbTgm(:,:,it),2);
352 end
353
354 % Preparation for calculation of zonal average temperature. The
355 % temperature multiplied by the appropriate length scale ("tbi_temp",
356 % "tbj_temp") is summed up ("IntT" in the next section) and
357 % divided by the total length ("IntM", composed from summing "hw_temp",
358 % "hs_temp").
359 tbi_temp = hw_temp.*tbi(:,:,it);
360 tbj_temp = hs_temp.*tbj(:,:,it);
361 if isequal(flu,'A')
362 qbi_temp = hw_temp.*qbi(:,:,it);
363 qbj_temp = hs_temp.*qbj(:,:,it);
364 pbi_temp = hw_temp.*(pbi(:,:,it)+repmat(PHIref,[6*nc*nc 1]));
365 pbj_temp = hs_temp.*(pbj(:,:,it)+repmat(PHIref,[6*nc*nc 1]));
366 end
367
368 % Block 1:
369 % With the vertical integral of heat transport calculated across cell
370 % edges, the zonal integral (along the broken line) is computed to
371 % determine the total northward heat transport. The first for loop is
372 % over the individual broken lines (determining the northward HT at the
373 % representative latitude). The second loop is over the basins. The
374 % third loop is over the individual edges along a specific broken line.
375 % Note that an individual cell can have two edges (u and v) that have a
376 % HT contributions. Hence the variable containing indecies of cells
377 % with edges along the broken lines, "bkl_IJuv", has some repeats.
378 % Note that the variable "bkl_Npts" is the number of edges along a
379 % given broken line. Note also that the latitude axis starts at 2
380 % because heat transport at extremes (latitute = -90/90) is zero by
381 % definition. Recall that index (1) is total Eulerian transport, (2)
382 % is from the mean circulations, and (3) is from the horizontal
383 % diffusion.
384 %
385 % Block 2:
386 % Here zonal average circulation and temperature / moisture is
387 % calculated. The zonal average volume transport v (IntV) and t
388 % (IntT/IntM) are computed first and are multiplied together at the
389 % end.
390 for jl=1:ydim
391 ie=bkl_Npts(jl);
392 for b=1:1+nBas
393 ij=bkl_IJuv(1:ie,jl);
394 % Block 1:
395 SenHT(1+jl,b,it,1) = SenHT(1+jl,b,it,1) + ...
396 sum(ufac(1:ie,jl,b).*utz1(ij) + ...
397 vfac(1:ie,jl,b).*vtz1(ij));
398 SenHT(1+jl,b,it,2) = SenHT(1+jl,b,it,2) + ...
399 sum(ufac(1:ie,jl,b).*utz2(ij) + ...
400 vfac(1:ie,jl,b).*vtz2(ij));
401 if isequal(flu,'A')
402 LatHT(1+jl,b,it,1) = LatHT(1+jl,b,it,1) + ...
403 sum(ufac(1:ie,jl,b).*uqz1(ij) + ...
404 vfac(1:ie,jl,b).*vqz1(ij));
405 LatHT(1+jl,b,it,2) = LatHT(1+jl,b,it,2) + ...
406 sum(ufac(1:ie,jl,b).*uqz2(ij) + ...
407 vfac(1:ie,jl,b).*vqz2(ij));
408 PotHT(1+jl,b,it,1) = PotHT(1+jl,b,it,1) + ...
409 sum(ufac(1:ie,jl,b).*upz1(ij) + ...
410 vfac(1:ie,jl,b).*vpz1(ij));
411 PotHT(1+jl,b,it,2) = PotHT(1+jl,b,it,2) + ...
412 sum(ufac(1:ie,jl,b).*upz2(ij) + ...
413 vfac(1:ie,jl,b).*vpz2(ij));
414 end
415 if isequal(flu,'O')
416 SenHT(1+jl,b,it,6) = SenHT(1+jl,b,it,6) + ...
417 sum(ufac(1:ie,jl,b).*dtx1(ij) + ...
418 vfac(1:ie,jl,b).*dty1(ij));
419 SenHT(1+jl,b,it,7) = SenHT(1+jl,b,it,7) + ...
420 sum(ufac(1:ie,jl,b).*Kuztz1(ij) + ...
421 vfac(1:ie,jl,b).*Kvztz1(ij));
422 end
423 % Block 2:
424 IntV(jl,:,b,it) = IntV(jl,:,b,it) ...
425 + ufac(1:ie,jl,b)'*uz(ij,:) ...
426 + vfac(1:ie,jl,b)'*vz(ij,:) ;
427 IntT(jl,:,b,it) = IntT(jl,:,b,it) ...
428 + ufacabs(1:ie,jl,b)'*tbi_temp(ij,:) ...
429 + vfacabs(1:ie,jl,b)'*tbj_temp(ij,:);
430 IntM(jl,:,b,it) = IntM(jl,:,b,it) ...
431 + ufacabs(1:ie,jl,b)'*hw_temp(ij,:) ...
432 + vfacabs(1:ie,jl,b)'*hs_temp(ij,:);
433 if isequal(flu,'A')
434 IntQ(jl,:,b,it) = IntQ(jl,:,b,it) ...
435 + ufacabs(1:ie,jl,b)'*qbi_temp(ij,:) ...
436 + vfacabs(1:ie,jl,b)'*qbj_temp(ij,:);
437 IntP(jl,:,b,it) = IntP(jl,:,b,it) ...
438 + ufacabs(1:ie,jl,b)'*pbi_temp(ij,:) ...
439 + vfacabs(1:ie,jl,b)'*pbj_temp(ij,:);
440 end
441 end
442 end
443
444 % Prepare HT output: Calculate HT by zonal flows and tabulate
445 % residuals. Also, the multiplicative constants (Cp,rho,grav,LhVap) are
446 % applied here to put moisture and potential temperature fluxes in
447 % terms of heat transports.
448 tmp = IntV(:,:,:,it) .* IntT(:,:,:,it) ...
449 ./ change(IntM(:,:,:,it),'==',0,NaN);
450 SenHT(2:ydim+1,:,it,4) = sum(change(tmp,'==',NaN,0),2);
451 % SenHT(2:ydim+1,:,it,4) = sum( IntV(:,:,:,it) ...
452 % .* IntT(:,:,:,it) ...
453 % ./ IntM(:,:,:,it),2);
454 SenHT(:,:,it,3) = SenHT(:,:,it,1) - SenHT(:,:,it,2);
455 SenHT(:,:,it,5) = SenHT(:,:,it,2) - SenHT(:,:,it,4);
456 if isequal(flu,'O')
457 % SenHT(:,:,it,6) = DiffKh.*SenHT(:,:,it,6);
458 SenHT(:,:,it,:) = (CpO*RhoO)*SenHT(:,:,it,:);
459 if flag_tot==1
460 SenHT(:,:,it,7)=SenHT(:,:,it,7)-SenHT(:,:,it,1);
461 end
462 elseif isequal(flu,'A')
463 SenHT(:,:,it,:) = (CpA./grav).*SenHT(:,:,it,:);
464 LatHT(2:ydim+1,:,it,4) = sum( IntV(:,:,:,it) ...
465 .* IntQ(:,:,:,it) ...
466 ./ IntM(:,:,:,it),2);
467 LatHT(:,:,it,3) = LatHT(:,:,it,1) - LatHT(:,:,it,2);
468 LatHT(:,:,it,5) = LatHT(:,:,it,2) - LatHT(:,:,it,4);
469 LatHT(:,:,it,:) = (LhVap./grav).*LatHT(:,:,it,:);
470
471 PotHT(2:ydim+1,:,it,4) = sum( IntV(:,:,:,it) ...
472 .* IntP(:,:,:,it) ...
473 ./ IntM(:,:,:,it),2);
474 PotHT(:,:,it,3) = PotHT(:,:,it,1) - PotHT(:,:,it,2);
475 PotHT(:,:,it,5) = PotHT(:,:,it,2) - PotHT(:,:,it,4);
476 PotHT(:,:,it,:) = 1/grav * PotHT(:,:,it,:);
477 end
478 Psi(2:ydim+1,:,it) = - sum( IntV(:,:,:,it) ,2 );
479
480 % Implied surface heat flux from heat transports (implied heating).
481 % Tabulated as the difference in heat transports between two broken
482 % lines divided by the zonal band area.
483 mskG = reshape(mskG,(ydim+1)*(1+nBas),1);
484 I = find(mskG==0);
485 mskG = reshape(mskG,ydim+1,1+nBas);
486 var = zeros(ydim+1,1+nBas);
487 for n=1:min(nout,6),
488 varT = SenHT([2:ydim+2],:,it,n) ...
489 - SenHT([1:ydim+1],:,it,n);
490 varT = reshape(varT,(ydim+1)*(1+nBas),1); varT(I)=NaN;
491 varT = reshape(varT,ydim+1,1+nBas);
492 SenSF([1:ydim+1],:,it,n) = varT./AreaZon;
493 if isequal(flu,'A')
494 for n=1:min(nout,6)
495 varQ = LatHT([2:ydim+2],:,it,n) ...
496 - LatHT([1:ydim+1],:,it,n);
497 varQ = reshape(varQ,(ydim+1)*(1+nBas),1); varQ(I)=NaN;
498 varQ = reshape(varQ,ydim+1,1+nBas);
499 LatSF([1:ydim+1],:,it,n) = varQ./AreaZon;
500 end
501 end
502 end
503 end
504
505
506 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
507 % Assign outputs, put in units of PW %
508 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
509
510 SenHT = SenHT*1e-15;
511
512 HT.time = i_time;
513 HT.SenHT = reshape(SenHT,ydim+2,nt,nout);
514 HT.SenSF = reshape(SenSF,ydim+1,nt,nout);
515 HT.ylatHT = ylatHT;
516 HT.ylatSF = ylatSF;
517 HT.AreaZon = AreaZon;
518 HT.PsiSurf = 1e-6*reshape(Psi,ydim+2,nt);
519
520 if isequal(flu,'A')
521 LatHT = LatHT*1e-15;
522 PotHT = PotHT*1e-15;
523 HT.LatHT = reshape(LatHT,ydim+2,nt,nout);
524 HT.LatSF = reshape(LatSF,ydim+1,nt,nout);
525 HT.PotHT = reshape(PotHT,ydim+2,nt,nout);
526 end
527

  ViewVC Help
Powered by ViewVC 1.1.22