/[MITgcm]/MITgcm_contrib/dfer/matlab_stuff/calcHeatTransDirect.m
ViewVC logotype

Contents of /MITgcm_contrib/dfer/matlab_stuff/calcHeatTransDirect.m

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (show annotations) (download)
Thu Apr 19 00:03:59 2018 UTC (7 years, 3 months ago) by dfer
Branch: MAIN
CVS Tags: HEAD
Changes since 1.2: +5 -1 lines
Error occurred while calculating annotation data.
Some minor updates

1 function HT = calcHeatTransDirect(varargin)
2
3 % HT = calcHeatTransDirect(d,g,dE,GM,time,flu,blkFile,[mask,phi_ref]);
4 %
5 % Input arguements:
6 % The incoming field data (d) and grid data (g) must be in a structured
7 % array format (which is the format that comes from rdmnc):
8 % d [Structure] Various inputs depending on oceanic or
9 % atmospheric computation, rstar or not,
10 % and GM form/ouputs
11 % g [Structure] drF,dxG,dyG,dxC,dyC,HFacW,HFacS,rA
12 % dE [Structure] More field data
13 % GM [Structure] Gent anf McWilliams data
14 % Other input parameters:
15 % time [vector] Time levels to analyze ([] for all)
16 % flu [string] 'O' or 'A' for ocean or atmosphere
17 % blkFile [string] Broken line file (eg 'isoLat_cs32_59.mat')
18 % Optional parameters:
19 % mask [Structure] W and S mask
20 % phi_ref [vector] Reference geopotential height
21 %
22 % Output:
23 % HT_Out is a structured array with the following fields:
24 % time ([nt,1]) Time axis
25 % ylatHT ([ny,1]) Heat transport latitude axis
26 % ylatSF ([ny-1,1]) Implied heating latitude axis
27 % AreaZon ([ny,1]) Area in zonal bands
28 % SenHT ([ny,nBas,nt,nFld]) Sensible heat transport
29 % SenSF ([ny-1,nBas,nt,nFld]) Implied heating above
30 % LatHT ([ny,nBas,nt,nFld]) Latent heat transport (atm only)
31 % LatSF ([ny-1,nBas,nt,nFld]) Implied heating from aboce (atm only)
32 % Currently, the routine is only configured to handle the global basin,
33 % so nBas = 1 for the output. ny is defined by the broken line file used
34 % for the cube calculation. nFld is the heat transport component:
35 % nFld = 1 = Eulerian circulation HT
36 % nFld = 2 = HT by time mean circulation
37 % nFld = 3 = Residual [3=1-2]
38 % nFld = 4 = HT by zonal mean circulation
39 % nFld = 5 = Residual [5=2-4]
40 % Ocn only:
41 % If GM advective form:
42 % nFld = 6 = total (GM+Redi) eddy transport: K*dT/dy
43 % WARNING: This assumes K_gm=K_iso to get
44 % the cancellation of the off-diagonal term
45 % (K_iso-K_gm)*S_y*dT/dz
46 % nFld = 7 = GM (advective) eddy transport
47 % If Skew flux form:
48 % nFld = 6 = total (GM+Redi) eddy transport
49 % nFld = 7 = GM (advective) eddy transport
50 %
51 % Description:
52 % Calculation heat transport, and to degree possible, decomposition.
53 % Heat transport is given in PW and the implied surface heating/flux
54 % in W/m^2. The incoming data arrays are all assumed to be of the
55 % dimensions [6*nc,nc,nr,nt].
56 %
57 % Original Author: Jean-Michel Campin
58 % Modifications: Daniel Enderton
59
60 % Default constants
61 LhVap = 2501;
62 grav = 9.81;
63 CpO = 3994;
64 RhoO = 1030;
65 CpA = 1004;
66 kappa = 2/7;
67 masking=0;
68
69 PHIref = grav * [ 431.199 2105.998 5536.327 10440.915 18190.889];
70 %PHIref = grav * [ 173.888 529.598 896.724 1276.210 1669.052 ...
71 % 2076.380 2499.554 2940.137 3399.937 3881.061 ...
72 % 4385.993 4917.689 5480.084 6078.962 6722.700 ...
73 % 7420.744 8183.151 9023.181 9959.131 11019.028...
74 % 12253.003 13723.604 15599.238 18412.089 24539.570];
75
76 % Read input parameters.
77 d = varargin{1};
78 g = varargin{2};
79 dE= varargin{3};
80 GM= varargin{4};
81 nt= varargin{5};
82 flu = varargin{6};
83 blkFile = varargin{7};
84 if length(varargin) >= 8 & ~isempty(varargin{8})
85 mask = varargin{8};
86 masking = 1;
87 disp('Masking is on...')
88 end
89 if length(varargin) == 9
90 PHIref= varargin{9};
91 end
92
93 nBas = 0;
94 if isequal(flu,'A'), nout = 5; end
95 if isequal(flu,'O'), nout = 7; end
96 flag_tot=0;
97 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
98 % Prepare / reform incoming data %
99 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
100
101 % Determine time indecies.
102 %if isempty(time), time = d.iters_read_from_file; i_time = 1:length(time);
103 %else [dump,i_time] = ismember(time,d.iters_read_from_file); end
104
105 nc = size(g.HFacC,2);
106 nr = size(g.HFacC,3);
107 i_time=1:nt;
108
109 if nr~=5
110 LhVap = 2500e3;
111 grav = 9.79764;
112 RDGAS = 287.04;
113 CpA = RDGAS/kappa;
114 end
115
116 ac = reshape(g.rA ,[6*nc*nc, 1]);
117 hw = reshape(g.HFacW(1:6*nc,1:nc,1:nr),[6*nc*nc,nr]);
118 hs = reshape(g.HFacS(1:6*nc,1:nc,1:nr),[6*nc*nc,nr]);
119 dxc = reshape(g.dxC(1:6*nc,1:nc) ,[6*nc*nc, 1]);
120 dyc = reshape(g.dyC(1:6*nc,1:nc) ,[6*nc*nc, 1]);
121 dxg = reshape(g.dxG(1:6*nc,1:nc) ,[6*nc*nc, 1]);
122 dyg = reshape(g.dyG(1:6*nc,1:nc) ,[6*nc*nc, 1]);
123 drf = reshape(g.drF,[1,length(g.drF)]);
124 Z = reshape(g.Z,[1,length(g.Z)]);
125
126 %u = reshape(d.UVEL(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
127 %v = reshape(d.VVEL(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
128 ut = reshape(dE.UTHMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
129 vt = reshape(dE.VTHMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
130 hu = reshape(dE.UVELMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
131 hv = reshape(dE.VVELMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
132 t = d.THETA(1:6*nc,1:nc,:,i_time);
133 if isequal(flu,'O')
134 Kux = reshape(GM.GM_Kux(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
135 Kvy = reshape(GM.GM_Kvy(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
136
137 if isfield(GM,'GM_ubT') %%% if advective form of GM
138 UbTgm = reshape(GM.GM_ubT(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
139 VbTgm = reshape(GM.GM_vbT(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
140 elseif isfield(GM,'GM_KuzTz') %%% if skew-flux form of GM
141 UbTgm = reshape(GM.GM_KuzTz(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
142 VbTgm = reshape(GM.GM_KvzTz(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
143 elseif isfield(dE,'ADVx_TH') %%% if total advective field
144 flag_tot = 1;
145 UbTgm = reshape(dE.ADVx_TH(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
146 VbTgm = reshape(dE.ADVy_TH(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
147 else
148 UbTgm = zeros(6*nc*nc,nr,nt);
149 VbTgm = zeros(6*nc*nc,nr,nt);
150 end
151 end
152
153 if isequal(flu,'A')
154 up = reshape(dE.UVELPHI(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
155 vp = reshape(dE.VVELPHI(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
156 uq = reshape(dE.USLTMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
157 vq = reshape(dE.VSLTMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
158 q = d.SALT(1:6*nc,1:nc,:,i_time);
159 p = d.PHIHYD(1:6*nc,1:nc,:,i_time);
160 ut = ut .* ( repmat(Z,[6*nc*nc 1 nt]) / 1e5 ).^kappa;
161 vt = vt .* ( repmat(Z,[6*nc*nc 1 nt]) / 1e5 ).^kappa;
162 t = t .* ( repmat(reshape(Z,[1 1 nr]),[6*nc nc 1 nt]) / 1e5 ).^kappa;
163 end
164
165 if masking == 1
166 hu = repmat(reshape(mask.maskW(:,:,1),6*nc*nc,1),[1 nr nt]) .* hu;
167 hv = repmat(reshape(mask.maskS(:,:,1),6*nc*nc,1),[1 nr nt]) .* hv;
168 ut = repmat(reshape(mask.maskW(:,:,1),6*nc*nc,1),[1 nr nt]) .* ut;
169 vt = repmat(reshape(mask.maskS(:,:,1),6*nc*nc,1),[1 nr nt]) .* vt;
170 if isequal(flu,'O')
171 Kux = repmat(reshape(mask.maskW(:,:,1),6*nc*nc,1),[1 nr nt]) .* Kux;
172 Kvy = repmat(reshape(mask.maskS(:,:,1),6*nc*nc,1),[1 nr nt]) .* Kvy;
173 UbTgm = repmat(reshape(mask.maskW(:,:,1),6*nc*nc,1),[1 nr nt]) .* UbTgm;
174 VbTgm = repmat(reshape(mask.maskS(:,:,1),6*nc*nc,1),[1 nr nt]) .* VbTgm;
175 end
176 end
177
178
179 % Load broken line information. Compute (tracer point) cell area between
180 % broken lines for each basin. There are nbkl broken lines and nbkl+1
181 % bands between broken lines. The variable "bkl_Zon" gives the zone number
182 % (nbkl+1 total) for a given index between 0 and nbkl, that is, nbkl+1
183 % total zones. Comments block is for eventual addition of multiple basin
184 % calculations.
185 load(blkFile);
186 ydim=length(bkl_Ylat);
187 AreaZon=zeros(ydim+1,1+nBas);
188 for j = 1:ydim+1
189 izon = find(bkl_Zon == j-1);
190 AreaZon(j,1) = sum(ac(izon));
191 % for b = 1:nBas,
192 % tmp = ac.*mskBc(:,b);
193 % AreaZon(j,1+b) = sum(tmp(izon));
194 % end
195 end
196
197 % Latitute plotting information. Average latitude of a broken line
198 % (ylatHF) is calculated from a mean value of the y value of all the edges.
199 % The latitude at the surface flux points is a mean of the broken line mean
200 % values.
201 YlatAv=sum(bkl_Ysg,1)./(1+bkl_Npts'); %'
202 ylatHT = [-90,YlatAv,90];
203 ylatSF = ( ylatHT(2:ydim+2) + ylatHT(1:ydim+1) )./2;
204
205 % The variable "bkl_Flg" is -1/1 if edge (on a given broken) has a u point
206 % and -2/2 if it has a v point. Positive/negative values contribute
207 % positively/negatively to northward heat transport (this depends on the
208 % orientation of the cell). A zero value indicates an end of edges that
209 % contribute to a broken line. The u and v information is parced into two
210 % seperate fields, ufac and vfac (-2/2 are reduced to -1/1 for vfac).
211 ufac = zeros([size(bkl_Flg),1+nBas]);
212 vfac = zeros([size(bkl_Flg),1+nBas]);
213 ufac(:,:,1) = rem(bkl_Flg,2);
214 vfac(:,:,1) = fix(bkl_Flg/2);
215 % for jl=1:ydim,
216 % ie=bkl_Npts(jl);
217 % for b=1:nBas,
218 % ufac(1:ie,jl,1+b)=mskBw(bkl_IJuv(1:ie,jl),b).*ufac(1:ie,jl,1);
219 % vfac(1:ie,jl,1+b)=mskBs(bkl_IJuv(1:ie,jl),b).*vfac(1:ie,jl,1);
220 % end
221 % end
222 ufacabs = abs(ufac);
223 vfacabs = abs(vfac);
224
225 % Prepare mask(s).
226 % ??? I temporarily took out the code to configure the masks beyond this
227 % global one. Does this need to account for a ridge if present?
228 mskG=ones(ydim+1,1+nBas);
229
230 % Area factors. "ArW_Dif" and "ArS_Dif" the areas for the western and
231 % southern edge of cells, respectively The "_Dif" suffix indicates the
232 % areas used for the diffusivity because there is an extra "dxc" or "dyc"
233 % from the gradient (here for computational efficiency reasons). The
234 % division by "dxc" and "dyc" is associates with gradient of temperature.
235 %
236 % ??? Why is the land mask (hw and hs) only in the diffusive area term?
237 ArW = dyg*reshape(drf,[1,length(drf)]);
238 ArS = dxg*reshape(drf,[1,length(drf)]);
239 ArW_Dif=hw.*((dyg./dxc)*reshape(drf,[1,length(drf)]));
240 ArS_Dif=hs.*((dxg./dyc)*reshape(drf,[1,length(drf)]));
241
242 % Compute the temperature and its gradient and the velocity points:
243 % tbi/tdi = temperature between/difference i points (at u points)
244 % tbj/tdj = temperature between/difference j points (at v points)
245 % The cube is first split and the extra points are added to the files.
246 % Then the means and differences are taken. Note that the division of dxc
247 % and dyc for the gradient is not applied until later for computational
248 % efficiency purposes. The arrays are then croped and reshaped to the
249 % format for the other field variables, [6*nc*nc,nr]. Note that the
250 % split_C_cub function adds a row/column of tracer points in front of the
251 % first row/column of the tile matries. This, when the differences and
252 % gradients are computed and cropped, the off indecies are selected from
253 % [2:nc+1] rather than [1:nc]. (This was a bit mystifying to me).
254 t6bi=zeros(nc,nc+1,nr,nt,6); t6di=t6bi; q6bi=t6bi;
255 t6bj=zeros(nc+1,nc,nr,nt,6); t6dj=t6bj; q6bj=t6bj;
256 t6t=split_C_cub(t);
257 t6bi([1:nc],:,:,:,:) = ( t6t([1:nc],:,:,:,:) + t6t([2:nc+1],:,:,:,:) )./2;
258 t6bj(:,[1:nc],:,:,:) = ( t6t(:,[1:nc],:,:,:) + t6t(:,[2:nc+1],:,:,:) )./2;
259 t6di([1:nc],:,:,:,:) = ( t6t([1:nc],:,:,:,:) - t6t([2:nc+1],:,:,:,:) );
260 t6dj(:,[1:nc],:,:,:) = ( t6t(:,[1:nc],:,:,:) - t6t(:,[2:nc+1],:,:,:) );
261 tbi = t6bi([1:nc],[2:nc+1],:,:,:);
262 tbj = t6bj([2:nc+1],[1:nc],:,:,:);
263 tdi = t6di([1:nc],[2:nc+1],:,:,:);
264 tdj = t6dj([2:nc+1],[1:nc],:,:,:);
265 tbi=reshape(permute(tbi,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
266 tbj=reshape(permute(tbj,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
267 tdi=reshape(permute(tdi,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
268 tdj=reshape(permute(tdj,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
269 if isequal(flu,'A')
270 q6t=split_C_cub(q);
271 q6bi([1:nc],:,:,:,:) = (q6t([1:nc],:,:,:,:)+q6t([2:nc+1],:,:,:,:))./2;
272 q6bj(:,[1:nc],:,:,:) = (q6t(:,[1:nc],:,:,:)+q6t(:,[2:nc+1],:,:,:))./2;
273 qbi = q6bi([1:nc],[2:nc+1],:,:,:);
274 qbj = q6bj([2:nc+1],[1:nc],:,:,:);
275 qbi=reshape(permute(qbi,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
276 qbj=reshape(permute(qbj,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
277
278 p6t=split_C_cub(p);
279 p6bi([1:nc],:,:,:,:) = (p6t([1:nc],:,:,:,:)+p6t([2:nc+1],:,:,:,:))./2;
280 p6bj(:,[1:nc],:,:,:) = (p6t(:,[1:nc],:,:,:)+p6t(:,[2:nc+1],:,:,:))./2;
281 pbi = p6bi([1:nc],[2:nc+1],:,:,:);
282 pbj = p6bj([2:nc+1],[1:nc],:,:,:);
283 pbi=reshape(permute(pbi,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
284 pbj=reshape(permute(pbj,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
285 end
286
287 % Prepare output arrays. "nout" is the number of transport output fields.
288 % It is currently hard-coded, but could eventually be an input parameters
289 % to set which output fields are desired if some of then become
290 % computationally expensive.
291 % SenHT = Sensible heat transport
292 % SenSF = Sensible implied surface flux
293 % IntV = Integrated volume transport
294 % IntT = Integrated temperature
295 SenHT = zeros(ydim+2,1+nBas,nt,nout);
296 SenSF = zeros(ydim+1,1+nBas,nt,nout);
297 IntV = zeros(ydim,nr,1+nBas,nt);
298 IntT = zeros(ydim,nr,1+nBas,nt);
299 IntM = zeros(ydim,nr,1+nBas,nt);
300 if isequal(flu,'A')
301 LatHT = zeros(ydim+2,1+nBas,nt,nout);
302 PotHT = zeros(ydim+2,1+nBas,nt,nout);
303 LatSF = zeros(ydim+1,1+nBas,nt,nout);
304 IntQ = zeros(ydim,nr,1+nBas,nt);
305 IntP = zeros(ydim,nr,1+nBas,nt);
306 end
307 Psi = zeros(ydim+2,1+nBas,nt);
308
309 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
310 % Make heat transport calculations %
311 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
312
313 % Preparation for calculation of zonal average temperature. The
314 % tempereature multiplied by the appropriate length scale ("tbi_temp",
315 % "tbj_temp") is summed up ("IntT" in the next section) and
316 % divided by the total length ("IntM", composed from summing "hw_temp",
317 % "hs_temp").
318 hw_temp = zeros(size(hw));
319 hs_temp = zeros(size(hs));
320 for k=1:nr,
321 hw_temp(:,k) = dyg.*hw(:,k);
322 hs_temp(:,k) = dxg.*hs(:,k);
323 end
324
325 for it = 1:length(i_time)
326
327 % uz / vz = Volume transport though cell faces (velocity times area).
328 % Used for zonal mean volume transport (4).
329 % utz1/vtz1 = Eulerian sensible heat transport through cell faces (1).
330 % utz2/vtz2 = Sensible heat transport through cell faces by Eulerian
331 % mean circulations (2).
332 % dtx1/dty1 = Temperatude gradient at cell face times the area (when
333 % multiplied by the diffusion will be the horizontal
334 % diffusion heat transport) (6).
335 uz = ArW.*hu(:,:,it);
336 vz = ArS.*hv(:,:,it);
337 utz1 = sum(ArW.*ut(:,:,it),2);
338 vtz1 = sum(ArS.*vt(:,:,it),2);
339 utz2 = sum(ArW.*hu(:,:,it).*tbi(:,:,it),2);
340 vtz2 = sum(ArS.*hv(:,:,it).*tbj(:,:,it),2);
341 if isequal(flu,'A')
342 uqz1 = sum(ArW.*uq(:,:,it),2);
343 vqz1 = sum(ArS.*vq(:,:,it),2);
344 uqz2 = sum(ArW.*hu(:,:,it).*qbi(:,:,it),2);
345 vqz2 = sum(ArS.*hv(:,:,it).*qbj(:,:,it),2);
346 upz1 = sum(ArW.*(up(:,:,it)+hu(:,:,it).*repmat(PHIref,[6*nc*nc 1])),2);
347 vpz1 = sum(ArS.*(vp(:,:,it)+hv(:,:,it).*repmat(PHIref,[6*nc*nc 1])),2);
348 upz2 = sum(ArW.*hu(:,:,it).*(pbi(:,:,it)+repmat(PHIref,[6*nc*nc 1])),2);
349 vpz2 = sum(ArS.*hv(:,:,it).*(pbj(:,:,it)+repmat(PHIref,[6*nc*nc 1])),2);
350 end
351 if isequal(flu,'O')
352 dtx1 = sum(ArW_Dif.*Kux(:,:,it).*tdi(:,:,it),2);
353 dty1 = sum(ArS_Dif.*Kvy(:,:,it).*tdj(:,:,it),2);
354 Kuztz1 = sum(UbTgm(:,:,it),2);
355 Kvztz1 = sum(VbTgm(:,:,it),2);
356 end
357
358 % Preparation for calculation of zonal average temperature. The
359 % temperature multiplied by the appropriate length scale ("tbi_temp",
360 % "tbj_temp") is summed up ("IntT" in the next section) and
361 % divided by the total length ("IntM", composed from summing "hw_temp",
362 % "hs_temp").
363 tbi_temp = hw_temp.*tbi(:,:,it);
364 tbj_temp = hs_temp.*tbj(:,:,it);
365 if isequal(flu,'A')
366 qbi_temp = hw_temp.*qbi(:,:,it);
367 qbj_temp = hs_temp.*qbj(:,:,it);
368 pbi_temp = hw_temp.*(pbi(:,:,it)+repmat(PHIref,[6*nc*nc 1]));
369 pbj_temp = hs_temp.*(pbj(:,:,it)+repmat(PHIref,[6*nc*nc 1]));
370 end
371
372 % Block 1:
373 % With the vertical integral of heat transport calculated across cell
374 % edges, the zonal integral (along the broken line) is computed to
375 % determine the total northward heat transport. The first for loop is
376 % over the individual broken lines (determining the northward HT at the
377 % representative latitude). The second loop is over the basins. The
378 % third loop is over the individual edges along a specific broken line.
379 % Note that an individual cell can have two edges (u and v) that have a
380 % HT contributions. Hence the variable containing indecies of cells
381 % with edges along the broken lines, "bkl_IJuv", has some repeats.
382 % Note that the variable "bkl_Npts" is the number of edges along a
383 % given broken line. Note also that the latitude axis starts at 2
384 % because heat transport at extremes (latitute = -90/90) is zero by
385 % definition. Recall that index (1) is total Eulerian transport, (2)
386 % is from the mean circulations, and (3) is from the horizontal
387 % diffusion.
388 %
389 % Block 2:
390 % Here zonal average circulation and temperature / moisture is
391 % calculated. The zonal average volume transport v (IntV) and t
392 % (IntT/IntM) are computed first and are multiplied together at the
393 % end.
394 for jl=1:ydim
395 ie=bkl_Npts(jl);
396 for b=1:1+nBas
397 ij=bkl_IJuv(1:ie,jl);
398 % Block 1:
399 SenHT(1+jl,b,it,1) = SenHT(1+jl,b,it,1) + ...
400 sum(ufac(1:ie,jl,b).*utz1(ij) + ...
401 vfac(1:ie,jl,b).*vtz1(ij));
402 SenHT(1+jl,b,it,2) = SenHT(1+jl,b,it,2) + ...
403 sum(ufac(1:ie,jl,b).*utz2(ij) + ...
404 vfac(1:ie,jl,b).*vtz2(ij));
405 if isequal(flu,'A')
406 LatHT(1+jl,b,it,1) = LatHT(1+jl,b,it,1) + ...
407 sum(ufac(1:ie,jl,b).*uqz1(ij) + ...
408 vfac(1:ie,jl,b).*vqz1(ij));
409 LatHT(1+jl,b,it,2) = LatHT(1+jl,b,it,2) + ...
410 sum(ufac(1:ie,jl,b).*uqz2(ij) + ...
411 vfac(1:ie,jl,b).*vqz2(ij));
412 PotHT(1+jl,b,it,1) = PotHT(1+jl,b,it,1) + ...
413 sum(ufac(1:ie,jl,b).*upz1(ij) + ...
414 vfac(1:ie,jl,b).*vpz1(ij));
415 PotHT(1+jl,b,it,2) = PotHT(1+jl,b,it,2) + ...
416 sum(ufac(1:ie,jl,b).*upz2(ij) + ...
417 vfac(1:ie,jl,b).*vpz2(ij));
418 end
419 if isequal(flu,'O')
420 SenHT(1+jl,b,it,6) = SenHT(1+jl,b,it,6) + ...
421 sum(ufac(1:ie,jl,b).*dtx1(ij) + ...
422 vfac(1:ie,jl,b).*dty1(ij));
423 SenHT(1+jl,b,it,7) = SenHT(1+jl,b,it,7) + ...
424 sum(ufac(1:ie,jl,b).*Kuztz1(ij) + ...
425 vfac(1:ie,jl,b).*Kvztz1(ij));
426 end
427 % Block 2:
428 IntV(jl,:,b,it) = IntV(jl,:,b,it) ...
429 + ufac(1:ie,jl,b)'*uz(ij,:) ...
430 + vfac(1:ie,jl,b)'*vz(ij,:) ;
431 IntT(jl,:,b,it) = IntT(jl,:,b,it) ...
432 + ufacabs(1:ie,jl,b)'*tbi_temp(ij,:) ...
433 + vfacabs(1:ie,jl,b)'*tbj_temp(ij,:);
434 IntM(jl,:,b,it) = IntM(jl,:,b,it) ...
435 + ufacabs(1:ie,jl,b)'*hw_temp(ij,:) ...
436 + vfacabs(1:ie,jl,b)'*hs_temp(ij,:);
437 if isequal(flu,'A')
438 IntQ(jl,:,b,it) = IntQ(jl,:,b,it) ...
439 + ufacabs(1:ie,jl,b)'*qbi_temp(ij,:) ...
440 + vfacabs(1:ie,jl,b)'*qbj_temp(ij,:);
441 IntP(jl,:,b,it) = IntP(jl,:,b,it) ...
442 + ufacabs(1:ie,jl,b)'*pbi_temp(ij,:) ...
443 + vfacabs(1:ie,jl,b)'*pbj_temp(ij,:);
444 end
445 end
446 end
447
448 % Prepare HT output: Calculate HT by zonal flows and tabulate
449 % residuals. Also, the multiplicative constants (Cp,rho,grav,LhVap) are
450 % applied here to put moisture and potential temperature fluxes in
451 % terms of heat transports.
452 tmp = IntV(:,:,:,it) .* IntT(:,:,:,it) ...
453 ./ change(IntM(:,:,:,it),'==',0,NaN);
454 SenHT(2:ydim+1,:,it,4) = sum(change(tmp,'==',NaN,0),2);
455 % SenHT(2:ydim+1,:,it,4) = sum( IntV(:,:,:,it) ...
456 % .* IntT(:,:,:,it) ...
457 % ./ IntM(:,:,:,it),2);
458 SenHT(:,:,it,3) = SenHT(:,:,it,1) - SenHT(:,:,it,2);
459 SenHT(:,:,it,5) = SenHT(:,:,it,2) - SenHT(:,:,it,4);
460 if isequal(flu,'O')
461 % SenHT(:,:,it,6) = DiffKh.*SenHT(:,:,it,6);
462 SenHT(:,:,it,:) = (CpO*RhoO)*SenHT(:,:,it,:);
463 if flag_tot==1
464 SenHT(:,:,it,7)=SenHT(:,:,it,7)-SenHT(:,:,it,1);
465 end
466 elseif isequal(flu,'A')
467 SenHT(:,:,it,:) = (CpA./grav).*SenHT(:,:,it,:);
468 LatHT(2:ydim+1,:,it,4) = sum( IntV(:,:,:,it) ...
469 .* IntQ(:,:,:,it) ...
470 ./ IntM(:,:,:,it),2);
471 LatHT(:,:,it,3) = LatHT(:,:,it,1) - LatHT(:,:,it,2);
472 LatHT(:,:,it,5) = LatHT(:,:,it,2) - LatHT(:,:,it,4);
473 LatHT(:,:,it,:) = (LhVap./grav).*LatHT(:,:,it,:);
474
475 PotHT(2:ydim+1,:,it,4) = sum( IntV(:,:,:,it) ...
476 .* IntP(:,:,:,it) ...
477 ./ IntM(:,:,:,it),2);
478 PotHT(:,:,it,3) = PotHT(:,:,it,1) - PotHT(:,:,it,2);
479 PotHT(:,:,it,5) = PotHT(:,:,it,2) - PotHT(:,:,it,4);
480 PotHT(:,:,it,:) = 1/grav * PotHT(:,:,it,:);
481 end
482 Psi(2:ydim+1,:,it) = - sum( IntV(:,:,:,it) ,2 );
483
484 % Implied surface heat flux from heat transports (implied heating).
485 % Tabulated as the difference in heat transports between two broken
486 % lines divided by the zonal band area.
487 mskG = reshape(mskG,(ydim+1)*(1+nBas),1);
488 I = find(mskG==0);
489 mskG = reshape(mskG,ydim+1,1+nBas);
490 var = zeros(ydim+1,1+nBas);
491 for n=1:min(nout,6),
492 varT = SenHT([2:ydim+2],:,it,n) ...
493 - SenHT([1:ydim+1],:,it,n);
494 varT = reshape(varT,(ydim+1)*(1+nBas),1); varT(I)=NaN;
495 varT = reshape(varT,ydim+1,1+nBas);
496 SenSF([1:ydim+1],:,it,n) = varT./AreaZon;
497 if isequal(flu,'A')
498 for n=1:min(nout,6)
499 varQ = LatHT([2:ydim+2],:,it,n) ...
500 - LatHT([1:ydim+1],:,it,n);
501 varQ = reshape(varQ,(ydim+1)*(1+nBas),1); varQ(I)=NaN;
502 varQ = reshape(varQ,ydim+1,1+nBas);
503 LatSF([1:ydim+1],:,it,n) = varQ./AreaZon;
504 end
505 end
506 end
507 end
508
509
510 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
511 % Assign outputs, put in units of PW %
512 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
513
514 SenHT = SenHT*1e-15;
515
516 HT.time = i_time;
517 HT.SenHT = reshape(SenHT,ydim+2,nt,nout);
518 HT.SenSF = reshape(SenSF,ydim+1,nt,nout);
519 HT.ylatHT = ylatHT;
520 HT.ylatSF = ylatSF;
521 HT.AreaZon = AreaZon;
522 HT.PsiSurf = 1e-6*reshape(Psi,ydim+2,nt);
523
524 if isequal(flu,'A')
525 LatHT = LatHT*1e-15;
526 PotHT = PotHT*1e-15;
527 HT.LatHT = reshape(LatHT,ydim+2,nt,nout);
528 HT.LatSF = reshape(LatSF,ydim+1,nt,nout);
529 HT.PotHT = reshape(PotHT,ydim+2,nt,nout);
530 end
531

  ViewVC Help
Powered by ViewVC 1.1.22