/[MITgcm]/MITgcm_contrib/dfer/matlab_stuff/calcHeatTransDirect.m
ViewVC logotype

Annotation of /MITgcm_contrib/dfer/matlab_stuff/calcHeatTransDirect.m

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (hide annotations) (download)
Wed Mar 7 22:01:18 2018 UTC (7 years, 4 months ago) by dfer
Branch: MAIN
Changes since 1.1: +12 -78 lines
Update with various little adjustments.

1 dfer 1.1 function HT = calcHeatTransDirect(varargin)
2    
3 dfer 1.2 % HT = calcHeatTransDirect(d,g,dE,GM,time,flu,blkFile,[mask,phi_ref]);
4 dfer 1.1 %
5     % Input arguements:
6     % The incoming field data (d) and grid data (g) must be in a structured
7     % array format (which is the format that comes from rdmnc):
8 dfer 1.2 % d [Structure] Various inputs depending on oceanic or
9     % atmospheric computation, rstar or not,
10     % and GM form/ouputs
11     % g [Structure] drF,dxG,dyG,dxC,dyC,HFacW,HFacS,rA
12     % dE [Structure] More field data
13     % GM [Structure] Gent anf McWilliams data
14 dfer 1.1 % Other input parameters:
15 dfer 1.2 % time [vector] Time levels to analyze ([] for all)
16     % flu [string] 'O' or 'A' for ocean or atmosphere
17     % blkFile [string] Broken line file (eg 'isoLat_cs32_59.mat')
18 dfer 1.1 % Optional parameters:
19 dfer 1.2 % mask [Structure] W and S mask
20     % phi_ref [vector] Reference geopotential height
21 dfer 1.1 %
22     % Output:
23     % HT_Out is a structured array with the following fields:
24     % time ([nt,1]) Time axis
25     % ylatHT ([ny,1]) Heat transport latitude axis
26     % ylatSF ([ny-1,1]) Implied heating latitude axis
27     % AreaZon ([ny,1]) Area in zonal bands
28     % SenHT ([ny,nBas,nt,nFld]) Sensible heat transport
29     % SenSF ([ny-1,nBas,nt,nFld]) Implied heating above
30     % LatHT ([ny,nBas,nt,nFld]) Latent heat transport (atm only)
31     % LatSF ([ny-1,nBas,nt,nFld]) Implied heating from aboce (atm only)
32     % Currently, the routine is only configured to handle the global basin,
33     % so nBas = 1 for the output. ny is defined by the broken line file used
34     % for the cube calculation. nFld is the heat transport component:
35     % nFld = 1 = Eulerian circulation HT
36     % nFld = 2 = HT by time mean circulation
37     % nFld = 3 = Residual [3=1-2]
38     % nFld = 4 = HT by zonal mean circulation
39     % nFld = 5 = Residual [5=2-4]
40     % Ocn only:
41     % If GM advective form:
42     % nFld = 6 = HT by horizontal diffusion
43     % If Skew flux form:
44     % nFld = 6 = total (GM+Redi) eddy transport
45     % nFld = 7 = GM (advective) eddy transport
46     %
47     % Description:
48     % Calculation heat transport, and to degree possible, decomposition.
49     % Heat transport is given in PW and the implied surface heating/flux
50     % in W/m^2. The incoming data arrays are all assumed to be of the
51     % dimensions [6*nc,nc,nr,nt].
52     %
53     % Original Author: Jean-Michel Campin
54     % Modifications: Daniel Enderton
55    
56     % Default constants
57     LhVap = 2501;
58     grav = 9.81;
59     CpO = 3994;
60     RhoO = 1030;
61     CpA = 1004;
62     kappa = 2/7;
63     masking=0;
64    
65     PHIref = grav * [ 431.199 2105.998 5536.327 10440.915 18190.889];
66     %PHIref = grav * [ 173.888 529.598 896.724 1276.210 1669.052 ...
67     % 2076.380 2499.554 2940.137 3399.937 3881.061 ...
68     % 4385.993 4917.689 5480.084 6078.962 6722.700 ...
69     % 7420.744 8183.151 9023.181 9959.131 11019.028...
70     % 12253.003 13723.604 15599.238 18412.089 24539.570];
71    
72     % Read input parameters.
73     d = varargin{1};
74     g = varargin{2};
75     dE= varargin{3};
76     GM= varargin{4};
77     nt= varargin{5};
78     flu = varargin{6};
79     blkFile = varargin{7};
80     if length(varargin) >= 8 & ~isempty(varargin{8})
81     mask = varargin{8};
82     masking = 1;
83     disp('Masking is on...')
84     end
85     if length(varargin) == 9
86     PHIref= varargin{9};
87     end
88    
89     nBas = 0;
90     if isequal(flu,'A'), nout = 5; end
91     if isequal(flu,'O'), nout = 7; end
92     flag_tot=0;
93     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
94     % Prepare / reform incoming data %
95     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
96    
97     % Determine time indecies.
98     %if isempty(time), time = d.iters_read_from_file; i_time = 1:length(time);
99     %else [dump,i_time] = ismember(time,d.iters_read_from_file); end
100    
101     nc = size(g.HFacC,2);
102     nr = size(g.HFacC,3);
103     i_time=1:nt;
104    
105     if nr~=5
106     LhVap = 2500e3;
107     grav = 9.79764;
108     RDGAS = 287.04;
109     CpA = RDGAS/kappa;
110     end
111    
112     ac = reshape(g.rA ,[6*nc*nc, 1]);
113     hw = reshape(g.HFacW(1:6*nc,1:nc,1:nr),[6*nc*nc,nr]);
114     hs = reshape(g.HFacS(1:6*nc,1:nc,1:nr),[6*nc*nc,nr]);
115     dxc = reshape(g.dxC(1:6*nc,1:nc) ,[6*nc*nc, 1]);
116     dyc = reshape(g.dyC(1:6*nc,1:nc) ,[6*nc*nc, 1]);
117     dxg = reshape(g.dxG(1:6*nc,1:nc) ,[6*nc*nc, 1]);
118     dyg = reshape(g.dyG(1:6*nc,1:nc) ,[6*nc*nc, 1]);
119     drf = reshape(g.drF,[1,length(g.drF)]);
120     Z = reshape(g.Z,[1,length(g.Z)]);
121    
122     %u = reshape(d.UVEL(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
123     %v = reshape(d.VVEL(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
124     ut = reshape(dE.UTHMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
125     vt = reshape(dE.VTHMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
126     hu = reshape(dE.UVELMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
127     hv = reshape(dE.VVELMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
128     t = d.THETA(1:6*nc,1:nc,:,i_time);
129     if isequal(flu,'O')
130     Kux = reshape(GM.GM_Kux(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
131     Kvy = reshape(GM.GM_Kvy(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
132    
133     if isfield(GM,'GM_ubT') %%% if advective form of GM
134     UbTgm = reshape(GM.GM_ubT(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
135     VbTgm = reshape(GM.GM_vbT(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
136     elseif isfield(GM,'GM_KuzTz') %%% if skew-flux form of GM
137     UbTgm = reshape(GM.GM_KuzTz(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
138     VbTgm = reshape(GM.GM_KvzTz(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
139     elseif isfield(dE,'ADVx_TH') %%% if total advective field
140     flag_tot = 1;
141     UbTgm = reshape(dE.ADVx_TH(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
142     VbTgm = reshape(dE.ADVy_TH(1:6*nc,1:nc,:,i_time),[6*nc*nc,nr,nt]);
143     else
144     UbTgm = zeros(6*nc*nc,nr,nt);
145     VbTgm = zeros(6*nc*nc,nr,nt);
146     end
147     end
148    
149     if isequal(flu,'A')
150     up = reshape(dE.UVELPHI(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
151     vp = reshape(dE.VVELPHI(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
152     uq = reshape(dE.USLTMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
153     vq = reshape(dE.VSLTMASS(1:6*nc,1:nc,:,i_time) ,[6*nc*nc,nr,nt]);
154     q = d.SALT(1:6*nc,1:nc,:,i_time);
155     p = d.PHIHYD(1:6*nc,1:nc,:,i_time);
156     ut = ut .* ( repmat(Z,[6*nc*nc 1 nt]) / 1e5 ).^kappa;
157     vt = vt .* ( repmat(Z,[6*nc*nc 1 nt]) / 1e5 ).^kappa;
158     t = t .* ( repmat(reshape(Z,[1 1 nr]),[6*nc nc 1 nt]) / 1e5 ).^kappa;
159     end
160    
161     if masking == 1
162     hu = repmat(reshape(mask.maskW(:,:,1),6*nc*nc,1),[1 nr nt]) .* hu;
163     hv = repmat(reshape(mask.maskS(:,:,1),6*nc*nc,1),[1 nr nt]) .* hv;
164     ut = repmat(reshape(mask.maskW(:,:,1),6*nc*nc,1),[1 nr nt]) .* ut;
165     vt = repmat(reshape(mask.maskS(:,:,1),6*nc*nc,1),[1 nr nt]) .* vt;
166     if isequal(flu,'O')
167     Kux = repmat(reshape(mask.maskW(:,:,1),6*nc*nc,1),[1 nr nt]) .* Kux;
168     Kvy = repmat(reshape(mask.maskS(:,:,1),6*nc*nc,1),[1 nr nt]) .* Kvy;
169     UbTgm = repmat(reshape(mask.maskW(:,:,1),6*nc*nc,1),[1 nr nt]) .* UbTgm;
170     VbTgm = repmat(reshape(mask.maskS(:,:,1),6*nc*nc,1),[1 nr nt]) .* VbTgm;
171     end
172     end
173    
174    
175     % Load broken line information. Compute (tracer point) cell area between
176     % broken lines for each basin. There are nbkl broken lines and nbkl+1
177     % bands between broken lines. The variable "bkl_Zon" gives the zone number
178     % (nbkl+1 total) for a given index between 0 and nbkl, that is, nbkl+1
179     % total zones. Comments block is for eventual addition of multiple basin
180     % calculations.
181     load(blkFile);
182     ydim=length(bkl_Ylat);
183     AreaZon=zeros(ydim+1,1+nBas);
184     for j = 1:ydim+1
185     izon = find(bkl_Zon == j-1);
186     AreaZon(j,1) = sum(ac(izon));
187     % for b = 1:nBas,
188     % tmp = ac.*mskBc(:,b);
189     % AreaZon(j,1+b) = sum(tmp(izon));
190     % end
191     end
192    
193     % Latitute plotting information. Average latitude of a broken line
194     % (ylatHF) is calculated from a mean value of the y value of all the edges.
195     % The latitude at the surface flux points is a mean of the broken line mean
196     % values.
197     YlatAv=sum(bkl_Ysg,1)./(1+bkl_Npts'); %'
198     ylatHT = [-90,YlatAv,90];
199     ylatSF = ( ylatHT(2:ydim+2) + ylatHT(1:ydim+1) )./2;
200    
201     % The variable "bkl_Flg" is -1/1 if edge (on a given broken) has a u point
202     % and -2/2 if it has a v point. Positive/negative values contribute
203     % positively/negatively to northward heat transport (this depends on the
204     % orientation of the cell). A zero value indicates an end of edges that
205     % contribute to a broken line. The u and v information is parced into two
206     % seperate fields, ufac and vfac (-2/2 are reduced to -1/1 for vfac).
207     ufac = zeros([size(bkl_Flg),1+nBas]);
208     vfac = zeros([size(bkl_Flg),1+nBas]);
209     ufac(:,:,1) = rem(bkl_Flg,2);
210     vfac(:,:,1) = fix(bkl_Flg/2);
211     % for jl=1:ydim,
212     % ie=bkl_Npts(jl);
213     % for b=1:nBas,
214     % ufac(1:ie,jl,1+b)=mskBw(bkl_IJuv(1:ie,jl),b).*ufac(1:ie,jl,1);
215     % vfac(1:ie,jl,1+b)=mskBs(bkl_IJuv(1:ie,jl),b).*vfac(1:ie,jl,1);
216     % end
217     % end
218     ufacabs = abs(ufac);
219     vfacabs = abs(vfac);
220    
221     % Prepare mask(s).
222     % ??? I temporarily took out the code to configure the masks beyond this
223     % global one. Does this need to account for a ridge if present?
224     mskG=ones(ydim+1,1+nBas);
225    
226     % Area factors. "ArW_Dif" and "ArS_Dif" the areas for the western and
227     % southern edge of cells, respectively The "_Dif" suffix indicates the
228     % areas used for the diffusivity because there is an extra "dxc" or "dyc"
229     % from the gradient (here for computational efficiency reasons). The
230     % division by "dxc" and "dyc" is associates with gradient of temperature.
231     %
232     % ??? Why is the land mask (hw and hs) only in the diffusive area term?
233     ArW = dyg*reshape(drf,[1,length(drf)]);
234     ArS = dxg*reshape(drf,[1,length(drf)]);
235     ArW_Dif=hw.*((dyg./dxc)*reshape(drf,[1,length(drf)]));
236     ArS_Dif=hs.*((dxg./dyc)*reshape(drf,[1,length(drf)]));
237    
238     % Compute the temperature and its gradient and the velocity points:
239     % tbi/tdi = temperature between/difference i points (at u points)
240     % tbj/tdj = temperature between/difference j points (at v points)
241     % The cube is first split and the extra points are added to the files.
242     % Then the means and differences are taken. Note that the division of dxc
243     % and dyc for the gradient is not applied until later for computational
244     % efficiency purposes. The arrays are then croped and reshaped to the
245     % format for the other field variables, [6*nc*nc,nr]. Note that the
246     % split_C_cub function adds a row/column of tracer points in front of the
247     % first row/column of the tile matries. This, when the differences and
248     % gradients are computed and cropped, the off indecies are selected from
249     % [2:nc+1] rather than [1:nc]. (This was a bit mystifying to me).
250     t6bi=zeros(nc,nc+1,nr,nt,6); t6di=t6bi; q6bi=t6bi;
251     t6bj=zeros(nc+1,nc,nr,nt,6); t6dj=t6bj; q6bj=t6bj;
252     t6t=split_C_cub(t);
253     t6bi([1:nc],:,:,:,:) = ( t6t([1:nc],:,:,:,:) + t6t([2:nc+1],:,:,:,:) )./2;
254     t6bj(:,[1:nc],:,:,:) = ( t6t(:,[1:nc],:,:,:) + t6t(:,[2:nc+1],:,:,:) )./2;
255     t6di([1:nc],:,:,:,:) = ( t6t([1:nc],:,:,:,:) - t6t([2:nc+1],:,:,:,:) );
256     t6dj(:,[1:nc],:,:,:) = ( t6t(:,[1:nc],:,:,:) - t6t(:,[2:nc+1],:,:,:) );
257     tbi = t6bi([1:nc],[2:nc+1],:,:,:);
258     tbj = t6bj([2:nc+1],[1:nc],:,:,:);
259     tdi = t6di([1:nc],[2:nc+1],:,:,:);
260     tdj = t6dj([2:nc+1],[1:nc],:,:,:);
261     tbi=reshape(permute(tbi,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
262     tbj=reshape(permute(tbj,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
263     tdi=reshape(permute(tdi,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
264     tdj=reshape(permute(tdj,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
265     if isequal(flu,'A')
266     q6t=split_C_cub(q);
267     q6bi([1:nc],:,:,:,:) = (q6t([1:nc],:,:,:,:)+q6t([2:nc+1],:,:,:,:))./2;
268     q6bj(:,[1:nc],:,:,:) = (q6t(:,[1:nc],:,:,:)+q6t(:,[2:nc+1],:,:,:))./2;
269     qbi = q6bi([1:nc],[2:nc+1],:,:,:);
270     qbj = q6bj([2:nc+1],[1:nc],:,:,:);
271     qbi=reshape(permute(qbi,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
272     qbj=reshape(permute(qbj,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
273    
274     p6t=split_C_cub(p);
275     p6bi([1:nc],:,:,:,:) = (p6t([1:nc],:,:,:,:)+p6t([2:nc+1],:,:,:,:))./2;
276     p6bj(:,[1:nc],:,:,:) = (p6t(:,[1:nc],:,:,:)+p6t(:,[2:nc+1],:,:,:))./2;
277     pbi = p6bi([1:nc],[2:nc+1],:,:,:);
278     pbj = p6bj([2:nc+1],[1:nc],:,:,:);
279     pbi=reshape(permute(pbi,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
280     pbj=reshape(permute(pbj,[1,5,2,3,4]),[6*nc*nc,nr,nt]);
281     end
282    
283     % Prepare output arrays. "nout" is the number of transport output fields.
284     % It is currently hard-coded, but could eventually be an input parameters
285     % to set which output fields are desired if some of then become
286     % computationally expensive.
287     % SenHT = Sensible heat transport
288     % SenSF = Sensible implied surface flux
289     % IntV = Integrated volume transport
290     % IntT = Integrated temperature
291     SenHT = zeros(ydim+2,1+nBas,nt,nout);
292     SenSF = zeros(ydim+1,1+nBas,nt,nout);
293     IntV = zeros(ydim,nr,1+nBas,nt);
294     IntT = zeros(ydim,nr,1+nBas,nt);
295     IntM = zeros(ydim,nr,1+nBas,nt);
296     if isequal(flu,'A')
297     LatHT = zeros(ydim+2,1+nBas,nt,nout);
298     PotHT = zeros(ydim+2,1+nBas,nt,nout);
299     LatSF = zeros(ydim+1,1+nBas,nt,nout);
300     IntQ = zeros(ydim,nr,1+nBas,nt);
301     IntP = zeros(ydim,nr,1+nBas,nt);
302     end
303     Psi = zeros(ydim+2,1+nBas,nt);
304    
305     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
306     % Make heat transport calculations %
307     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
308    
309     % Preparation for calculation of zonal average temperature. The
310     % tempereature multiplied by the appropriate length scale ("tbi_temp",
311     % "tbj_temp") is summed up ("IntT" in the next section) and
312     % divided by the total length ("IntM", composed from summing "hw_temp",
313     % "hs_temp").
314     hw_temp = zeros(size(hw));
315     hs_temp = zeros(size(hs));
316     for k=1:nr,
317     hw_temp(:,k) = dyg.*hw(:,k);
318     hs_temp(:,k) = dxg.*hs(:,k);
319     end
320    
321     for it = 1:length(i_time)
322    
323     % uz / vz = Volume transport though cell faces (velocity times area).
324     % Used for zonal mean volume transport (4).
325     % utz1/vtz1 = Eulerian sensible heat transport through cell faces (1).
326     % utz2/vtz2 = Sensible heat transport through cell faces by Eulerian
327     % mean circulations (2).
328     % dtx1/dty1 = Temperatude gradient at cell face times the area (when
329     % multiplied by the diffusion will be the horizontal
330     % diffusion heat transport) (6).
331     uz = ArW.*hu(:,:,it);
332     vz = ArS.*hv(:,:,it);
333     utz1 = sum(ArW.*ut(:,:,it),2);
334     vtz1 = sum(ArS.*vt(:,:,it),2);
335     utz2 = sum(ArW.*hu(:,:,it).*tbi(:,:,it),2);
336     vtz2 = sum(ArS.*hv(:,:,it).*tbj(:,:,it),2);
337     if isequal(flu,'A')
338     uqz1 = sum(ArW.*uq(:,:,it),2);
339     vqz1 = sum(ArS.*vq(:,:,it),2);
340     uqz2 = sum(ArW.*hu(:,:,it).*qbi(:,:,it),2);
341     vqz2 = sum(ArS.*hv(:,:,it).*qbj(:,:,it),2);
342     upz1 = sum(ArW.*(up(:,:,it)+hu(:,:,it).*repmat(PHIref,[6*nc*nc 1])),2);
343     vpz1 = sum(ArS.*(vp(:,:,it)+hv(:,:,it).*repmat(PHIref,[6*nc*nc 1])),2);
344     upz2 = sum(ArW.*hu(:,:,it).*(pbi(:,:,it)+repmat(PHIref,[6*nc*nc 1])),2);
345     vpz2 = sum(ArS.*hv(:,:,it).*(pbj(:,:,it)+repmat(PHIref,[6*nc*nc 1])),2);
346     end
347     if isequal(flu,'O')
348     dtx1 = sum(ArW_Dif.*Kux(:,:,it).*tdi(:,:,it),2);
349     dty1 = sum(ArS_Dif.*Kvy(:,:,it).*tdj(:,:,it),2);
350     Kuztz1 = sum(UbTgm(:,:,it),2);
351     Kvztz1 = sum(VbTgm(:,:,it),2);
352     end
353    
354     % Preparation for calculation of zonal average temperature. The
355     % temperature multiplied by the appropriate length scale ("tbi_temp",
356     % "tbj_temp") is summed up ("IntT" in the next section) and
357     % divided by the total length ("IntM", composed from summing "hw_temp",
358     % "hs_temp").
359     tbi_temp = hw_temp.*tbi(:,:,it);
360     tbj_temp = hs_temp.*tbj(:,:,it);
361     if isequal(flu,'A')
362     qbi_temp = hw_temp.*qbi(:,:,it);
363     qbj_temp = hs_temp.*qbj(:,:,it);
364     pbi_temp = hw_temp.*(pbi(:,:,it)+repmat(PHIref,[6*nc*nc 1]));
365     pbj_temp = hs_temp.*(pbj(:,:,it)+repmat(PHIref,[6*nc*nc 1]));
366     end
367    
368     % Block 1:
369     % With the vertical integral of heat transport calculated across cell
370     % edges, the zonal integral (along the broken line) is computed to
371     % determine the total northward heat transport. The first for loop is
372     % over the individual broken lines (determining the northward HT at the
373     % representative latitude). The second loop is over the basins. The
374     % third loop is over the individual edges along a specific broken line.
375     % Note that an individual cell can have two edges (u and v) that have a
376     % HT contributions. Hence the variable containing indecies of cells
377     % with edges along the broken lines, "bkl_IJuv", has some repeats.
378     % Note that the variable "bkl_Npts" is the number of edges along a
379     % given broken line. Note also that the latitude axis starts at 2
380     % because heat transport at extremes (latitute = -90/90) is zero by
381     % definition. Recall that index (1) is total Eulerian transport, (2)
382     % is from the mean circulations, and (3) is from the horizontal
383     % diffusion.
384     %
385     % Block 2:
386     % Here zonal average circulation and temperature / moisture is
387     % calculated. The zonal average volume transport v (IntV) and t
388     % (IntT/IntM) are computed first and are multiplied together at the
389     % end.
390     for jl=1:ydim
391     ie=bkl_Npts(jl);
392     for b=1:1+nBas
393     ij=bkl_IJuv(1:ie,jl);
394     % Block 1:
395     SenHT(1+jl,b,it,1) = SenHT(1+jl,b,it,1) + ...
396     sum(ufac(1:ie,jl,b).*utz1(ij) + ...
397     vfac(1:ie,jl,b).*vtz1(ij));
398     SenHT(1+jl,b,it,2) = SenHT(1+jl,b,it,2) + ...
399     sum(ufac(1:ie,jl,b).*utz2(ij) + ...
400     vfac(1:ie,jl,b).*vtz2(ij));
401     if isequal(flu,'A')
402     LatHT(1+jl,b,it,1) = LatHT(1+jl,b,it,1) + ...
403     sum(ufac(1:ie,jl,b).*uqz1(ij) + ...
404     vfac(1:ie,jl,b).*vqz1(ij));
405     LatHT(1+jl,b,it,2) = LatHT(1+jl,b,it,2) + ...
406     sum(ufac(1:ie,jl,b).*uqz2(ij) + ...
407     vfac(1:ie,jl,b).*vqz2(ij));
408     PotHT(1+jl,b,it,1) = PotHT(1+jl,b,it,1) + ...
409     sum(ufac(1:ie,jl,b).*upz1(ij) + ...
410     vfac(1:ie,jl,b).*vpz1(ij));
411     PotHT(1+jl,b,it,2) = PotHT(1+jl,b,it,2) + ...
412     sum(ufac(1:ie,jl,b).*upz2(ij) + ...
413     vfac(1:ie,jl,b).*vpz2(ij));
414     end
415     if isequal(flu,'O')
416     SenHT(1+jl,b,it,6) = SenHT(1+jl,b,it,6) + ...
417     sum(ufac(1:ie,jl,b).*dtx1(ij) + ...
418     vfac(1:ie,jl,b).*dty1(ij));
419     SenHT(1+jl,b,it,7) = SenHT(1+jl,b,it,7) + ...
420     sum(ufac(1:ie,jl,b).*Kuztz1(ij) + ...
421     vfac(1:ie,jl,b).*Kvztz1(ij));
422     end
423     % Block 2:
424     IntV(jl,:,b,it) = IntV(jl,:,b,it) ...
425     + ufac(1:ie,jl,b)'*uz(ij,:) ...
426     + vfac(1:ie,jl,b)'*vz(ij,:) ;
427     IntT(jl,:,b,it) = IntT(jl,:,b,it) ...
428     + ufacabs(1:ie,jl,b)'*tbi_temp(ij,:) ...
429     + vfacabs(1:ie,jl,b)'*tbj_temp(ij,:);
430     IntM(jl,:,b,it) = IntM(jl,:,b,it) ...
431     + ufacabs(1:ie,jl,b)'*hw_temp(ij,:) ...
432     + vfacabs(1:ie,jl,b)'*hs_temp(ij,:);
433     if isequal(flu,'A')
434     IntQ(jl,:,b,it) = IntQ(jl,:,b,it) ...
435     + ufacabs(1:ie,jl,b)'*qbi_temp(ij,:) ...
436     + vfacabs(1:ie,jl,b)'*qbj_temp(ij,:);
437     IntP(jl,:,b,it) = IntP(jl,:,b,it) ...
438     + ufacabs(1:ie,jl,b)'*pbi_temp(ij,:) ...
439     + vfacabs(1:ie,jl,b)'*pbj_temp(ij,:);
440     end
441     end
442     end
443    
444     % Prepare HT output: Calculate HT by zonal flows and tabulate
445     % residuals. Also, the multiplicative constants (Cp,rho,grav,LhVap) are
446     % applied here to put moisture and potential temperature fluxes in
447     % terms of heat transports.
448     tmp = IntV(:,:,:,it) .* IntT(:,:,:,it) ...
449     ./ change(IntM(:,:,:,it),'==',0,NaN);
450     SenHT(2:ydim+1,:,it,4) = sum(change(tmp,'==',NaN,0),2);
451     % SenHT(2:ydim+1,:,it,4) = sum( IntV(:,:,:,it) ...
452     % .* IntT(:,:,:,it) ...
453     % ./ IntM(:,:,:,it),2);
454     SenHT(:,:,it,3) = SenHT(:,:,it,1) - SenHT(:,:,it,2);
455     SenHT(:,:,it,5) = SenHT(:,:,it,2) - SenHT(:,:,it,4);
456     if isequal(flu,'O')
457     % SenHT(:,:,it,6) = DiffKh.*SenHT(:,:,it,6);
458     SenHT(:,:,it,:) = (CpO*RhoO)*SenHT(:,:,it,:);
459     if flag_tot==1
460     SenHT(:,:,it,7)=SenHT(:,:,it,7)-SenHT(:,:,it,1);
461     end
462     elseif isequal(flu,'A')
463     SenHT(:,:,it,:) = (CpA./grav).*SenHT(:,:,it,:);
464     LatHT(2:ydim+1,:,it,4) = sum( IntV(:,:,:,it) ...
465     .* IntQ(:,:,:,it) ...
466     ./ IntM(:,:,:,it),2);
467     LatHT(:,:,it,3) = LatHT(:,:,it,1) - LatHT(:,:,it,2);
468     LatHT(:,:,it,5) = LatHT(:,:,it,2) - LatHT(:,:,it,4);
469     LatHT(:,:,it,:) = (LhVap./grav).*LatHT(:,:,it,:);
470    
471     PotHT(2:ydim+1,:,it,4) = sum( IntV(:,:,:,it) ...
472     .* IntP(:,:,:,it) ...
473     ./ IntM(:,:,:,it),2);
474     PotHT(:,:,it,3) = PotHT(:,:,it,1) - PotHT(:,:,it,2);
475     PotHT(:,:,it,5) = PotHT(:,:,it,2) - PotHT(:,:,it,4);
476     PotHT(:,:,it,:) = 1/grav * PotHT(:,:,it,:);
477     end
478     Psi(2:ydim+1,:,it) = - sum( IntV(:,:,:,it) ,2 );
479    
480     % Implied surface heat flux from heat transports (implied heating).
481     % Tabulated as the difference in heat transports between two broken
482     % lines divided by the zonal band area.
483     mskG = reshape(mskG,(ydim+1)*(1+nBas),1);
484     I = find(mskG==0);
485     mskG = reshape(mskG,ydim+1,1+nBas);
486     var = zeros(ydim+1,1+nBas);
487     for n=1:min(nout,6),
488     varT = SenHT([2:ydim+2],:,it,n) ...
489     - SenHT([1:ydim+1],:,it,n);
490     varT = reshape(varT,(ydim+1)*(1+nBas),1); varT(I)=NaN;
491     varT = reshape(varT,ydim+1,1+nBas);
492     SenSF([1:ydim+1],:,it,n) = varT./AreaZon;
493     if isequal(flu,'A')
494     for n=1:min(nout,6)
495     varQ = LatHT([2:ydim+2],:,it,n) ...
496     - LatHT([1:ydim+1],:,it,n);
497     varQ = reshape(varQ,(ydim+1)*(1+nBas),1); varQ(I)=NaN;
498     varQ = reshape(varQ,ydim+1,1+nBas);
499     LatSF([1:ydim+1],:,it,n) = varQ./AreaZon;
500     end
501     end
502     end
503     end
504    
505    
506     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
507     % Assign outputs, put in units of PW %
508     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
509    
510     SenHT = SenHT*1e-15;
511    
512     HT.time = i_time;
513     HT.SenHT = reshape(SenHT,ydim+2,nt,nout);
514     HT.SenSF = reshape(SenSF,ydim+1,nt,nout);
515     HT.ylatHT = ylatHT;
516     HT.ylatSF = ylatSF;
517     HT.AreaZon = AreaZon;
518     HT.PsiSurf = 1e-6*reshape(Psi,ydim+2,nt);
519    
520     if isequal(flu,'A')
521     LatHT = LatHT*1e-15;
522     PotHT = PotHT*1e-15;
523     HT.LatHT = reshape(LatHT,ydim+2,nt,nout);
524     HT.LatSF = reshape(LatSF,ydim+1,nt,nout);
525     HT.PotHT = reshape(PotHT,ydim+2,nt,nout);
526     end
527    

  ViewVC Help
Powered by ViewVC 1.1.22