1 |
function [PsiB,ylat]=calcBolusPsiCube(varargin); |
2 |
|
3 |
% [PsiB,ylat]=calcBolusPsiCube(d,g,GMform,blkFile); |
4 |
% |
5 |
% Compute eddy-induced streamfunction from Gent and McWilliams scheme |
6 |
% |
7 |
% Input arguments: |
8 |
% The incoming field data (d) and grid data (g) must be in a structured |
9 |
% array format (which is the format that comes from rdmnc): |
10 |
% d [structure] Kwx, Kwy (Skew flux form) or GM_PsiX, GM_PsiY (advective form) |
11 |
% g [structure] drF,rA,dxC,dyC,dxG,dyG,HFacW,HFacS |
12 |
% GMform [string] GM form: 'Skew' or 'Advc' |
13 |
% blkFile [string] Broken line file |
14 |
% mask [structure] Optional: Mask field for computation per basin, it assumes that |
15 |
% maskW and maskS are provided in a structure |
16 |
% Output arguments: |
17 |
% PsiB : bolus streamfunction at interface level (in Sv) |
18 |
% ylat : meridional coordinate of PsiB |
19 |
% |
20 |
% Comments: |
21 |
% -For Skew-flux form: |
22 |
% PsiB computed from Kwx & Kwy divided by 2. |
23 |
% first average Kwx and Kwy at u- and v-points: |
24 |
% psiX=(rAc*Kwx)_i / (dXc*dYg) ; psiY=(rAc*Kwy)_j / dYc ; |
25 |
% and then "zonally" average along broken lines |
26 |
% -For Advective form: |
27 |
% PsiB computed from PsiX and PsiY |
28 |
% just need to "zonally" average along broken lines |
29 |
% |
30 |
%--------------------------------------------------------------------- |
31 |
|
32 |
masking=0; |
33 |
|
34 |
% Read input parameters. |
35 |
d = varargin{1}; |
36 |
g = varargin{2}; |
37 |
GMform = varargin{3}; |
38 |
blkFile = varargin{4}; |
39 |
if length(varargin) == 5 |
40 |
mask = varargin{5}; |
41 |
masking = 1; |
42 |
end |
43 |
|
44 |
|
45 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
46 |
% Prepare grid stuff % |
47 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
48 |
|
49 |
nc = size(g.XC,2); |
50 |
nr = length(g.drF); |
51 |
|
52 |
switch GMform |
53 |
case 'Skew' |
54 |
nt = size(d.GM_Kwx,4); |
55 |
case 'Advc' |
56 |
nt = size(d.GM_PsiX,4); |
57 |
end |
58 |
|
59 |
%--- areas : |
60 |
ra = g.rA; |
61 |
dxc = reshape(g.dxC(1:6*nc,1:nc),[6*nc*nc,1]); |
62 |
dyc = reshape(g.dyC(1:6*nc,1:nc),[6*nc*nc,1]); |
63 |
dxg = reshape(g.dxG(1:6*nc,1:nc),[6*nc*nc,1]); |
64 |
dyg = reshape(g.dyG(1:6*nc,1:nc),[6*nc*nc,1]); |
65 |
|
66 |
rAu=dxc.*dyg; |
67 |
rAv=dyc.*dxg; |
68 |
|
69 |
%--- masks : |
70 |
hw = reshape(g.HFacW(1:6*nc,1:nc,1:nr),[6*nc*nc,nr]); |
71 |
hs = reshape(g.HFacS(1:6*nc,1:nc,1:nr),[6*nc*nc,nr]); |
72 |
mskw=ceil(hw); mskw=min(1,mskw); |
73 |
msks=ceil(hs); msks=min(1,msks); |
74 |
|
75 |
mskWloc = ones(6*nc*nc,1); |
76 |
mskSloc = ones(6*nc*nc,1); |
77 |
if masking == 1 |
78 |
mskWloc=reshape(mask.maskW(:,:,1),6*nc*nc,1); |
79 |
mskSloc=reshape(mask.maskS(:,:,1),6*nc*nc,1); |
80 |
end |
81 |
|
82 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
83 |
% Read/Prepare GM fields % |
84 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
85 |
psiX_all = zeros(6*nc*nc,nr,nt); |
86 |
psiY_all = zeros(6*nc*nc,nr,nt); |
87 |
|
88 |
switch GMform |
89 |
case 'Skew' |
90 |
|
91 |
kwx_all = 0.5*d.GM_Kwx; |
92 |
kwy_all = 0.5*d.GM_Kwy; |
93 |
|
94 |
for it = 1:nt |
95 |
kwx = kwx_all(:,:,:,it); |
96 |
kwy = kwy_all(:,:,:,it); |
97 |
|
98 |
%-- K*ra + add 1 overlap : |
99 |
kwx = repmat(ra,[1 1 nr]).*kwx; |
100 |
kwy = repmat(ra,[1 1 nr]).*kwy; |
101 |
v6X = split_C_cub(kwx,1); |
102 |
v6Y = split_C_cub(kwy,1); |
103 |
k6x = v6X(:,[2:nc+1],:,:); |
104 |
k6y = v6Y([2:nc+1],:,:,:); |
105 |
|
106 |
%----------------- |
107 |
clear v6X v6Y |
108 |
v6X = (k6x([2:nc+1],:,:,:) + k6x([1:nc],:,:,:))/2; |
109 |
v6Y = (k6y(:,[2:nc+1],:,:) + k6y(:,[1:nc],:,:))/2; |
110 |
|
111 |
psiX = zeros(6*nc,nc,nr); |
112 |
psiY = zeros(6*nc,nc,nr); |
113 |
|
114 |
for n = 1:6 |
115 |
is = 1+nc*(n-1);ie=nc*n; |
116 |
psiX([is:ie],[1:nc],[1:nr]) = v6X(:,:,:,n); |
117 |
psiY([is:ie],[1:nc],[1:nr]) = v6Y(:,:,:,n); |
118 |
end |
119 |
|
120 |
psiX = reshape(psiX,6*nc*nc,nr); |
121 |
psiY = reshape(psiY,6*nc*nc,nr); |
122 |
|
123 |
psiX_all(:,:,it) = mskw .* psiX ./ repmat(rAu,[1,nr]); |
124 |
psiY_all(:,:,it) = msks .* psiY ./ repmat(rAv,[1,nr]); |
125 |
|
126 |
end |
127 |
|
128 |
case 'Advc' |
129 |
|
130 |
psiX_all = reshape(d.GM_PsiX(1:6*nc,:,:,1:nt),6*nc*nc,nr,nt); |
131 |
psiY_all = reshape(d.GM_PsiY(:,1:nc,:,1:nt) ,6*nc*nc,nr,nt); |
132 |
|
133 |
otherwise |
134 |
disp(['C est Portnawak: GMform should be Skew or Advc: ',GMform]) |
135 |
end |
136 |
|
137 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
138 |
% Zonally integrate along broken lines % |
139 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
140 |
|
141 |
load(blkFile); |
142 |
ydim = length(bkl_Ylat); |
143 |
ylat = [-90,bkl_Ylat,90]; |
144 |
ufac= rem(bkl_Flg,2); |
145 |
vfac= fix(bkl_Flg/2); |
146 |
|
147 |
PsiB= zeros(ydim+2,nr+1,nt); |
148 |
|
149 |
for it = 1:nt |
150 |
for k = 1:nr |
151 |
psixt=dyg.*psiX_all(:,k,it).*mskWloc; |
152 |
psiyt=dxg.*psiY_all(:,k,it).*mskSloc; |
153 |
for jl = 1:ydim |
154 |
ie = bkl_Npts(jl); |
155 |
PsiB(jl+1,k,it) = sum( ufac(1:ie,jl).*psixt(bkl_IJuv(1:ie,jl)) ... |
156 |
+ vfac(1:ie,jl).*psiyt(bkl_IJuv(1:ie,jl)) ); |
157 |
end |
158 |
end |
159 |
end |
160 |
PsiB = 1e-6*PsiB; |