| 1 |
dcarroll |
1.1 |
C $Header: /u/gcmpack/MITgcm_contrib/ecco_darwin/v4_llc270/code_darwin/ggl90_calc.F,v 1.2 2019/08/24 13:10:27 dcarroll Exp $ |
| 2 |
|
|
C $Name: $ |
| 3 |
|
|
|
| 4 |
|
|
#include "GGL90_OPTIONS.h" |
| 5 |
|
|
CBOP |
| 6 |
|
|
C !ROUTINE: GGL90_CALC |
| 7 |
|
|
|
| 8 |
|
|
C !INTERFACE: ====================================================== |
| 9 |
|
|
SUBROUTINE GGL90_CALC( |
| 10 |
|
|
I bi, bj, sigmaR, myTime, myIter, myThid ) |
| 11 |
|
|
|
| 12 |
|
|
C !DESCRIPTION: \bv |
| 13 |
|
|
C *==========================================================* |
| 14 |
|
|
C | SUBROUTINE GGL90_CALC | |
| 15 |
|
|
C | o Compute all GGL90 fields defined in GGL90.h | |
| 16 |
|
|
C *==========================================================* |
| 17 |
|
|
C | Equation numbers refer to | |
| 18 |
|
|
C | Gaspar et al. (1990), JGR 95 (C9), pp 16,179 | |
| 19 |
|
|
C | Some parts of the implementation follow Blanke and | |
| 20 |
|
|
C | Delecuse (1993), JPO, and OPA code, in particular the | |
| 21 |
|
|
C | computation of the | |
| 22 |
|
|
C | mixing length = max(min(lk,depth),lkmin) | |
| 23 |
|
|
C *==========================================================* |
| 24 |
|
|
|
| 25 |
|
|
C global parameters updated by ggl90_calc |
| 26 |
|
|
C GGL90TKE :: sub-grid turbulent kinetic energy (m^2/s^2) |
| 27 |
|
|
C GGL90viscAz :: GGL90 eddy viscosity coefficient (m^2/s) |
| 28 |
|
|
C GGL90diffKzT :: GGL90 diffusion coefficient for temperature (m^2/s) |
| 29 |
|
|
C \ev |
| 30 |
|
|
|
| 31 |
|
|
C !USES: ============================================================ |
| 32 |
|
|
IMPLICIT NONE |
| 33 |
|
|
#include "SIZE.h" |
| 34 |
|
|
#include "EEPARAMS.h" |
| 35 |
|
|
#include "PARAMS.h" |
| 36 |
|
|
#include "DYNVARS.h" |
| 37 |
|
|
#include "FFIELDS.h" |
| 38 |
|
|
#include "GRID.h" |
| 39 |
|
|
#include "GGL90.h" |
| 40 |
|
|
|
| 41 |
|
|
C !INPUT PARAMETERS: =================================================== |
| 42 |
|
|
C Routine arguments |
| 43 |
|
|
C bi, bj :: Current tile indices |
| 44 |
|
|
C sigmaR :: Vertical gradient of iso-neutral density |
| 45 |
|
|
C myTime :: Current time in simulation |
| 46 |
|
|
C myIter :: Current time-step number |
| 47 |
|
|
C myThid :: My Thread Id number |
| 48 |
|
|
INTEGER bi, bj |
| 49 |
|
|
_RL sigmaR(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 50 |
|
|
_RL myTime |
| 51 |
|
|
INTEGER myIter |
| 52 |
|
|
INTEGER myThid |
| 53 |
|
|
|
| 54 |
|
|
#ifdef ALLOW_GGL90 |
| 55 |
|
|
|
| 56 |
|
|
C !LOCAL VARIABLES: ==================================================== |
| 57 |
|
|
C Local constants |
| 58 |
|
|
C iMin,iMax,jMin,jMax :: index boundaries of computation domain |
| 59 |
|
|
C i, j, k, kp1,km1 :: array computation indices |
| 60 |
|
|
C kSurf, kBottom :: vertical indices of domain boundaries |
| 61 |
|
|
C hFac/hFacI :: fractional thickness of W-cell |
| 62 |
|
|
C explDissFac :: explicit Dissipation Factor (in [0-1]) |
| 63 |
|
|
C implDissFac :: implicit Dissipation Factor (in [0-1]) |
| 64 |
|
|
C uStarSquare :: square of friction velocity |
| 65 |
|
|
C verticalShear :: (squared) vertical shear of horizontal velocity |
| 66 |
|
|
C Nsquare :: squared buoyancy freqency |
| 67 |
|
|
C RiNumber :: local Richardson number |
| 68 |
|
|
C KappaM :: (local) viscosity parameter (eq.10) |
| 69 |
|
|
C KappaH :: (local) diffusivity parameter for temperature (eq.11) |
| 70 |
|
|
C KappaE :: (local) diffusivity parameter for TKE (eq.15) |
| 71 |
|
|
C TKEdissipation :: dissipation of TKE |
| 72 |
|
|
C GGL90mixingLength:: mixing length of scheme following Banke+Delecuse |
| 73 |
|
|
C rMixingLength:: inverse of mixing length |
| 74 |
|
|
C totalDepth :: thickness of water column (inverse of recip_Rcol) |
| 75 |
|
|
C TKEPrandtlNumber :: here, an empirical function of the Richardson number |
| 76 |
|
|
INTEGER iMin ,iMax ,jMin ,jMax |
| 77 |
|
|
INTEGER i, j, k, kp1, km1, kSurf, kBottom |
| 78 |
|
|
_RL explDissFac, implDissFac |
| 79 |
|
|
_RL uStarSquare |
| 80 |
|
|
_RL verticalShear(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 81 |
|
|
_RL KappaM(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 82 |
|
|
_RL KappaH |
| 83 |
|
|
c _RL Nsquare |
| 84 |
|
|
_RL Nsquare(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 85 |
|
|
_RL deltaTggl90 |
| 86 |
|
|
c _RL SQRTTKE |
| 87 |
|
|
_RL SQRTTKE(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 88 |
|
|
_RL RiNumber |
| 89 |
|
|
#ifdef ALLOW_GGL90_IDEMIX |
| 90 |
|
|
_RL IDEMIX_RiNumber |
| 91 |
|
|
#endif |
| 92 |
|
|
_RL TKEdissipation |
| 93 |
|
|
_RL tempU, tempUp, tempV, tempVp, prTemp |
| 94 |
|
|
_RL MaxLength, tmpmlx, tmpVisc |
| 95 |
|
|
_RL TKEPrandtlNumber (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 96 |
|
|
_RL GGL90mixingLength(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 97 |
|
|
_RL rMixingLength (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 98 |
|
|
_RL mxLength_Dn (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 99 |
|
|
_RL KappaE (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 100 |
|
|
_RL totalDepth (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 101 |
|
|
_RL GGL90visctmp (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 102 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 103 |
|
|
_RL surf_flx_tke (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 104 |
|
|
#endif /* ALLOW_DIAGNOSTICS */ |
| 105 |
|
|
C hFac(I) :: fractional thickness of W-cell |
| 106 |
|
|
_RL hFac |
| 107 |
|
|
#ifdef ALLOW_GGL90_IDEMIX |
| 108 |
|
|
_RL hFacI(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 109 |
|
|
#endif /* ALLOW_GGL90_IDEMIX */ |
| 110 |
|
|
_RL recip_hFacI(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 111 |
|
|
C- tri-diagonal matrix |
| 112 |
|
|
_RL a3d(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 113 |
|
|
_RL b3d(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 114 |
|
|
_RL c3d(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 115 |
|
|
INTEGER errCode |
| 116 |
|
|
#ifdef ALLOW_GGL90_HORIZDIFF |
| 117 |
|
|
C xA, yA :: area of lateral faces |
| 118 |
|
|
C dfx, dfy :: diffusive flux across lateral faces |
| 119 |
|
|
C gTKE :: right hand side of diffusion equation |
| 120 |
|
|
_RL xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 121 |
|
|
_RL yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 122 |
|
|
_RL dfx(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 123 |
|
|
_RL dfy(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 124 |
|
|
_RL gTKE(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 125 |
|
|
#endif /* ALLOW_GGL90_HORIZDIFF */ |
| 126 |
|
|
#ifdef ALLOW_GGL90_SMOOTH |
| 127 |
|
|
_RL p4, p8, p16 |
| 128 |
|
|
#endif |
| 129 |
|
|
CEOP |
| 130 |
|
|
|
| 131 |
|
|
PARAMETER( iMin = 2-OLx, iMax = sNx+OLx-1 ) |
| 132 |
|
|
PARAMETER( jMin = 2-OLy, jMax = sNy+OLy-1 ) |
| 133 |
|
|
#ifdef ALLOW_GGL90_SMOOTH |
| 134 |
|
|
p4 = 0.25 _d 0 |
| 135 |
|
|
p8 = 0.125 _d 0 |
| 136 |
|
|
p16 = 0.0625 _d 0 |
| 137 |
|
|
#endif |
| 138 |
|
|
|
| 139 |
|
|
C set separate time step (should be deltaTtracer) |
| 140 |
|
|
deltaTggl90 = dTtracerLev(1) |
| 141 |
|
|
|
| 142 |
|
|
kSurf = 1 |
| 143 |
|
|
C explicit/implicit timestepping weights for dissipation |
| 144 |
|
|
explDissFac = 0. _d 0 |
| 145 |
|
|
implDissFac = 1. _d 0 - explDissFac |
| 146 |
|
|
|
| 147 |
|
|
C For nonlinear free surface and especially with r*-coordinates, the |
| 148 |
|
|
C hFacs change every timestep, so we need to update them here in the |
| 149 |
|
|
C case of using IDEMIX. |
| 150 |
|
|
DO K=1,Nr |
| 151 |
|
|
Km1 = MAX(K-1,1) |
| 152 |
|
|
DO j=1-OLy,sNy+OLy |
| 153 |
|
|
DO i=1-OLx,sNx+OLx |
| 154 |
|
|
hFac = |
| 155 |
|
|
& MIN(.5 _d 0,_hFacC(i,j,km1,bi,bj) ) + |
| 156 |
|
|
& MIN(.5 _d 0,_hFacC(i,j,k ,bi,bj) ) |
| 157 |
|
|
recip_hFacI(I,J,K)=0. _d 0 |
| 158 |
|
|
IF ( hFac .NE. 0. _d 0 ) |
| 159 |
|
|
& recip_hFacI(I,J,K)=1. _d 0/hFac |
| 160 |
|
|
#ifdef ALLOW_GGL90_IDEMIX |
| 161 |
|
|
hFacI(i,j,k) = hFac |
| 162 |
|
|
#endif /* ALLOW_GGL90_IDEMIX */ |
| 163 |
|
|
ENDDO |
| 164 |
|
|
ENDDO |
| 165 |
|
|
ENDDO |
| 166 |
|
|
|
| 167 |
|
|
C Initialize local fields |
| 168 |
|
|
DO k = 1, Nr |
| 169 |
|
|
DO j=1-OLy,sNy+OLy |
| 170 |
|
|
DO i=1-OLx,sNx+OLx |
| 171 |
|
|
rMixingLength(i,j,k) = 0. _d 0 |
| 172 |
|
|
mxLength_Dn(i,j,k) = 0. _d 0 |
| 173 |
|
|
GGL90visctmp(i,j,k) = 0. _d 0 |
| 174 |
|
|
KappaE(i,j,k) = 0. _d 0 |
| 175 |
|
|
TKEPrandtlNumber(i,j,k) = 1. _d 0 |
| 176 |
|
|
GGL90mixingLength(i,j,k) = GGL90mixingLengthMin |
| 177 |
|
|
GGL90visctmp(i,j,k) = 0. _d 0 |
| 178 |
|
|
#ifndef SOLVE_DIAGONAL_LOWMEMORY |
| 179 |
|
|
a3d(i,j,k) = 0. _d 0 |
| 180 |
|
|
b3d(i,j,k) = 1. _d 0 |
| 181 |
|
|
c3d(i,j,k) = 0. _d 0 |
| 182 |
|
|
#endif |
| 183 |
|
|
Nsquare(i,j,k) = 0. _d 0 |
| 184 |
|
|
SQRTTKE(i,j,k) = 0. _d 0 |
| 185 |
|
|
ENDDO |
| 186 |
|
|
ENDDO |
| 187 |
|
|
ENDDO |
| 188 |
|
|
DO j=1-OLy,sNy+OLy |
| 189 |
|
|
DO i=1-OLx,sNx+OLx |
| 190 |
|
|
KappaM(i,j) = 0. _d 0 |
| 191 |
|
|
verticalShear(i,j) = 0. _d 0 |
| 192 |
|
|
totalDepth(i,j) = Ro_surf(i,j,bi,bj) - R_low(i,j,bi,bj) |
| 193 |
|
|
rMixingLength(i,j,1) = 0. _d 0 |
| 194 |
|
|
mxLength_Dn(i,j,1) = GGL90mixingLengthMin |
| 195 |
|
|
SQRTTKE(i,j,1) = SQRT( GGL90TKE(i,j,1,bi,bj) ) |
| 196 |
|
|
#ifdef ALLOW_GGL90_HORIZDIFF |
| 197 |
|
|
xA(i,j) = 0. _d 0 |
| 198 |
|
|
yA(i,j) = 0. _d 0 |
| 199 |
|
|
dfx(i,j) = 0. _d 0 |
| 200 |
|
|
dfy(i,j) = 0. _d 0 |
| 201 |
|
|
gTKE(i,j) = 0. _d 0 |
| 202 |
|
|
#endif /* ALLOW_GGL90_HORIZDIFF */ |
| 203 |
|
|
ENDDO |
| 204 |
|
|
ENDDO |
| 205 |
|
|
|
| 206 |
|
|
#ifdef ALLOW_GGL90_IDEMIX |
| 207 |
|
|
IF ( useIDEMIX) CALL GGL90_IDEMIX( |
| 208 |
|
|
& bi, bj, hFacI, recip_hFacI, sigmaR, myTime, myIter, myThid ) |
| 209 |
|
|
#endif /* ALLOW_GGL90_IDEMIX */ |
| 210 |
|
|
|
| 211 |
|
|
DO k = 2, Nr |
| 212 |
|
|
DO j=jMin,jMax |
| 213 |
|
|
DO i=iMin,iMax |
| 214 |
|
|
SQRTTKE(i,j,k)=SQRT( GGL90TKE(i,j,k,bi,bj) ) |
| 215 |
|
|
|
| 216 |
|
|
C buoyancy frequency |
| 217 |
|
|
Nsquare(i,j,k) = gravity*gravitySign*recip_rhoConst |
| 218 |
|
|
& * sigmaR(i,j,k) |
| 219 |
|
|
C vertical shear term (dU/dz)^2+(dV/dz)^2 is computed later |
| 220 |
|
|
C to save some memory |
| 221 |
|
|
C mixing length |
| 222 |
|
|
GGL90mixingLength(i,j,k) = SQRTTWO * |
| 223 |
|
|
& SQRTTKE(i,j,k)/SQRT( MAX(Nsquare(i,j,k),GGL90eps) ) |
| 224 |
|
|
ENDDO |
| 225 |
|
|
ENDDO |
| 226 |
|
|
ENDDO |
| 227 |
|
|
|
| 228 |
|
|
C- ensure mixing between first and second level |
| 229 |
|
|
IF (mxlSurfFlag) THEN |
| 230 |
|
|
DO j=jMin,jMax |
| 231 |
|
|
DO i=iMin,iMax |
| 232 |
|
|
GGL90mixingLength(i,j,2)=drF(1) |
| 233 |
|
|
ENDDO |
| 234 |
|
|
ENDDO |
| 235 |
|
|
ENDIF |
| 236 |
|
|
|
| 237 |
|
|
C-- Impose upper and lower bound for mixing length |
| 238 |
|
|
C-- Impose minimum mixing length to avoid division by zero |
| 239 |
|
|
IF ( mxlMaxFlag .EQ. 0 ) THEN |
| 240 |
|
|
|
| 241 |
|
|
DO k=2,Nr |
| 242 |
|
|
DO j=jMin,jMax |
| 243 |
|
|
DO i=iMin,iMax |
| 244 |
|
|
MaxLength=totalDepth(i,j) |
| 245 |
|
|
GGL90mixingLength(i,j,k) = MIN(GGL90mixingLength(i,j,k), |
| 246 |
|
|
& MaxLength) |
| 247 |
|
|
ENDDO |
| 248 |
|
|
ENDDO |
| 249 |
|
|
ENDDO |
| 250 |
|
|
|
| 251 |
|
|
DO k=2,Nr |
| 252 |
|
|
DO j=jMin,jMax |
| 253 |
|
|
DO i=iMin,iMax |
| 254 |
|
|
GGL90mixingLength(i,j,k) = MAX(GGL90mixingLength(i,j,k), |
| 255 |
|
|
& GGL90mixingLengthMin) |
| 256 |
|
|
rMixingLength(i,j,k) = 1. _d 0 / GGL90mixingLength(i,j,k) |
| 257 |
|
|
ENDDO |
| 258 |
|
|
ENDDO |
| 259 |
|
|
ENDDO |
| 260 |
|
|
|
| 261 |
|
|
ELSEIF ( mxlMaxFlag .EQ. 1 ) THEN |
| 262 |
|
|
|
| 263 |
|
|
DO k=2,Nr |
| 264 |
|
|
DO j=jMin,jMax |
| 265 |
|
|
DO i=iMin,iMax |
| 266 |
|
|
MaxLength=MIN(Ro_surf(i,j,bi,bj)-rF(k),rF(k)-R_low(i,j,bi,bj)) |
| 267 |
|
|
c MaxLength=MAX(MaxLength,20. _d 0) |
| 268 |
|
|
GGL90mixingLength(i,j,k) = MIN(GGL90mixingLength(i,j,k), |
| 269 |
|
|
& MaxLength) |
| 270 |
|
|
ENDDO |
| 271 |
|
|
ENDDO |
| 272 |
|
|
ENDDO |
| 273 |
|
|
|
| 274 |
|
|
DO k=2,Nr |
| 275 |
|
|
DO j=jMin,jMax |
| 276 |
|
|
DO i=iMin,iMax |
| 277 |
|
|
GGL90mixingLength(i,j,k) = MAX(GGL90mixingLength(i,j,k), |
| 278 |
|
|
& GGL90mixingLengthMin) |
| 279 |
|
|
rMixingLength(i,j,k) = 1. _d 0 / GGL90mixingLength(i,j,k) |
| 280 |
|
|
ENDDO |
| 281 |
|
|
ENDDO |
| 282 |
|
|
ENDDO |
| 283 |
|
|
|
| 284 |
|
|
ELSEIF ( mxlMaxFlag .EQ. 2 ) THEN |
| 285 |
|
|
|
| 286 |
|
|
DO k=2,Nr |
| 287 |
|
|
DO j=jMin,jMax |
| 288 |
|
|
DO i=iMin,iMax |
| 289 |
|
|
GGL90mixingLength(i,j,k) = MIN(GGL90mixingLength(i,j,k), |
| 290 |
|
|
& GGL90mixingLength(i,j,k-1)+drF(k-1)) |
| 291 |
|
|
ENDDO |
| 292 |
|
|
ENDDO |
| 293 |
|
|
ENDDO |
| 294 |
|
|
DO j=jMin,jMax |
| 295 |
|
|
DO i=iMin,iMax |
| 296 |
|
|
GGL90mixingLength(i,j,Nr) = MIN(GGL90mixingLength(i,j,Nr), |
| 297 |
|
|
& GGL90mixingLengthMin+drF(Nr)) |
| 298 |
|
|
ENDDO |
| 299 |
|
|
ENDDO |
| 300 |
|
|
DO k=Nr-1,2,-1 |
| 301 |
|
|
DO j=jMin,jMax |
| 302 |
|
|
DO i=iMin,iMax |
| 303 |
|
|
GGL90mixingLength(i,j,k) = MIN(GGL90mixingLength(i,j,k), |
| 304 |
|
|
& GGL90mixingLength(i,j,k+1)+drF(k)) |
| 305 |
|
|
ENDDO |
| 306 |
|
|
ENDDO |
| 307 |
|
|
ENDDO |
| 308 |
|
|
|
| 309 |
|
|
DO k=2,Nr |
| 310 |
|
|
DO j=jMin,jMax |
| 311 |
|
|
DO i=iMin,iMax |
| 312 |
|
|
GGL90mixingLength(i,j,k) = MAX(GGL90mixingLength(i,j,k), |
| 313 |
|
|
& GGL90mixingLengthMin) |
| 314 |
|
|
rMixingLength(i,j,k) = 1. _d 0 / GGL90mixingLength(i,j,k) |
| 315 |
|
|
ENDDO |
| 316 |
|
|
ENDDO |
| 317 |
|
|
ENDDO |
| 318 |
|
|
|
| 319 |
|
|
ELSEIF ( mxlMaxFlag .EQ. 3 ) THEN |
| 320 |
|
|
|
| 321 |
|
|
DO k=2,Nr |
| 322 |
|
|
DO j=jMin,jMax |
| 323 |
|
|
DO i=iMin,iMax |
| 324 |
|
|
mxLength_Dn(i,j,k) = MIN(GGL90mixingLength(i,j,k), |
| 325 |
|
|
& mxLength_Dn(i,j,k-1)+drF(k-1)) |
| 326 |
|
|
ENDDO |
| 327 |
|
|
ENDDO |
| 328 |
|
|
ENDDO |
| 329 |
|
|
DO j=jMin,jMax |
| 330 |
|
|
DO i=iMin,iMax |
| 331 |
|
|
GGL90mixingLength(i,j,Nr) = MIN(GGL90mixingLength(i,j,Nr), |
| 332 |
|
|
& GGL90mixingLengthMin+drF(Nr)) |
| 333 |
|
|
ENDDO |
| 334 |
|
|
ENDDO |
| 335 |
|
|
DO k=Nr-1,2,-1 |
| 336 |
|
|
DO j=jMin,jMax |
| 337 |
|
|
DO i=iMin,iMax |
| 338 |
|
|
GGL90mixingLength(i,j,k) = MIN(GGL90mixingLength(i,j,k), |
| 339 |
|
|
& GGL90mixingLength(i,j,k+1)+drF(k)) |
| 340 |
|
|
ENDDO |
| 341 |
|
|
ENDDO |
| 342 |
|
|
ENDDO |
| 343 |
|
|
|
| 344 |
|
|
DO k=2,Nr |
| 345 |
|
|
DO j=jMin,jMax |
| 346 |
|
|
DO i=iMin,iMax |
| 347 |
|
|
GGL90mixingLength(i,j,k) = MIN(GGL90mixingLength(i,j,k), |
| 348 |
|
|
& mxLength_Dn(i,j,k)) |
| 349 |
|
|
tmpmlx = SQRT( GGL90mixingLength(i,j,k)*mxLength_Dn(i,j,k) ) |
| 350 |
|
|
tmpmlx = MAX( tmpmlx, GGL90mixingLengthMin) |
| 351 |
|
|
rMixingLength(i,j,k) = 1. _d 0 / tmpmlx |
| 352 |
|
|
ENDDO |
| 353 |
|
|
ENDDO |
| 354 |
|
|
ENDDO |
| 355 |
|
|
|
| 356 |
|
|
ELSE |
| 357 |
|
|
STOP 'GGL90_CALC: Wrong mxlMaxFlag (mixing length limit)' |
| 358 |
|
|
ENDIF |
| 359 |
|
|
|
| 360 |
|
|
C start "proper" k-loop (the code above was moved out and up to |
| 361 |
|
|
C implemement various mixing parameters efficiently) |
| 362 |
|
|
DO k=2,Nr |
| 363 |
|
|
km1 = k-1 |
| 364 |
|
|
|
| 365 |
|
|
#ifdef ALLOW_GGL90_HORIZDIFF |
| 366 |
|
|
IF ( GGL90diffTKEh .GT. 0. _d 0 ) THEN |
| 367 |
|
|
C horizontal diffusion of TKE (requires an exchange in |
| 368 |
|
|
C do_fields_blocking_exchanges) |
| 369 |
|
|
C common factors |
| 370 |
|
|
DO j=1-OLy,sNy+OLy |
| 371 |
|
|
DO i=1-OLx,sNx+OLx |
| 372 |
|
|
xA(i,j) = _dyG(i,j,bi,bj)*drC(k)* |
| 373 |
|
|
& (min(.5 _d 0,_hFacW(i,j,k-1,bi,bj) ) + |
| 374 |
|
|
& min(.5 _d 0,_hFacW(i,j,k ,bi,bj) ) ) |
| 375 |
|
|
yA(i,j) = _dxG(i,j,bi,bj)*drC(k)* |
| 376 |
|
|
& (min(.5 _d 0,_hFacS(i,j,k-1,bi,bj) ) + |
| 377 |
|
|
& min(.5 _d 0,_hFacS(i,j,k ,bi,bj) ) ) |
| 378 |
|
|
ENDDO |
| 379 |
|
|
ENDDO |
| 380 |
|
|
C Compute diffusive fluxes |
| 381 |
|
|
C ... across x-faces |
| 382 |
|
|
DO j=1-OLy,sNy+OLy |
| 383 |
|
|
dfx(1-OLx,j)=0. _d 0 |
| 384 |
|
|
DO i=1-OLx+1,sNx+OLx |
| 385 |
|
|
dfx(i,j) = -GGL90diffTKEh*xA(i,j) |
| 386 |
|
|
& *_recip_dxC(i,j,bi,bj) |
| 387 |
|
|
& *(GGL90TKE(i,j,k,bi,bj)-GGL90TKE(i-1,j,k,bi,bj)) |
| 388 |
|
|
#ifdef ISOTROPIC_COS_SCALING |
| 389 |
|
|
& *CosFacU(j,bi,bj) |
| 390 |
|
|
#endif /* ISOTROPIC_COS_SCALING */ |
| 391 |
|
|
ENDDO |
| 392 |
|
|
ENDDO |
| 393 |
|
|
C ... across y-faces |
| 394 |
|
|
DO i=1-OLx,sNx+OLx |
| 395 |
|
|
dfy(i,1-OLy)=0. _d 0 |
| 396 |
|
|
ENDDO |
| 397 |
|
|
DO j=1-OLy+1,sNy+OLy |
| 398 |
|
|
DO i=1-OLx,sNx+OLx |
| 399 |
|
|
dfy(i,j) = -GGL90diffTKEh*yA(i,j) |
| 400 |
|
|
& *_recip_dyC(i,j,bi,bj) |
| 401 |
|
|
& *(GGL90TKE(i,j,k,bi,bj)-GGL90TKE(i,j-1,k,bi,bj)) |
| 402 |
|
|
#ifdef ISOTROPIC_COS_SCALING |
| 403 |
|
|
& *CosFacV(j,bi,bj) |
| 404 |
|
|
#endif /* ISOTROPIC_COS_SCALING */ |
| 405 |
|
|
ENDDO |
| 406 |
|
|
ENDDO |
| 407 |
|
|
C Compute divergence of fluxes |
| 408 |
|
|
DO j=1-OLy,sNy+OLy-1 |
| 409 |
|
|
DO i=1-OLx,sNx+OLx-1 |
| 410 |
|
|
gTKE(i,j) = -recip_drC(k)*recip_rA(i,j,bi,bj) |
| 411 |
|
|
& *recip_hFacI(i,j,k) |
| 412 |
|
|
& *((dfx(i+1,j)-dfx(i,j)) |
| 413 |
|
|
& + (dfy(i,j+1)-dfy(i,j)) ) |
| 414 |
|
|
ENDDO |
| 415 |
|
|
ENDDO |
| 416 |
|
|
C end if GGL90diffTKEh .eq. 0. |
| 417 |
|
|
ENDIF |
| 418 |
|
|
#endif /* ALLOW_GGL90_HORIZDIFF */ |
| 419 |
|
|
|
| 420 |
|
|
C viscosity and diffusivity |
| 421 |
|
|
DO j=jMin,jMax |
| 422 |
|
|
DO i=iMin,iMax |
| 423 |
|
|
KappaM(i,j) = GGL90ck*GGL90mixingLength(i,j,k)*SQRTTKE(i,j,k) |
| 424 |
|
|
GGL90visctmp(i,j,k) = MAX(KappaM(i,j),diffKrNrS(k)) |
| 425 |
|
|
& * maskC(i,j,k,bi,bj) |
| 426 |
|
|
C note: storing GGL90visctmp like this, and using it later to compute |
| 427 |
|
|
C GGL9rdiffKr etc. is robust in case of smoothing (e.g. see OPA) |
| 428 |
|
|
KappaM(i,j) = MAX(KappaM(i,j),viscArNr(k)) * maskC(i,j,k,bi,bj) |
| 429 |
|
|
ENDDO |
| 430 |
|
|
ENDDO |
| 431 |
|
|
|
| 432 |
|
|
C compute vertical shear (dU/dz)^2+(dV/dz)^2 |
| 433 |
|
|
IF ( calcMeanVertShear ) THEN |
| 434 |
|
|
C by averaging (@ grid-cell center) the 4 vertical shear compon @ U,V pos. |
| 435 |
|
|
DO j=jMin,jMax |
| 436 |
|
|
DO i=iMin,iMax |
| 437 |
|
|
tempU = ( uVel( i ,j,km1,bi,bj) - uVel( i ,j,k,bi,bj) ) |
| 438 |
|
|
tempUp = ( uVel(i+1,j,km1,bi,bj) - uVel(i+1,j,k,bi,bj) ) |
| 439 |
|
|
tempV = ( vVel(i, j ,km1,bi,bj) - vVel(i, j ,k,bi,bj) ) |
| 440 |
|
|
tempVp = ( vVel(i,j+1,km1,bi,bj) - vVel(i,j+1,k,bi,bj) ) |
| 441 |
|
|
verticalShear(i,j) = ( |
| 442 |
|
|
& ( tempU*tempU + tempUp*tempUp )*halfRL |
| 443 |
|
|
& + ( tempV*tempV + tempVp*tempVp )*halfRL |
| 444 |
|
|
& )*recip_drC(k)*recip_drC(k) |
| 445 |
|
|
ENDDO |
| 446 |
|
|
ENDDO |
| 447 |
|
|
ELSE |
| 448 |
|
|
C from the averaged flow at grid-cell center (2 compon x 2 pos.) |
| 449 |
|
|
DO j=jMin,jMax |
| 450 |
|
|
DO i=iMin,iMax |
| 451 |
|
|
tempU = ( ( uVel(i,j,km1,bi,bj) + uVel(i+1,j,km1,bi,bj) ) |
| 452 |
|
|
& -( uVel(i,j,k ,bi,bj) + uVel(i+1,j,k ,bi,bj) ) |
| 453 |
|
|
& )*halfRL*recip_drC(k) |
| 454 |
|
|
tempV = ( ( vVel(i,j,km1,bi,bj) + vVel(i,j+1,km1,bi,bj) ) |
| 455 |
|
|
& -( vVel(i,j,k ,bi,bj) + vVel(i,j+1,k ,bi,bj) ) |
| 456 |
|
|
& )*halfRL*recip_drC(k) |
| 457 |
|
|
verticalShear(i,j) = tempU*tempU + tempV*tempV |
| 458 |
|
|
ENDDO |
| 459 |
|
|
ENDDO |
| 460 |
|
|
ENDIF |
| 461 |
|
|
|
| 462 |
|
|
C compute Prandtl number (always greater than 0) |
| 463 |
|
|
#ifdef ALLOW_GGL90_IDEMIX |
| 464 |
|
|
IF ( useIDEMIX ) THEN |
| 465 |
|
|
DO j=jMin,jMax |
| 466 |
|
|
DO i=iMin,iMax |
| 467 |
|
|
C account for partical cell factor in vertical shear: |
| 468 |
|
|
verticalShear(i,j) = verticalShear(i,j) |
| 469 |
|
|
& * recip_hFacI(i,j,k)*recip_hFacI(i,j,k) |
| 470 |
|
|
RiNumber = MAX(Nsquare(i,j,k),0. _d 0) |
| 471 |
|
|
& /(verticalShear(i,j)+GGL90eps) |
| 472 |
|
|
CML IDEMIX_RiNumber = 1./GGL90eps |
| 473 |
|
|
IDEMIX_RiNumber = MAX( KappaM(i,j)*Nsquare(i,j,k), 0. _d 0)/ |
| 474 |
|
|
& (GGL90eps+IDEMIX_tau_d(i,j,k,bi,bj)*IDEMIX_E(i,j,k,bi,bj)**2) |
| 475 |
|
|
prTemp = MIN(5.*RiNumber, 6.6 _d 0*IDEMIX_RiNumber) |
| 476 |
|
|
TKEPrandtlNumber(i,j,k) = MIN(10. _d 0,prTemp) |
| 477 |
|
|
TKEPrandtlNumber(i,j,k) = MAX( 1. _d 0,TKEPrandtlNumber(i,j,k)) |
| 478 |
|
|
ENDDO |
| 479 |
|
|
ENDDO |
| 480 |
|
|
ELSE |
| 481 |
|
|
#else /* ndef ALLOW_GGL90_IDEMIX */ |
| 482 |
|
|
IF (.TRUE.) THEN |
| 483 |
|
|
#endif /* ALLOW_GGL90_IDEMIX */ |
| 484 |
|
|
DO j=jMin,jMax |
| 485 |
|
|
DO i=iMin,iMax |
| 486 |
|
|
RiNumber = MAX(Nsquare(i,j,k),0. _d 0) |
| 487 |
|
|
& /(verticalShear(i,j)+GGL90eps) |
| 488 |
|
|
prTemp = 1. _d 0 |
| 489 |
|
|
IF ( RiNumber .GE. 0.2 _d 0 ) prTemp = 5. _d 0 * RiNumber |
| 490 |
|
|
TKEPrandtlNumber(i,j,k) = MIN(10. _d 0,prTemp) |
| 491 |
|
|
ENDDO |
| 492 |
|
|
ENDDO |
| 493 |
|
|
ENDIF |
| 494 |
|
|
|
| 495 |
|
|
DO j=jMin,jMax |
| 496 |
|
|
DO i=iMin,iMax |
| 497 |
|
|
C diffusivity |
| 498 |
|
|
KappaH = KappaM(i,j)/TKEPrandtlNumber(i,j,k) |
| 499 |
|
|
KappaE(i,j,k) = GGL90alpha * KappaM(i,j) * maskC(i,j,k,bi,bj) |
| 500 |
|
|
|
| 501 |
|
|
C dissipation term |
| 502 |
|
|
TKEdissipation = explDissFac*GGL90ceps |
| 503 |
|
|
& *SQRTTKE(i,j,k)*rMixingLength(i,j,k) |
| 504 |
|
|
& *GGL90TKE(i,j,k,bi,bj) |
| 505 |
|
|
C partial update with sum of explicit contributions |
| 506 |
|
|
GGL90TKE(i,j,k,bi,bj) = GGL90TKE(i,j,k,bi,bj) |
| 507 |
|
|
& + deltaTggl90*( |
| 508 |
|
|
& + KappaM(i,j)*verticalShear(i,j) |
| 509 |
|
|
& - KappaH*Nsquare(i,j,k) |
| 510 |
|
|
& - TKEdissipation |
| 511 |
|
|
& ) |
| 512 |
|
|
ENDDO |
| 513 |
|
|
ENDDO |
| 514 |
|
|
|
| 515 |
|
|
#ifdef ALLOW_GGL90_IDEMIX |
| 516 |
|
|
IF ( useIDEMIX ) THEN |
| 517 |
|
|
C add IDEMIX contribution to the turbulent kinetic energy |
| 518 |
|
|
DO j=jMin,jMax |
| 519 |
|
|
DO i=iMin,iMax |
| 520 |
|
|
GGL90TKE(i,j,k,bi,bj) = GGL90TKE(i,j,k,bi,bj) |
| 521 |
|
|
& + deltaTggl90*( |
| 522 |
|
|
& + IDEMIX_tau_d(i,j,k,bi,bj)*IDEMIX_E(i,j,k,bi,bj)**2 |
| 523 |
|
|
& ) |
| 524 |
|
|
ENDDO |
| 525 |
|
|
ENDDO |
| 526 |
|
|
ENDIF |
| 527 |
|
|
#endif /* ALLOW_GGL90_IDEMIX */ |
| 528 |
|
|
|
| 529 |
|
|
#ifdef ALLOW_GGL90_HORIZDIFF |
| 530 |
|
|
IF ( GGL90diffTKEh .GT. 0. _d 0 ) THEN |
| 531 |
|
|
C-- Add horiz. diffusion tendency |
| 532 |
|
|
DO j=jMin,jMax |
| 533 |
|
|
DO i=iMin,iMax |
| 534 |
|
|
GGL90TKE(i,j,k,bi,bj) = GGL90TKE(i,j,k,bi,bj) |
| 535 |
|
|
& + gTKE(i,j)*deltaTggl90 |
| 536 |
|
|
ENDDO |
| 537 |
|
|
ENDDO |
| 538 |
|
|
ENDIF |
| 539 |
|
|
#endif /* ALLOW_GGL90_HORIZDIFF */ |
| 540 |
|
|
|
| 541 |
|
|
C-- end of k loop |
| 542 |
|
|
ENDDO |
| 543 |
|
|
|
| 544 |
|
|
C ============================================ |
| 545 |
|
|
C Implicit time step to update TKE for k=1,Nr; |
| 546 |
|
|
C TKE(Nr+1)=0 by default |
| 547 |
|
|
C ============================================ |
| 548 |
|
|
C set up matrix |
| 549 |
|
|
C-- Lower diagonal |
| 550 |
|
|
DO j=jMin,jMax |
| 551 |
|
|
DO i=iMin,iMax |
| 552 |
|
|
a3d(i,j,1) = 0. _d 0 |
| 553 |
|
|
ENDDO |
| 554 |
|
|
ENDDO |
| 555 |
|
|
DO k=2,Nr |
| 556 |
|
|
km1=MAX(2,k-1) |
| 557 |
|
|
DO j=jMin,jMax |
| 558 |
|
|
DO i=iMin,iMax |
| 559 |
|
|
C- We keep recip_hFacC in the diffusive flux calculation, |
| 560 |
|
|
C- but no hFacC in TKE volume control |
| 561 |
|
|
C- No need for maskC(k-1) with recip_hFacC(k-1) |
| 562 |
|
|
a3d(i,j,k) = -deltaTggl90 |
| 563 |
|
|
& *recip_drF(k-1)*recip_hFacC(i,j,k-1,bi,bj) |
| 564 |
|
|
& *.5 _d 0*(KappaE(i,j, k )+KappaE(i,j,km1)) |
| 565 |
|
|
& *recip_drC(k)*maskC(i,j,k,bi,bj) |
| 566 |
|
|
ENDDO |
| 567 |
|
|
ENDDO |
| 568 |
|
|
ENDDO |
| 569 |
|
|
C-- Upper diagonal |
| 570 |
|
|
DO j=jMin,jMax |
| 571 |
|
|
DO i=iMin,iMax |
| 572 |
|
|
c3d(i,j,1) = 0. _d 0 |
| 573 |
|
|
ENDDO |
| 574 |
|
|
ENDDO |
| 575 |
|
|
DO k=2,Nr |
| 576 |
|
|
DO j=jMin,jMax |
| 577 |
|
|
DO i=iMin,iMax |
| 578 |
|
|
kp1=MAX(1,MIN(klowC(i,j,bi,bj),k+1)) |
| 579 |
|
|
C- We keep recip_hFacC in the diffusive flux calculation, |
| 580 |
|
|
C- but no hFacC in TKE volume control |
| 581 |
|
|
C- No need for maskC(k) with recip_hFacC(k) |
| 582 |
|
|
c3d(i,j,k) = -deltaTggl90 |
| 583 |
|
|
& *recip_drF( k ) * recip_hFacC(i,j,k,bi,bj) |
| 584 |
|
|
& *.5 _d 0*(KappaE(i,j,k)+KappaE(i,j,kp1)) |
| 585 |
|
|
& *recip_drC(k)*maskC(i,j,k-1,bi,bj) |
| 586 |
|
|
ENDDO |
| 587 |
|
|
ENDDO |
| 588 |
|
|
ENDDO |
| 589 |
|
|
|
| 590 |
|
|
#ifdef ALLOW_GGL90_IDEMIX |
| 591 |
|
|
IF ( useIDEMIX ) THEN |
| 592 |
|
|
DO k=2,Nr |
| 593 |
|
|
DO j=jMin,jMax |
| 594 |
|
|
DO i=iMin,iMax |
| 595 |
|
|
a3d(i,j,k) = a3d(i,j,k)*recip_hFacI(i,j,k) |
| 596 |
|
|
c3d(i,j,k) = c3d(i,j,k)*recip_hFacI(i,j,k) |
| 597 |
|
|
ENDDO |
| 598 |
|
|
ENDDO |
| 599 |
|
|
ENDDO |
| 600 |
|
|
ENDIF |
| 601 |
|
|
#endif /* ALLOW_GGL90_IDEMIX */ |
| 602 |
|
|
|
| 603 |
|
|
IF (.NOT.GGL90_dirichlet) THEN |
| 604 |
|
|
C Neumann bottom boundary condition for TKE: no flux from bottom |
| 605 |
|
|
DO j=jMin,jMax |
| 606 |
|
|
DO i=iMin,iMax |
| 607 |
|
|
kBottom = MAX(kLowC(i,j,bi,bj),1) |
| 608 |
|
|
c3d(i,j,kBottom) = 0. _d 0 |
| 609 |
|
|
ENDDO |
| 610 |
|
|
ENDDO |
| 611 |
|
|
ENDIF |
| 612 |
|
|
|
| 613 |
|
|
C-- Center diagonal |
| 614 |
|
|
DO k=1,Nr |
| 615 |
|
|
km1 = MAX(k-1,1) |
| 616 |
|
|
DO j=jMin,jMax |
| 617 |
|
|
DO i=iMin,iMax |
| 618 |
|
|
b3d(i,j,k) = 1. _d 0 - c3d(i,j,k) - a3d(i,j,k) |
| 619 |
|
|
& + implDissFac*deltaTggl90*GGL90ceps*SQRTTKE(i,j,k) |
| 620 |
|
|
& * rMixingLength(i,j,k) |
| 621 |
|
|
& * maskC(i,j,k,bi,bj)*maskC(i,j,km1,bi,bj) |
| 622 |
|
|
ENDDO |
| 623 |
|
|
ENDDO |
| 624 |
|
|
ENDDO |
| 625 |
|
|
C end set up matrix |
| 626 |
|
|
|
| 627 |
|
|
C Apply boundary condition |
| 628 |
|
|
kp1 = MIN(Nr,kSurf+1) |
| 629 |
|
|
DO j=jMin,jMax |
| 630 |
|
|
DO i=iMin,iMax |
| 631 |
|
|
C estimate friction velocity uStar from surface forcing |
| 632 |
|
|
uStarSquare = SQRT( |
| 633 |
|
|
& ( .5 _d 0*( surfaceForcingU(i, j, bi,bj) |
| 634 |
|
|
& + surfaceForcingU(i+1,j, bi,bj) ) )**2 |
| 635 |
|
|
& + ( .5 _d 0*( surfaceForcingV(i, j, bi,bj) |
| 636 |
|
|
& + surfaceForcingV(i, j+1,bi,bj) ) )**2 |
| 637 |
|
|
& ) |
| 638 |
|
|
C Dirichlet surface boundary condition for TKE |
| 639 |
|
|
GGL90TKE(i,j,kSurf,bi,bj) = maskC(i,j,kSurf,bi,bj) |
| 640 |
|
|
& *MAX(GGL90TKEsurfMin,GGL90m2*uStarSquare) |
| 641 |
|
|
GGL90TKE(i,j,kp1,bi,bj) = GGL90TKE(i,j,kp1,bi,bj) |
| 642 |
|
|
& - a3d(i,j,kp1)*GGL90TKE(i,j,kSurf,bi,bj) |
| 643 |
|
|
a3d(i,j,kp1) = 0. _d 0 |
| 644 |
|
|
ENDDO |
| 645 |
|
|
ENDDO |
| 646 |
|
|
|
| 647 |
|
|
IF (GGL90_dirichlet) THEN |
| 648 |
|
|
C Dirichlet bottom boundary condition for TKE = GGL90TKEbottom |
| 649 |
|
|
DO j=jMin,jMax |
| 650 |
|
|
DO i=iMin,iMax |
| 651 |
|
|
kBottom = MAX(kLowC(i,j,bi,bj),1) |
| 652 |
|
|
GGL90TKE(i,j,kBottom,bi,bj) = GGL90TKE(i,j,kBottom,bi,bj) |
| 653 |
|
|
& - GGL90TKEbottom*c3d(i,j,kBottom) |
| 654 |
|
|
c3d(i,j,kBottom) = 0. _d 0 |
| 655 |
|
|
ENDDO |
| 656 |
|
|
ENDDO |
| 657 |
|
|
ENDIF |
| 658 |
|
|
|
| 659 |
|
|
C solve tri-diagonal system |
| 660 |
|
|
errCode = -1 |
| 661 |
|
|
CALL SOLVE_TRIDIAGONAL( iMin,iMax, jMin,jMax, |
| 662 |
|
|
I a3d, b3d, c3d, |
| 663 |
|
|
U GGL90TKE(1-OLx,1-OLy,1,bi,bj), |
| 664 |
|
|
O errCode, |
| 665 |
|
|
I bi, bj, myThid ) |
| 666 |
|
|
|
| 667 |
|
|
DO k=1,Nr |
| 668 |
|
|
DO j=jMin,jMax |
| 669 |
|
|
DO i=iMin,iMax |
| 670 |
|
|
C impose minimum TKE to avoid numerical undershoots below zero |
| 671 |
|
|
GGL90TKE(i,j,k,bi,bj) = maskC(i,j,k,bi,bj) |
| 672 |
|
|
& *MAX( GGL90TKE(i,j,k,bi,bj), GGL90TKEmin ) |
| 673 |
|
|
ENDDO |
| 674 |
|
|
ENDDO |
| 675 |
|
|
ENDDO |
| 676 |
|
|
|
| 677 |
|
|
C end of time step |
| 678 |
|
|
C =============================== |
| 679 |
|
|
|
| 680 |
|
|
DO k=2,Nr |
| 681 |
|
|
DO j=1,sNy |
| 682 |
|
|
DO i=1,sNx |
| 683 |
|
|
#ifdef ALLOW_GGL90_SMOOTH |
| 684 |
|
|
tmpVisc = ( |
| 685 |
|
|
& p4 * GGL90visctmp(i ,j ,k)*mskCor(i ,j ,bi,bj) |
| 686 |
|
|
& +p8 *( ( GGL90visctmp(i-1,j ,k)*mskCor(i-1,j ,bi,bj) |
| 687 |
|
|
& + GGL90visctmp(i+1,j ,k)*mskCor(i+1,j ,bi,bj) ) |
| 688 |
|
|
& + ( GGL90visctmp(i ,j-1,k)*mskCor(i ,j-1,bi,bj) |
| 689 |
|
|
& + GGL90visctmp(i ,j+1,k)*mskCor(i ,j+1,bi,bj) ) ) |
| 690 |
|
|
& +p16*( ( GGL90visctmp(i+1,j+1,k)*mskCor(i+1,j+1,bi,bj) |
| 691 |
|
|
& + GGL90visctmp(i-1,j-1,k)*mskCor(i-1,j-1,bi,bj) ) |
| 692 |
|
|
& + ( GGL90visctmp(i+1,j-1,k)*mskCor(i+1,j-1,bi,bj) |
| 693 |
|
|
& + GGL90visctmp(i-1,j+1,k)*mskCor(i-1,j+1,bi,bj) ) ) |
| 694 |
|
|
& )/( |
| 695 |
|
|
& p4 |
| 696 |
|
|
& +p8 *( ( maskC(i-1,j ,k,bi,bj)*mskCor(i-1,j ,bi,bj) |
| 697 |
|
|
& + maskC(i+1,j ,k,bi,bj)*mskCor(i+1,j ,bi,bj) ) |
| 698 |
|
|
& + ( maskC(i ,j-1,k,bi,bj)*mskCor(i ,j-1,bi,bj) |
| 699 |
|
|
& + maskC(i ,j+1,k,bi,bj)*mskCor(i ,j+1,bi,bj) ) ) |
| 700 |
|
|
& +p16*( ( maskC(i+1,j+1,k,bi,bj)* mskCor(i+1,j+1,bi,bj) |
| 701 |
|
|
& + maskC(i-1,j-1,k,bi,bj)*mskCor(i-1,j-1,bi,bj) ) |
| 702 |
|
|
& + ( maskC(i+1,j-1,k,bi,bj)*mskCor(i+1,j-1,bi,bj) |
| 703 |
|
|
& + maskC(i-1,j+1,k,bi,bj)*mskCor(i-1,j+1,bi,bj) ) ) |
| 704 |
|
|
& )*maskC(i,j,k,bi,bj)*mskCor(i,j,bi,bj) |
| 705 |
|
|
#else |
| 706 |
|
|
tmpVisc = GGL90visctmp(i,j,k) |
| 707 |
|
|
#endif |
| 708 |
|
|
tmpVisc = MIN(tmpVisc/TKEPrandtlNumber(i,j,k),GGL90diffMax) |
| 709 |
|
|
GGL90diffKr(i,j,k,bi,bj)= MAX( tmpVisc , diffKrNrS(k) ) |
| 710 |
|
|
ENDDO |
| 711 |
|
|
ENDDO |
| 712 |
|
|
ENDDO |
| 713 |
|
|
|
| 714 |
|
|
DO k=2,Nr |
| 715 |
|
|
DO j=1,sNy |
| 716 |
|
|
DO i=1,sNx+1 |
| 717 |
|
|
#ifdef ALLOW_GGL90_SMOOTH |
| 718 |
|
|
tmpVisc = ( |
| 719 |
|
|
& p4 *( GGL90visctmp(i-1,j ,k)*mskCor(i-1,j ,bi,bj) |
| 720 |
|
|
& + GGL90visctmp(i ,j ,k)*mskCor(i ,j ,bi,bj) ) |
| 721 |
|
|
& +p8 *( ( GGL90visctmp(i-1,j-1,k)*mskCor(i-1,j-1,bi,bj) |
| 722 |
|
|
& + GGL90visctmp(i ,j-1,k)*mskCor(i ,j-1,bi,bj) ) |
| 723 |
|
|
& + ( GGL90visctmp(i-1,j+1,k)*mskCor(i-1,j+1,bi,bj) |
| 724 |
|
|
& + GGL90visctmp(i ,j+1,k)*mskCor(i ,j+1,bi,bj) ) ) |
| 725 |
|
|
& )/( |
| 726 |
|
|
& p4 * 2. _d 0 |
| 727 |
|
|
& +p8 *( ( maskC(i-1,j-1,k,bi,bj)*mskCor(i-1,j-1,bi,bj) |
| 728 |
|
|
& + maskC(i ,j-1,k,bi,bj)*mskCor(i ,j-1,bi,bj) ) |
| 729 |
|
|
& + ( maskC(i-1,j+1,k,bi,bj)*mskCor(i-1,j+1,bi,bj) |
| 730 |
|
|
& + maskC(i ,j+1,k,bi,bj)*mskCor(i ,j+1,bi,bj) ) ) |
| 731 |
|
|
& )*maskC(i-1,j,k,bi,bj)*mskCor(i-1,j,bi,bj) |
| 732 |
|
|
& *maskC(i ,j,k,bi,bj)*mskCor(i ,j,bi,bj) |
| 733 |
|
|
#else |
| 734 |
|
|
tmpVisc = _maskW(i,j,k,bi,bj) * halfRL |
| 735 |
|
|
& *( GGL90visctmp(i-1,j,k) |
| 736 |
|
|
& + GGL90visctmp(i,j,k) ) |
| 737 |
|
|
#endif |
| 738 |
|
|
tmpVisc = MIN( tmpVisc , GGL90viscMax ) |
| 739 |
|
|
GGL90viscArU(i,j,k,bi,bj) = MAX( tmpVisc, viscArNr(k) ) |
| 740 |
|
|
ENDDO |
| 741 |
|
|
ENDDO |
| 742 |
|
|
ENDDO |
| 743 |
|
|
|
| 744 |
|
|
DO k=2,Nr |
| 745 |
|
|
DO j=1,sNy+1 |
| 746 |
|
|
DO i=1,sNx |
| 747 |
|
|
#ifdef ALLOW_GGL90_SMOOTH |
| 748 |
|
|
tmpVisc = ( |
| 749 |
|
|
& p4 *( GGL90visctmp(i ,j-1,k)*mskCor(i ,j-1,bi,bj) |
| 750 |
|
|
& + GGL90visctmp(i ,j ,k)*mskCor(i ,j ,bi,bj) ) |
| 751 |
|
|
& +p8 *( ( GGL90visctmp(i-1,j-1,k)*mskCor(i-1,j-1,bi,bj) |
| 752 |
|
|
& + GGL90visctmp(i-1,j ,k)*mskCor(i-1,j ,bi,bj) ) |
| 753 |
|
|
& + ( GGL90visctmp(i+1,j-1,k)*mskCor(i+1,j-1,bi,bj) |
| 754 |
|
|
& + GGL90visctmp(i+1,j ,k)*mskCor(i+1,j ,bi,bj) ) ) |
| 755 |
|
|
& )/( |
| 756 |
|
|
& p4 * 2. _d 0 |
| 757 |
|
|
& +p8 *( ( maskC(i-1,j-1,k,bi,bj)*mskCor(i-1,j-1,bi,bj) |
| 758 |
|
|
& + maskC(i-1,j ,k,bi,bj)*mskCor(i-1,j ,bi,bj) ) |
| 759 |
|
|
& + ( maskC(i+1,j-1,k,bi,bj)*mskCor(i+1,j-1,bi,bj) |
| 760 |
|
|
& + maskC(i+1,j ,k,bi,bj)*mskCor(i+1,j ,bi,bj) ) ) |
| 761 |
|
|
& )*maskC(i,j-1,k,bi,bj)*mskCor(i,j-1,bi,bj) |
| 762 |
|
|
& *maskC(i,j ,k,bi,bj)*mskCor(i,j ,bi,bj) |
| 763 |
|
|
#else |
| 764 |
|
|
tmpVisc = _maskS(i,j,k,bi,bj) * halfRL |
| 765 |
|
|
& *( GGL90visctmp(i,j-1,k) |
| 766 |
|
|
& + GGL90visctmp(i,j,k) ) |
| 767 |
|
|
#endif |
| 768 |
|
|
tmpVisc = MIN( tmpVisc , GGL90viscMax ) |
| 769 |
|
|
GGL90viscArV(i,j,k,bi,bj) = MAX( tmpVisc, viscArNr(k) ) |
| 770 |
|
|
ENDDO |
| 771 |
|
|
ENDDO |
| 772 |
|
|
ENDDO |
| 773 |
|
|
|
| 774 |
|
|
DO k=1,Nr |
| 775 |
|
|
DO j=jMin,jMax |
| 776 |
|
|
DO i=iMin,iMax |
| 777 |
|
|
mixingLength(i,j,k,bi,bj) = GGL90mixingLength(i,j,k) / |
| 778 |
|
|
& drF(k) |
| 779 |
|
|
ENDDO |
| 780 |
|
|
ENDDO |
| 781 |
|
|
ENDDO |
| 782 |
|
|
|
| 783 |
|
|
|
| 784 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 785 |
|
|
IF ( useDiagnostics ) THEN |
| 786 |
|
|
CALL DIAGNOSTICS_FILL( GGL90TKE ,'GGL90TKE', |
| 787 |
|
|
& 0,Nr, 1, bi, bj, myThid ) |
| 788 |
|
|
CALL DIAGNOSTICS_FILL( GGL90viscArU,'GGL90ArU', |
| 789 |
|
|
& 0,Nr, 1, bi, bj, myThid ) |
| 790 |
|
|
CALL DIAGNOSTICS_FILL( GGL90viscArV,'GGL90ArV', |
| 791 |
|
|
& 0,Nr, 1, bi, bj, myThid ) |
| 792 |
|
|
CALL DIAGNOSTICS_FILL( GGL90diffKr,'GGL90Kr ', |
| 793 |
|
|
& 0,Nr, 1, bi, bj, myThid ) |
| 794 |
|
|
CALL DIAGNOSTICS_FILL( TKEPrandtlNumber ,'GGL90Prl', |
| 795 |
|
|
& 0,Nr, 2, bi, bj, myThid ) |
| 796 |
|
|
CALL DIAGNOSTICS_FILL( GGL90mixingLength,'GGL90Lmx', |
| 797 |
|
|
& 0,Nr, 2, bi, bj, myThid ) |
| 798 |
|
|
|
| 799 |
|
|
kp1 = MIN(Nr,kSurf+1) |
| 800 |
|
|
DO j=jMin,jMax |
| 801 |
|
|
DO i=iMin,iMax |
| 802 |
|
|
C diagnose surface flux of TKE |
| 803 |
|
|
surf_flx_tke(i,j) =(GGL90TKE(i,j,kSurf,bi,bj)- |
| 804 |
|
|
& GGL90TKE(i,j,kp1,bi,bj)) |
| 805 |
|
|
& *recip_drF(kSurf)*recip_hFacC(i,j,kSurf,bi,bj) |
| 806 |
|
|
& *KappaE(i,j,kp1) |
| 807 |
|
|
ENDDO |
| 808 |
|
|
ENDDO |
| 809 |
|
|
CALL DIAGNOSTICS_FILL( surf_flx_tke,'GGL90flx', |
| 810 |
|
|
& 0, 1, 2, bi, bj, myThid ) |
| 811 |
|
|
|
| 812 |
|
|
k=kSurf |
| 813 |
|
|
DO j=jMin,jMax |
| 814 |
|
|
DO i=iMin,iMax |
| 815 |
|
|
C diagnose work done by the wind |
| 816 |
|
|
surf_flx_tke(i,j) = |
| 817 |
|
|
& halfRL*( surfaceForcingU(i, j,bi,bj)*uVel(i ,j,k,bi,bj) |
| 818 |
|
|
& +surfaceForcingU(i+1,j,bi,bj)*uVel(i+1,j,k,bi,bj)) |
| 819 |
|
|
& + halfRL*( surfaceForcingV(i,j, bi,bj)*vVel(i,j ,k,bi,bj) |
| 820 |
|
|
& +surfaceForcingV(i,j+1,bi,bj)*vVel(i,j+1,k,bi,bj)) |
| 821 |
|
|
ENDDO |
| 822 |
|
|
ENDDO |
| 823 |
|
|
CALL DIAGNOSTICS_FILL( surf_flx_tke,'GGL90tau', |
| 824 |
|
|
& 0, 1, 2, bi, bj, myThid ) |
| 825 |
|
|
|
| 826 |
|
|
ENDIF |
| 827 |
|
|
#endif /* ALLOW_DIAGNOSTICS */ |
| 828 |
|
|
|
| 829 |
|
|
#endif /* ALLOW_GGL90 */ |
| 830 |
|
|
|
| 831 |
|
|
RETURN |
| 832 |
|
|
END |