/[MITgcm]/MITgcm_contrib/dcarroll/highres_darwin/code/dic_surfforcing.F
ViewVC logotype

Contents of /MITgcm_contrib/dcarroll/highres_darwin/code/dic_surfforcing.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (show annotations) (download)
Sun Sep 22 21:23:46 2019 UTC (5 years, 10 months ago) by dcarroll
Branch: MAIN
CVS Tags: HEAD
Initial check in of high resolution Darwin simulation code

1 #include "CPP_OPTIONS.h"
2 #include "PTRACERS_OPTIONS.h"
3 #include "DARWIN_OPTIONS.h"
4
5 #ifdef ALLOW_PTRACERS
6 #ifdef ALLOW_DARWIN
7
8 #ifdef ALLOW_CARBON
9
10 CBOP
11 C !ROUTINE: DIC_SURFFORCING
12
13 C !INTERFACE: ==========================================================
14 SUBROUTINE DIC_SURFFORCING( PTR_DIC , PTR_ALK, PTR_PO4, PTR_SIL,
15 O GDC,
16 I bi,bj,imin,imax,jmin,jmax,
17 I myIter,myTime,myThid)
18
19 C !DESCRIPTION:
20 C Calculate the carbon air-sea flux terms
21 C following external_forcing_dic.F (OCMIP run) from Mick
22
23 C !USES: ===============================================================
24 IMPLICIT NONE
25 #include "SIZE.h"
26 #include "DYNVARS.h"
27 #include "EEPARAMS.h"
28 #include "PARAMS.h"
29 #include "GRID.h"
30 #include "FFIELDS.h"
31 #include "DARWIN_SIZE.h"
32 #include "DARWIN_IO.h"
33 #include "DARWIN_FLUX.h"
34 #ifdef USE_EXFWIND
35 #include "EXF_FIELDS.h"
36 #endif
37
38 C !INPUT PARAMETERS: ===================================================
39 C myThid :: thread number
40 C myIter :: current timestep
41 C myTime :: current time
42 c PTR_DIC :: DIC tracer field
43 INTEGER myIter, myThid
44 _RL myTime
45 _RL PTR_DIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
46 _RL PTR_ALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
47 _RL PTR_PO4(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
48 _RL PTR_SIL(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
49 INTEGER iMin,iMax,jMin,jMax, bi, bj
50
51 C !OUTPUT PARAMETERS: ===================================================
52 c GDC :: tendency due to air-sea exchange
53 _RL GDC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
54
55
56 C !LOCAL VARIABLES: ====================================================
57 INTEGER I,J, kLev, it
58 C Number of iterations for pCO2 solvers...
59 C Solubility relation coefficients
60 _RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
61 _RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
62 _RL Kwexch(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
63 _RL pisvel(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
64 C local variables for carbon chem
65 _RL surfdic(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
66 _RL surfalk(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
67 _RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
68 _RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
69 _RL surfsalt(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
70 _RL surftemp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
71 #ifdef ALLOW_OLD_VIRTUALFLUX
72 _RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
73 #endif
74 CEOP
75
76 cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
77
78 kLev=1
79
80 cc if coupled to atmsopheric model, use the
81 cc Co2 value passed from the coupler
82 c#ifndef USE_ATMOSCO2
83 cC PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv
84 c DO j=1-OLy,sNy+OLy
85 c DO i=1-OLx,sNx+OLx
86 c AtmospCO2(i,j,bi,bj)=278.0 _d -6
87 c ENDDO
88 c ENDDO
89 c#endif
90 C =================================================================
91 C determine inorganic carbon chem coefficients
92 DO j=jmin,jmax
93 DO i=imin,imax
94 c put bounds on tracers so pH solver doesn't blow up
95 surfdic(i,j) =
96 & max(100. _d 0 , min(4000. _d 0, PTR_DIC(i,j)))*1e-3
97 & * maskC(i,j,kLev,bi,bj)
98 surfalk(i,j) =
99 & max(100. _d 0 , min(4000. _d 0, PTR_ALK(i,j)))*1e-3
100 & * maskC(i,j,kLev,bi,bj)
101 surfphos(i,j) =
102 & max(1. _d -10, min(10. _d 0, PTR_PO4(i,j)))*1e-3
103 & * maskC(i,j,kLev,bi,bj)
104 surfsi(i,j) =
105 & max(1. _d -8, min(500. _d 0, PTR_SIL(i,j)))*1e-3
106 & * maskC(i,j,kLev,bi,bj)
107 surfsalt(i,j) =
108 & max(4. _d 0, min(50. _d 0, salt(i,j,kLev,bi,bj)))
109 surftemp(i,j) =
110 & max(-4. _d 0, min(39. _d 0, theta(i,j,kLev,bi,bj)))
111 ENDDO
112 ENDDO
113
114 CALL CARBON_COEFFS(
115 I surftemp,surfsalt,
116 I bi,bj,iMin,iMax,jMin,jMax,myThid)
117 C====================================================================
118
119 DO j=jmin,jmax
120 DO i=imin,imax
121 C Compute AtmosP and Kwexch_Pre which are re-used for flux of O2
122
123 #ifdef USE_PLOAD
124 C Convert anomalous pressure pLoad (in Pa) from atmospheric model
125 C to total pressure (in Atm)
126 C Note: it is assumed the reference atmospheric pressure is 1Atm=1013mb
127 C rather than the actual ref. pressure from Atm. model so that on
128 C average AtmosP is about 1 Atm.
129 AtmosP(i,j,bi,bj)= 1. _d 0 + pLoad(i,j,bi,bj)/Pa2Atm
130 #endif
131
132 C Pre-compute part of exchange coefficient: pisvel*(1-fice)
133 C Schmidt number is accounted for later
134 #ifdef USE_EXFWIND
135 pisvel(i,j)=0.337 _d 0 *wspeed(i,j,bi,bj)**2/3.6 _d 5
136 cBX linear piston velocity after Krakauer et al. (2006), Eq. 3
137 cBX using <k> = 20, n=0.5, and <u^n> = 2.6747 (as determined from 2010
138 cBX EXFwspee field from cube92 run)
139 cDc pisvel(i,j)=20 _d 0 *(wspeed(i,j,bi,bj)**0.5
140 cDc & /2.6747 _d 0) /3.6 _d 5
141 #else
142 pisvel(i,j)=0.337 _d 0 *wind(i,j,bi,bj)**2/3.6 _d 5
143 #endif
144 Kwexch_Pre(i,j,bi,bj) = pisvel(i,j)
145 & * (1. _d 0 - FIce(i,j,bi,bj))
146
147 ENDDO
148 ENDDO
149
150 c pCO2 solver...
151 C$TAF LOOP = parallel
152 DO j=jmin,jmax
153 C$TAF LOOP = parallel
154 DO i=imin,imax
155
156 IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN
157 CALL CALC_PCO2_APPROX(
158 I surftemp(i,j),surfsalt(i,j),
159 I surfdic(i,j), surfphos(i,j),
160 I surfsi(i,j),surfalk(i,j),
161 I ak1(i,j,bi,bj),ak2(i,j,bi,bj),
162 I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj),
163 I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj),
164 I aksi(i,j,bi,bj),akf(i,j,bi,bj),
165 I ak0(i,j,bi,bj), fugf(i,j,bi,bj),
166 I ff(i,j,bi,bj),
167 I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj),
168 U pH(i,j,bi,bj),pCO2(i,j,bi,bj),CO3(i,j,bi,bj),
169 I myThid )
170 ELSE
171 pH(i,j,bi,bj) = 0. _d 0
172 pCO2(i,j,bi,bj) = 0. _d 0
173 CO3(i,j,bi,bj) = 0. _d 0
174 ENDIF
175 ENDDO
176 ENDDO
177
178
179 DO j=jmin,jmax
180 DO i=imin,imax
181
182 IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN
183 C calculate SCHMIDT NO. for CO2
184 SchmidtNoDIC(i,j) =
185 & sca1
186 & + sca2 * surftemp(i,j)
187 & + sca3 * surftemp(i,j)*surftemp(i,j)
188 & + sca4 * surftemp(i,j)*surftemp(i,j)
189 & *surftemp(i,j)
190 c put positive bound on SCHMIT number (will go negative for temp>40)
191 SchmidtNoDIC(i,j) = max(1. _d -2, SchmidtNoDIC(i,j))
192
193 C Determine surface flux (FDIC)
194 C first correct pCO2at for surface atmos pressure
195 pCO2sat(i,j) =
196 & AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj)
197
198 C then account for Schmidt number
199 Kwexch(i,j) = Kwexch_Pre(i,j,bi,bj)
200 & / sqrt(SchmidtNoDIC(i,j)/660.0 _d 0)
201
202 #ifdef WATERVAP_BUG
203 C Calculate flux in terms of DIC units using K0, solubility
204 C Flux = Vp * ([CO2sat] - [CO2])
205 C CO2sat = K0*pCO2atmos*P/P0
206 C Converting pCO2 to [CO2] using ff, as in CALC_PCO2
207 FluxCO2(i,j,bi,bj) =
208 & Kwexch(i,j)*(
209 & ak0(i,j,bi,bj)*pCO2sat(i,j) -
210 & ff(i,j,bi,bj)*pCO2(i,j,bi,bj)
211 & )
212 #else
213 C Corrected by Val Bennington Nov 2010 per G.A. McKinley's finding
214 C of error in application of water vapor correction
215 c Flux = kw*rho*(ff*pCO2atm-k0*FugFac*pCO2ocean)
216 FluxCO2(i,j,bi,bj) =
217 & Kwexch(i,j)*(
218 & ff(i,j,bi,bj)*pCO2sat(i,j) -
219 & pCO2(i,j,bi,bj)*fugf(i,j,bi,bj)
220 & *ak0(i,j,bi,bj) )
221 &
222 #endif
223 ELSE
224 FluxCO2(i,j,bi,bj) = 0. _d 0
225 ENDIF
226 C convert flux (mol kg-1 m s-1) to (mol m-2 s-1)
227 FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil
228 c convert flux (mol m-2 s-1) to (mmol m-2 s-1)
229 FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)*1. _d 3
230
231
232 #ifdef ALLOW_OLD_VIRTUALFLUX
233 IF (maskC(i,j,kLev,bi,bj).NE.0. _d 0) THEN
234 c calculate virtual flux
235 c EminusPforV = dS/dt*(1/Sglob)
236 C NOTE: Be very careful with signs here!
237 C Positive EminusPforV => loss of water to atmos and increase
238 C in salinity. Thus, also increase in other surface tracers
239 C (i.e. positive virtual flux into surface layer)
240 C ...so here, VirtualFLux = dC/dt!
241 VirtualFlux(i,j)=gsm_DIC*surfaceForcingS(i,j,bi,bj)/gsm_s
242 c OR
243 c let virtual flux be zero
244 c VirtualFlux(i,j)=0.d0
245 c
246 ELSE
247 VirtualFlux(i,j)=0. _d 0
248 ENDIF
249 #endif /* ALLOW_OLD_VIRTUALFLUX */
250 ENDDO
251 ENDDO
252
253 C update tendency
254 DO j=jmin,jmax
255 DO i=imin,imax
256 GDC(i,j)= recip_drF(kLev)*recip_hFacC(i,j,kLev,bi,bj)
257 & *(FluxCO2(i,j,bi,bj)
258 #ifdef ALLOW_OLD_VIRTUALFLUX
259 & + VirtualFlux(i,j)
260 #endif
261 & )
262 #ifdef CO2_FLUX_BUDGET
263 if(budgetTStep1.EQ.0) then
264 C if first timestep
265 C this is problematic at restart clean-up later
266 dCO2Flux(i,j,bi,bj) = 0. _d 0
267 else
268 C can include VirtualFlux later, if it is needed
269 dCO2Flux(i,j,bi,bj) = FluxCO2(i,j,bi,bj) -
270 & fluxCO2_1(i,j,bi,bj)
271 endif
272 fluxCO2_1(i,j,bi,bj) = FluxCO2(i,j,bi,bj)
273
274 #endif /* CO2_FLUX_BUDGET */
275 ENDDO
276 ENDDO
277
278 RETURN
279 END
280 #endif /*ALLOW_CARBON*/
281
282 #endif /*DARWIN*/
283 #endif /*ALLOW_PTRACERS*/
284 c ==================================================================

  ViewVC Help
Powered by ViewVC 1.1.22