| 1 |
C $Header: /u/gcmpack/MITgcm_contrib/ecco_darwin/v4_llc270/code_darwin/darwin_plankton.F,v 1.7 2019/09/16 15:25:49 dcarroll Exp $ |
| 2 |
C $Name: $ |
| 3 |
|
| 4 |
#include "CPP_OPTIONS.h" |
| 5 |
#include "PTRACERS_OPTIONS.h" |
| 6 |
#include "DARWIN_OPTIONS.h" |
| 7 |
|
| 8 |
#ifdef ALLOW_PTRACERS |
| 9 |
#ifdef ALLOW_DARWIN |
| 10 |
|
| 11 |
c ==================================================================== |
| 12 |
c SUBROUTINE DARWIN_PLANKTON |
| 13 |
c 1. Local ecological interactions for models with many phytoplankton |
| 14 |
c "functional groups" |
| 15 |
c 2. Timestep plankton and nutrients locally |
| 16 |
c 3. Includes explicit DOM and POM |
| 17 |
c 4. Remineralization of detritus also determined in routine |
| 18 |
c 5. Sinking particles and phytoplankton |
| 19 |
c 6. NOT in this routine: iron chemistry |
| 20 |
c |
| 21 |
c Mick Follows, Scott Grant, Fall/Winter 2005 |
| 22 |
c Stephanie Dutkiewicz Spring/Summer 2006 |
| 23 |
c |
| 24 |
c - add extra diagnostics, including R* (#define DAR_DIAG_RSTAR) - Stephanie, Spring 2007 |
| 25 |
c - add check for conservation (#define CHECK_CONS) - Stephanie, Spring 2007 |
| 26 |
c - improve grazing (#undef OLD_GRAZING) - Stephanie, Spring 2007 |
| 27 |
c - add diazotrophy (#define ALLOW_DIAZ) - Stephanie, Spring 2007 |
| 28 |
c - add mutation code (#define ALLOW_MUTANTS) - Jason Bragg, Spring/Summer 2007 |
| 29 |
c - new nitrogen limiting scheme (#undef OLD_NSCHEME) - Jason Bragg, Summer 2007 |
| 30 |
c - fix bug in diazotroph code - Stephanie, Fall 2007 |
| 31 |
c - add additional r* diagnostic for (no3+no2) - Stephanie, Winter 2007 |
| 32 |
c - add diversity diagnostics - Stephanie, Winter 2007 |
| 33 |
c - add geider chl:c ratio and growth rate dependence, |
| 34 |
c though has no photo-inhibtion at this point - Stephanie, Spring 2008 |
| 35 |
c - add waveband dependence of light attenuation and absorption, |
| 36 |
c NOTE: need to have geider turned on too - Anna Hickman, Summer 2008 |
| 37 |
c ==================================================================== |
| 38 |
|
| 39 |
c ANNA pass extra variables if WAVEBANDS |
| 40 |
SUBROUTINE DARWIN_PLANKTON( |
| 41 |
U phyto, |
| 42 |
I zooP, zooN, zooFe, zooSi, |
| 43 |
O PP, Chl, Nfix, denit, |
| 44 |
I PO4local, NO3local, FeTlocal, Silocal, |
| 45 |
I NO2local, NH4local, |
| 46 |
I DOPlocal, DONlocal, DOFelocal, |
| 47 |
I POPlocal, PONlocal, POFelocal, PSilocal, |
| 48 |
I phytoup, popuplocal, ponuplocal, |
| 49 |
I pofeuplocal, psiuplocal, |
| 50 |
I PARlocal,Tlocal, Slocal, |
| 51 |
I freefelocal, inputFelocal, |
| 52 |
I bottom, dzlocal, |
| 53 |
O Rstarlocal, RNstarlocal, |
| 54 |
#ifdef DAR_DIAG_GROW |
| 55 |
O Growlocal, Growsqlocal, |
| 56 |
#endif |
| 57 |
#ifdef ALLOW_DIAZ |
| 58 |
#ifdef DAR_DIAG_NFIXP |
| 59 |
O NfixPlocal, |
| 60 |
#endif |
| 61 |
#endif |
| 62 |
O dphytodt, dzooPdt, dzooNdt, dzooFedt, |
| 63 |
O dzooSidt, |
| 64 |
O dPO4dt, dNO3dt, dFeTdt, dSidt, |
| 65 |
O dNH4dt, dNO2dt, |
| 66 |
O dDOPdt, dDONdt, dDOFedt, |
| 67 |
O dPOPdt, dPONdt, dPOFedt, dPSidt, |
| 68 |
#ifdef ALLOW_CARBON |
| 69 |
I DIClocal, DOClocal, POClocal, PIClocal, |
| 70 |
I ALKlocal, O2local, ZooClocal, |
| 71 |
I POCuplocal, PICuplocal, KspTPLocal, |
| 72 |
I CO3Local,calciumLocal, |
| 73 |
O dDICdt, dDOCdt, dPOCdt, dPICdt, |
| 74 |
O dALKdt, dO2dt, dZOOCdt,omegaCLocal, |
| 75 |
O disscPIC, |
| 76 |
#endif |
| 77 |
#ifdef CO2_FLUX_BUDGET |
| 78 |
O consumpDIC, consumpDIC_PIC, |
| 79 |
O preminC, DOCremin, |
| 80 |
#endif |
| 81 |
#ifdef GEIDER |
| 82 |
I phychl, |
| 83 |
#ifdef DYNAMIC_CHL |
| 84 |
O dphychl, Chlup, |
| 85 |
#endif |
| 86 |
#ifdef WAVEBANDS |
| 87 |
I PARwlocal, |
| 88 |
#endif |
| 89 |
#endif |
| 90 |
#ifdef ALLOW_PAR_DAY |
| 91 |
I PARdaylocal, |
| 92 |
#endif |
| 93 |
#ifdef DAR_DIAG_CHL |
| 94 |
O ChlGeiderlocal, ChlDoneylocal, |
| 95 |
O ChlCloernlocal, |
| 96 |
#endif |
| 97 |
I debug, |
| 98 |
I runtim, |
| 99 |
I MyThid) |
| 100 |
|
| 101 |
|
| 102 |
implicit none |
| 103 |
#include "DARWIN_SIZE.h" |
| 104 |
#include "SPECTRAL_SIZE.h" |
| 105 |
#include "DARWIN.h" |
| 106 |
#include "DARWIN_PARAMS.h" |
| 107 |
|
| 108 |
c ANNA set wavebands params |
| 109 |
#ifdef WAVEBANDS |
| 110 |
#include "WAVEBANDS_PARAMS.h" |
| 111 |
#endif |
| 112 |
|
| 113 |
|
| 114 |
C !INPUT PARAMETERS: =================================================== |
| 115 |
C myThid :: thread number |
| 116 |
INTEGER myThid |
| 117 |
CEOP |
| 118 |
c === GLOBAL VARIABLES ===================== |
| 119 |
c npmax = no of phyto functional groups |
| 120 |
c nzmax = no of grazer species |
| 121 |
c phyto = phytoplankton |
| 122 |
c zoo = zooplankton |
| 123 |
_RL phyto(npmax) |
| 124 |
_RL zooP(nzmax) |
| 125 |
_RL zooN(nzmax) |
| 126 |
_RL zooFe(nzmax) |
| 127 |
_RL zooSi(nzmax) |
| 128 |
_RL PP |
| 129 |
_RL Nfix |
| 130 |
_RL denit |
| 131 |
_RL Chl |
| 132 |
_RL PO4local |
| 133 |
_RL NO3local |
| 134 |
_RL FeTlocal |
| 135 |
_RL Silocal |
| 136 |
_RL NO2local |
| 137 |
_RL NH4local |
| 138 |
_RL DOPlocal |
| 139 |
_RL DONlocal |
| 140 |
_RL DOFelocal |
| 141 |
_RL POPlocal |
| 142 |
_RL PONlocal |
| 143 |
_RL POFelocal |
| 144 |
_RL PSilocal |
| 145 |
_RL phytoup(npmax) |
| 146 |
_RL POPuplocal |
| 147 |
_RL PONuplocal |
| 148 |
_RL POFeuplocal |
| 149 |
_RL PSiuplocal |
| 150 |
_RL PARlocal |
| 151 |
_RL Tlocal |
| 152 |
_RL Slocal |
| 153 |
_RL freefelocal |
| 154 |
_RL inputFelocal |
| 155 |
_RL bottom |
| 156 |
_RL dzlocal |
| 157 |
_RL Rstarlocal(npmax) |
| 158 |
_RL RNstarlocal(npmax) |
| 159 |
#ifdef DAR_DIAG_GROW |
| 160 |
_RL Growlocal(npmax) |
| 161 |
_RL Growsqlocal(npmax) |
| 162 |
#endif |
| 163 |
#ifdef ALLOW_DIAZ |
| 164 |
#ifdef DAR_DIAG_NFIXP |
| 165 |
_RL NfixPlocal(npmax) |
| 166 |
#endif |
| 167 |
#endif |
| 168 |
INTEGER debug |
| 169 |
_RL dphytodt(npmax) |
| 170 |
_RL dzooPdt(nzmax) |
| 171 |
_RL dzooNdt(nzmax) |
| 172 |
_RL dzooFedt(nzmax) |
| 173 |
_RL dzooSidt(nzmax) |
| 174 |
_RL dPO4dt |
| 175 |
_RL dNO3dt |
| 176 |
_RL dNO2dt |
| 177 |
_RL dNH4dt |
| 178 |
_RL dFeTdt |
| 179 |
_RL dSidt |
| 180 |
_RL dDOPdt |
| 181 |
_RL dDONdt |
| 182 |
_RL dDOFedt |
| 183 |
_RL dPOPdt |
| 184 |
_RL dPONdt |
| 185 |
_RL dPOFedt |
| 186 |
_RL dPSidt |
| 187 |
#ifdef ALLOW_CARBON |
| 188 |
_RL DIClocal |
| 189 |
_RL DOClocal |
| 190 |
_RL POClocal |
| 191 |
_RL PIClocal |
| 192 |
_RL ALKlocal |
| 193 |
_RL O2local |
| 194 |
_RL ZooClocal(nzmax) |
| 195 |
_RL POCuplocal |
| 196 |
_RL PICuplocal |
| 197 |
_RL KspTPLocal |
| 198 |
_RL CO3Local |
| 199 |
_RL calciumLocal |
| 200 |
_RL omegaCLocal |
| 201 |
_RL dDICdt |
| 202 |
_RL dDOCdt |
| 203 |
_RL dPOCdt |
| 204 |
_RL dPICdt |
| 205 |
_RL dALKdt |
| 206 |
_RL dO2dt |
| 207 |
_RL dZOOCdt(nzmax) |
| 208 |
#endif |
| 209 |
#ifdef GEIDER |
| 210 |
_RL phychl(npmax) |
| 211 |
#ifdef DYNAMIC_CHL |
| 212 |
_RL dphychl(npmax) |
| 213 |
_RL Chlup(npmax) |
| 214 |
#endif |
| 215 |
#endif |
| 216 |
#ifdef ALLOW_PAR_DAY |
| 217 |
_RL PARdaylocal |
| 218 |
#endif |
| 219 |
#ifdef DAR_DIAG_CHL |
| 220 |
_RL ChlGeiderlocal, ChlDoneylocal, ChlCloernlocal |
| 221 |
#endif |
| 222 |
_RL runtim |
| 223 |
|
| 224 |
c ANNA Global variables for WAVEBANDS |
| 225 |
c ANNA these variables are passed in/out of darwin_forcing.F |
| 226 |
#ifdef WAVEBANDS |
| 227 |
_RL PARwlocal(tlam) !PAR at midpoint of previous(in) and local(out) gridcell |
| 228 |
#endif |
| 229 |
c ANNA endif |
| 230 |
|
| 231 |
|
| 232 |
|
| 233 |
|
| 234 |
|
| 235 |
c LOCAL VARIABLES |
| 236 |
c ------------------------------------------------------------- |
| 237 |
|
| 238 |
c WORKING VARIABLES |
| 239 |
c np = phytoplankton index |
| 240 |
integer np |
| 241 |
c nz = zooplankton index |
| 242 |
integer nz |
| 243 |
|
| 244 |
c variables for phytoplankton growth rate/nutrient limitation |
| 245 |
c phytoplankton specific nutrient limitation term |
| 246 |
_RL limit(npmax) |
| 247 |
c phytoplankton light limitation term |
| 248 |
_RL ilimit(npmax) |
| 249 |
_RL ngrow(npmax) |
| 250 |
_RL grow(npmax) |
| 251 |
_RL PspecificPO4(npmax) |
| 252 |
_RL phytoTempFunction(npmax) |
| 253 |
_RL mortPTempFunction |
| 254 |
_RL dummy |
| 255 |
_RL Ndummy |
| 256 |
_RL Nsourcelimit(npmax) |
| 257 |
_RL Nlimit(npmax) |
| 258 |
_RL NO3limit(npmax) |
| 259 |
_RL NO2limit(npmax) |
| 260 |
_RL NH4limit(npmax) |
| 261 |
|
| 262 |
c for check N limit scheme |
| 263 |
_RL Ndiff |
| 264 |
_RL NO3limcheck |
| 265 |
_RL NO2limcheck |
| 266 |
_RL Ndummy1 |
| 267 |
LOGICAL check_nlim |
| 268 |
|
| 269 |
#ifndef OLD_NSCHEME |
| 270 |
c [jbmodif] some new N terms |
| 271 |
integer N2only |
| 272 |
integer noNOdadv |
| 273 |
integer NOreducost |
| 274 |
_RL NO2zoNH4 |
| 275 |
_RL NOXzoNH4 |
| 276 |
#endif |
| 277 |
|
| 278 |
c varible for mimumum phyto |
| 279 |
_RL phytomin(npmax) |
| 280 |
|
| 281 |
#ifdef OLD_GRAZE |
| 282 |
c variables for zooplankton grazing rates |
| 283 |
_RL zooTempFunction(nzmax) |
| 284 |
_RL mortZTempFunction |
| 285 |
_RL mortZ2TempFunction |
| 286 |
_RL grazing_phyto(npmax) |
| 287 |
_RL grazingP(nzmax) |
| 288 |
_RL grazingN(nzmax) |
| 289 |
_RL grazingFe(nzmax) |
| 290 |
_RL grazingSi(nzmax) |
| 291 |
#else |
| 292 |
c variables for zooplankton grazing rates |
| 293 |
_RL zooTempFunction(nzmax) |
| 294 |
_RL mortZTempFunction |
| 295 |
_RL mortZ2TempFunction |
| 296 |
_RL allphyto(nzmax) |
| 297 |
_RL grazphy(npmax,nzmax) |
| 298 |
_RL sumgrazphy(npmax) |
| 299 |
_RL sumgrazzoo(nzmax) |
| 300 |
_RL sumgrazzooN(nzmax) |
| 301 |
_RL sumgrazzooFe(nzmax) |
| 302 |
_RL sumgrazzooSi(nzmax) |
| 303 |
_RL sumgrazloss(nzmax) |
| 304 |
_RL sumgrazlossN(nzmax) |
| 305 |
_RL sumgrazlossFe(nzmax) |
| 306 |
_RL sumgrazlossSi(nzmax) |
| 307 |
#endif |
| 308 |
|
| 309 |
#ifdef GEIDER |
| 310 |
_RL alpha_I(npmax) |
| 311 |
_RL pcarbon(npmax) |
| 312 |
_RL pcm(npmax) |
| 313 |
_RL chl2c(npmax) |
| 314 |
#ifdef DYNAMIC_CHL |
| 315 |
_RL acclim(npmax) |
| 316 |
_RL psinkchl(npmax) |
| 317 |
_RL rhochl(npmax) |
| 318 |
#endif |
| 319 |
#endif |
| 320 |
|
| 321 |
#ifdef DAR_DIAG_CHL |
| 322 |
_RL tmppcm |
| 323 |
_RL tmpchl2c |
| 324 |
#endif |
| 325 |
c variables for nutrient uptake |
| 326 |
_RL consumpPO4 |
| 327 |
_RL consumpNO3 |
| 328 |
_RL consumpNO2 |
| 329 |
_RL consumpNH4 |
| 330 |
_RL consumpFeT |
| 331 |
_RL consumpSi |
| 332 |
|
| 333 |
c variables for reminerlaization of DOM and POM |
| 334 |
_RL reminTempFunction |
| 335 |
_RL DOPremin |
| 336 |
_RL DONremin |
| 337 |
_RL DOFeremin |
| 338 |
_RL preminP |
| 339 |
_RL preminN |
| 340 |
_RL preminFe |
| 341 |
_RL preminSi |
| 342 |
|
| 343 |
c for sinking matter |
| 344 |
_RL psinkP |
| 345 |
_RL psinkN |
| 346 |
_RL psinkFe |
| 347 |
_RL psinkSi |
| 348 |
_RL psinkphy(npmax) |
| 349 |
|
| 350 |
#ifdef ALLOW_CARBON |
| 351 |
_RL consumpDIC |
| 352 |
_RL consumpDIC_PIC |
| 353 |
_RL preminC |
| 354 |
_RL DOCremin |
| 355 |
_RL totphy_doc |
| 356 |
_RL totzoo_doc |
| 357 |
_RL totphy_poc |
| 358 |
_RL totzoo_poc |
| 359 |
_RL totphy_pic |
| 360 |
_RL totzoo_pic |
| 361 |
_RL psinkC |
| 362 |
_RL psinkPIC |
| 363 |
_RL disscPIC |
| 364 |
#ifdef OLD_GRAZE |
| 365 |
_RL grazingC(nzmax) |
| 366 |
#else |
| 367 |
c variables for zooplankton grazing rates |
| 368 |
_RL sumgrazzooC(nzmax) |
| 369 |
_RL sumgrazlossC(nzmax) |
| 370 |
_RL sumgrazlossPIC(nzmax) |
| 371 |
#endif |
| 372 |
|
| 373 |
#endif |
| 374 |
|
| 375 |
c variables for conversions from phyto and zoo to DOM and POM |
| 376 |
_RL totphy_dop |
| 377 |
_RL totphy_pop |
| 378 |
_RL totphy_don |
| 379 |
_RL totphy_pon |
| 380 |
_RL totphy_dofe |
| 381 |
_RL totphy_pofe |
| 382 |
_RL totphy_dosi |
| 383 |
_RL totphy_posi |
| 384 |
|
| 385 |
_RL totzoo_dop |
| 386 |
_RL totzoo_pop |
| 387 |
_RL totzoo_don |
| 388 |
_RL totzoo_pon |
| 389 |
_RL totzoo_dofe |
| 390 |
_RL totzoo_pofe |
| 391 |
_RL totzoo_posi |
| 392 |
|
| 393 |
_RL NO2prod |
| 394 |
_RL NO3prod |
| 395 |
|
| 396 |
_RL facpz |
| 397 |
|
| 398 |
_RL kpar, kinh |
| 399 |
|
| 400 |
_RL tmpr,tmpz, tmpgrow, tmp1, tmp2 |
| 401 |
|
| 402 |
integer ITEST |
| 403 |
|
| 404 |
#ifdef PART_SCAV |
| 405 |
_RL scav_part |
| 406 |
_RL scav_poc |
| 407 |
#endif |
| 408 |
|
| 409 |
|
| 410 |
c ANNA local variables for WAVEBANDS |
| 411 |
#ifdef WAVEBANDS |
| 412 |
integer i,ilam |
| 413 |
integer nl |
| 414 |
|
| 415 |
c ANNA for interpolation |
| 416 |
_RL cu_area |
| 417 |
C _RL waves_diff |
| 418 |
C _RL light_diff |
| 419 |
C _RL alphaI_diff |
| 420 |
C _RL squ_part |
| 421 |
C _RL tri_part |
| 422 |
C _RL seg_area |
| 423 |
|
| 424 |
c ANNA inportant but local variables that can be fogotten |
| 425 |
_RL PARwdn(tlam) !light at bottom of local gridcell |
| 426 |
_RL attenwl(tlam) !attenuation (m-1) |
| 427 |
_RL sumaphy_nl(tlam) !total phyto absorption at each wavelength |
| 428 |
#endif |
| 429 |
c ANNA endif |
| 430 |
|
| 431 |
c ANNA - for inhib |
| 432 |
_RL Ek |
| 433 |
_RL EkoverE |
| 434 |
|
| 435 |
c................................................................. |
| 436 |
|
| 437 |
#ifdef ALLOW_MUTANTS |
| 438 |
c -m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m- |
| 439 |
c mutation variables [jbmodif] |
| 440 |
INTEGER nsisone |
| 441 |
INTEGER nsistwo |
| 442 |
INTEGER nsisthree |
| 443 |
INTEGER nsisfour |
| 444 |
INTEGER npro |
| 445 |
INTEGER taxind |
| 446 |
_RL mutfor, mutback |
| 447 |
_RL grow1 |
| 448 |
_RL grow2 |
| 449 |
_RL grow3 |
| 450 |
_RL grow4 |
| 451 |
#endif |
| 452 |
|
| 453 |
INTEGER numtax |
| 454 |
_RL oneyr,threeyr |
| 455 |
|
| 456 |
#ifdef ALLOW_MUTANTS |
| 457 |
c compile time options -- could maybe be moved to |
| 458 |
c run time and set in data.gchem??? |
| 459 |
c QQQQQQQ |
| 460 |
c Initialize sister taxon mutation scheme |
| 461 |
c if numtax = 1, mutation is off |
| 462 |
numtax = 4 |
| 463 |
c number of plankton types to assign for |
| 464 |
c wild and mutants types |
| 465 |
npro = 60 |
| 466 |
#else |
| 467 |
numtax=1 |
| 468 |
#endif |
| 469 |
|
| 470 |
oneyr = 86400.0 _d 0*360.0 _d 0 |
| 471 |
threeyr = oneyr*3. _d 0 |
| 472 |
|
| 473 |
c end mutation variables [jbmodif] |
| 474 |
c -m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m- |
| 475 |
|
| 476 |
#ifndef OLD_NSCHEME |
| 477 |
c [jbmodif] init new N terms |
| 478 |
c if those not using NO3 has |
| 479 |
c N limit with denominator with NO3 or not: 0=NO3 in denom; 1=NO2 only |
| 480 |
N2only = 1 |
| 481 |
c ?? |
| 482 |
noNOdadv = 1 |
| 483 |
c energetic disadvantage of using NO2/No3: off=0, on=1 |
| 484 |
NOreducost =0 |
| 485 |
#endif |
| 486 |
|
| 487 |
#ifdef GEIDER |
| 488 |
do np=1,npmax |
| 489 |
pcarbon(np) = 0. _d 0 |
| 490 |
pcm(np)=0. _d 0 |
| 491 |
chl2c(np)=0. _d 0 |
| 492 |
#ifdef DYNAMIC_CHL |
| 493 |
acclim(np)=0. _d 0 |
| 494 |
psinkChl(np)=0. _d 0 |
| 495 |
#endif |
| 496 |
enddo |
| 497 |
#endif |
| 498 |
|
| 499 |
|
| 500 |
c set sum totals to zero |
| 501 |
totphy_pop = 0. _d 0 |
| 502 |
totphy_dop = 0. _d 0 |
| 503 |
totphy_don = 0. _d 0 |
| 504 |
totphy_pon = 0. _d 0 |
| 505 |
totphy_dofe = 0. _d 0 |
| 506 |
totphy_pofe = 0. _d 0 |
| 507 |
totphy_posi = 0. _d 0 |
| 508 |
|
| 509 |
totzoo_dop = 0. _d 0 |
| 510 |
totzoo_pop = 0. _d 0 |
| 511 |
totzoo_don = 0. _d 0 |
| 512 |
totzoo_pon = 0. _d 0 |
| 513 |
totzoo_dofe = 0. _d 0 |
| 514 |
totzoo_pofe = 0. _d 0 |
| 515 |
totzoo_posi = 0. _d 0 |
| 516 |
|
| 517 |
consumpPO4 = 0.0 _d 0 |
| 518 |
consumpNO3 = 0.0 _d 0 |
| 519 |
consumpNO2 = 0.0 _d 0 |
| 520 |
consumpNH4 = 0.0 _d 0 |
| 521 |
consumpFeT = 0.0 _d 0 |
| 522 |
consumpSi = 0.0 _d 0 |
| 523 |
|
| 524 |
#ifdef ALLOW_CARBON |
| 525 |
totphy_doc = 0. _d 0 |
| 526 |
totphy_poc = 0. _d 0 |
| 527 |
totphy_pic = 0. _d 0 |
| 528 |
totzoo_doc = 0. _d 0 |
| 529 |
totzoo_poc = 0. _d 0 |
| 530 |
totzoo_pic = 0. _d 0 |
| 531 |
consumpDIC = 0.0 _d 0 |
| 532 |
consumpDIC_PIC = 0.0 _d 0 |
| 533 |
#endif |
| 534 |
|
| 535 |
c zeros for diagnostics |
| 536 |
PP=0. _d 0 |
| 537 |
Nfix=0. _d 0 |
| 538 |
denit=0. _d 0 |
| 539 |
Chl=0. _d 0 |
| 540 |
|
| 541 |
c set up phtyoplankton array to be used for grazing and mortality |
| 542 |
c set up other variable used more than once to zero |
| 543 |
do np = 1, npmax |
| 544 |
dummy = phyto(np)-phymin |
| 545 |
phytomin(np)=max(dummy,0. _d 0) |
| 546 |
NH4limit(np)=0. _d 0 |
| 547 |
NO2limit(np)=0. _d 0 |
| 548 |
NO3limit(np)=0. _d 0 |
| 549 |
#ifdef ALLOW_DIAZ |
| 550 |
#ifdef DAR_DIAG_NFIXP |
| 551 |
NfixPlocal(np)=0. _d 0 |
| 552 |
#endif |
| 553 |
#endif |
| 554 |
enddo |
| 555 |
|
| 556 |
|
| 557 |
#ifdef ALLOW_MUTANTS |
| 558 |
c SWD if parent population is zero (ie. negative) treat all mutants |
| 559 |
c as zeros too |
| 560 |
if(runtim .gt. threeyr) then |
| 561 |
if(numtax .gt. 1)then |
| 562 |
do np=1,npro |
| 563 |
if(mod(np,numtax).eq. 1. _d 0)then |
| 564 |
nsisone = np |
| 565 |
nsistwo = np+1 |
| 566 |
nsisthree = np+2 |
| 567 |
nsisfour = np+3 |
| 568 |
|
| 569 |
if (phyto(nsisone).le.0. _d 0) then |
| 570 |
if (numtax.gt.1) phyto(nsistwo)=0. _d 0 |
| 571 |
if (numtax.gt.2) phyto(nsisthree)=0. _d 0 |
| 572 |
if (numtax.gt.3) phyto(nsisfour)=0. _d 0 |
| 573 |
endif |
| 574 |
endif |
| 575 |
enddo |
| 576 |
endif |
| 577 |
endif |
| 578 |
ccccccccccccccccccccccccccccccc |
| 579 |
#endif |
| 580 |
|
| 581 |
|
| 582 |
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 583 |
call DARWIN_TEMPFUNC(Tlocal,phytoTempFunction, |
| 584 |
& zooTempFunction, reminTempFunction, |
| 585 |
& mortPTempFunction, mortZTempFunction, |
| 586 |
& mortZ2TempFunction, myThid) |
| 587 |
if (debug.eq.1) print*,'phytoTempFunction', |
| 588 |
& phytoTempFunction, Tlocal |
| 589 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 590 |
|
| 591 |
c ******************** GROWTH OF PHYTO **************************** |
| 592 |
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 593 |
#ifndef GEIDER |
| 594 |
c ANNA also if not wavebands |
| 595 |
#ifndef WAVEBANDS |
| 596 |
c Determine phytoplantkon light limitation: will affect growth rate |
| 597 |
c using Platt-like equations with inhibition |
| 598 |
do np = 1, npmax |
| 599 |
if (PARlocal.gt.1. _d 0) then |
| 600 |
kpar=ksatPAR(np)/10. _d 0; |
| 601 |
kinh=kinhib(np)/1000. _d 0; |
| 602 |
ilimit(np)=(1.0 _d 0 - EXP(-PARlocal*kpar)) |
| 603 |
& *(EXP(-PARlocal*kinh)) / |
| 604 |
& ( kpar/(kpar+kinh)*EXP(kinh/kpar*LOG(kinh/(kpar+kinh))) ) |
| 605 |
ilimit(np)=min(ilimit(np),1. _d 0) |
| 606 |
else |
| 607 |
ilimit(np)=0. _d 0 |
| 608 |
endif |
| 609 |
enddo |
| 610 |
if (debug.eq.1) print*,'ilimit',ilimit, PARlocal |
| 611 |
#endif |
| 612 |
#endif |
| 613 |
c ANNA endif |
| 614 |
|
| 615 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 616 |
c Determine phytoplankton nutrient limitation as mimimum of |
| 617 |
c P,N,Si,Fe. However N can be utilized in several forms, so |
| 618 |
c also determine which is used |
| 619 |
do np=1, npmax |
| 620 |
limit(np) = 1.0 _d 0 |
| 621 |
c P limitation |
| 622 |
if (ksatPO4(np).gt.0. _d 0) then |
| 623 |
dummy = PO4local/(PO4local+ksatPO4(np)) |
| 624 |
if (dummy .lt. limit(np)) limit(np) = dummy |
| 625 |
endif |
| 626 |
c Fe limitation |
| 627 |
if (ksatFeT(np).gt.0. _d 0) then |
| 628 |
dummy = FeTlocal/(FeTlocal+ksatFeT(np)) |
| 629 |
if (dummy .lt. limit(np))limit(np) = dummy |
| 630 |
endif |
| 631 |
c Si limiation |
| 632 |
if (R_SiP(np) .ne. 0. _d 0.and.ksatSi(np).gt.0. _d 0) then |
| 633 |
dummy = Silocal/(Silocal+ksatSi(np)) |
| 634 |
if (dummy .lt. limit(np))limit(np) = dummy |
| 635 |
endif |
| 636 |
|
| 637 |
c N limitation [jbmodif] |
| 638 |
c nsource: genetic preference for {1:NH4&NO2 2:NH4 3:ALL Sources} |
| 639 |
c Nsourcelimit marker for which nsource will be consumed {1:NO3 2:NO2 3:NH4} |
| 640 |
c (Note: very different to way 1-D model does this) |
| 641 |
if(diazotroph(np) .ne. 1.0 _d 0)then |
| 642 |
|
| 643 |
c NH4, all nsource |
| 644 |
if (ksatNH4(np).gt.0. _d 0) then |
| 645 |
NH4limit(np) = NH4local/(NH4local+ksatNH4(np)) |
| 646 |
endif |
| 647 |
|
| 648 |
#ifdef OLD_NSCHEME |
| 649 |
if (ksatNO2(np).gt.0. _d 0) then |
| 650 |
c NO2, if nsource is 1 or 3 |
| 651 |
NO2limit(np) = NO2local/(NO2local+ksatNO2(np))* |
| 652 |
& EXP(-sig1*NH4local) |
| 653 |
NO2limcheck = NO2local/(NO2local+ksatNO2(np)) |
| 654 |
endif |
| 655 |
c NO3, if nsource is 3 |
| 656 |
if (ksatNO3(np).gt.0. _d 0) then |
| 657 |
NO3limit(np) = NO3local/(NO3local+ksatNO3(np))* |
| 658 |
& EXP(-sig2*NH4local - sig3*NO2local) |
| 659 |
NO3limcheck = NO3local/(NO3local+ksatNO3(np)) |
| 660 |
endif |
| 661 |
#else |
| 662 |
c [jbmodif] |
| 663 |
c NO2, if nsource is 1 or 3 |
| 664 |
if (ksatNO2(np).gt.0. _d 0 .and. nsource(np).ne.2) then |
| 665 |
if (N2only.eq.1 .and. nsource(np).eq.1) then |
| 666 |
c if (nsource(np).eq.1) then |
| 667 |
NO2limit(np) = NO2local/(NO2local+ksatNO2(np)) |
| 668 |
& *EXP(-sig1*NH4local) |
| 669 |
NO2limcheck = NO2local/(NO2local+ksatNO2(np)) |
| 670 |
else |
| 671 |
if (ksatNO3(np).gt.0. _d 0) then |
| 672 |
NO2limit(np)=NO2local/(NO3local+NO2local+ksatNO3(np)) |
| 673 |
& *EXP(-sig1*NH4local) |
| 674 |
NO2limcheck=NO2local/(NO3local+NO2local+ksatNO3(np)) |
| 675 |
endif |
| 676 |
endif |
| 677 |
endif |
| 678 |
c NO3, if nsource is 3 |
| 679 |
if (ksatNO3(np).gt.0. _d 0 .and. nsource(np).eq.3) then |
| 680 |
NO3limit(np)=NO3local/(NO3local+NO2local+ksatNO3(np)) |
| 681 |
& *EXP(-sig1*NH4local) |
| 682 |
NO3limcheck=NO3local/(NO3local+NO2local+ksatNO3(np)) |
| 683 |
endif |
| 684 |
|
| 685 |
#endif |
| 686 |
|
| 687 |
if (nsource(np).eq.2) then |
| 688 |
NO2limit(np) = 0. _d 0 |
| 689 |
NO3limit(np) = 0. _d 0 |
| 690 |
NO2limcheck = 0. _d 0 |
| 691 |
NO3limcheck = 0. _d 0 |
| 692 |
endif |
| 693 |
if (nsource(np).eq.1) then |
| 694 |
NO3limit(np) = 0. _d 0 |
| 695 |
NO3limcheck = 0. _d 0 |
| 696 |
endif |
| 697 |
if (nsource(np).eq.3) then |
| 698 |
c don't do anything |
| 699 |
endif |
| 700 |
|
| 701 |
Ndummy = NO3limit(np)+NO2limit(np)+NH4limit(np) |
| 702 |
c |
| 703 |
c make sure no Nlim disadvantage; |
| 704 |
c check that limit doesn't decrease at high NH4 levels |
| 705 |
check_nlim=.FALSE. |
| 706 |
if (check_nlim) then |
| 707 |
Ndummy1=NO3limcheck+NO2limcheck |
| 708 |
if (Ndummy.gt.0. _d 0.and.Ndummy.lt.Ndummy1) then |
| 709 |
c print*,'QQ N limit WARNING',Ndummy, Ndummy1, |
| 710 |
c & NO3local,NO2local,NH4local |
| 711 |
Ndiff=Ndummy1-NH4limit(np) |
| 712 |
NO2limit(np)=Ndiff * |
| 713 |
& NO2limit(np)/(NO2limit(np)+NO3limit(np)) |
| 714 |
NO3limit(np)=Ndiff * |
| 715 |
& NO3limit(np)/(NO2limit(np)+NO3limit(np)) |
| 716 |
Ndummy = NO3limit(np)+NO2limit(np)+NH4limit(np) |
| 717 |
endif |
| 718 |
endif |
| 719 |
|
| 720 |
if (Ndummy.gt.1. _d 0) then |
| 721 |
NO3limit(np) = NO3limit(np)/Ndummy |
| 722 |
NO2limit(np) = NO2limit(np)/Ndummy |
| 723 |
NH4limit(np) = NH4limit(np)/Ndummy |
| 724 |
endif |
| 725 |
Nlimit(np)=NO3limit(np)+NO2limit(np)+NH4limit(np) |
| 726 |
if (Nlimit(np).gt.1.01 _d 0) then |
| 727 |
c print*,'QQ Nlimit', Nlimit(np), NO3limit(np), |
| 728 |
c & NO2limit(np), NH4limit(np) |
| 729 |
endif |
| 730 |
if (Nlimit(np).le.0. _d 0) then |
| 731 |
c if (np.eq.1) then |
| 732 |
c print*,'QQ Nlimit', Nlimit(np), NO3limit(np), |
| 733 |
c & NO2limit(np), NH4limit(np) |
| 734 |
c print*,'QQ limit',limit(np), np |
| 735 |
c endif |
| 736 |
Nlimit(np)=0. _d 0 !1 _d -10 |
| 737 |
endif |
| 738 |
|
| 739 |
#ifdef OLD_NSCHEME |
| 740 |
c lower growth for higher NO3 consumption at higher light |
| 741 |
if (Nlimit(np).le.0. _d 0) then |
| 742 |
ngrow(np)=1. _d 0 |
| 743 |
else |
| 744 |
if (parlocal.gt.ilight) then |
| 745 |
ngrow(np)=ngrowfac+(1. _d 0-ngrowfac)* |
| 746 |
& (NH4limit(np)+NO2limit(np))/Nlimit(np) |
| 747 |
else |
| 748 |
ngrow(np)=1. _d 0 |
| 749 |
endif |
| 750 |
ngrow(np)=min(ngrow(np),1. _d 0) |
| 751 |
endif |
| 752 |
#else |
| 753 |
c disadvantage of oxidized inorganic N |
| 754 |
c for now, ignore - a first attempt is included below |
| 755 |
ngrow(np) = 1.0 _d 0 |
| 756 |
|
| 757 |
cc lower growth for higher NO3 consumption at higher light |
| 758 |
c one possible way of counting cost of reducing NOX |
| 759 |
if (NOreducost .eq. 1)then |
| 760 |
if (Nlimit(np).le.0. _d 0) then |
| 761 |
ngrow(np)=1. _d 0 |
| 762 |
else |
| 763 |
ngrow(np)= (10. _d 0*4. _d 0 +2. _d 0) / |
| 764 |
& (10. _d 0*4. _d 0 +2. _d 0*NH4limit(np)/Nlimit(np) |
| 765 |
& +8. _d 0*NO2limit(np)/Nlimit(np) |
| 766 |
& +10. _d 0*NO3limit(np)/Nlimit(np)) |
| 767 |
ngrow(np)=min(ngrow(np),1. _d 0) |
| 768 |
endif |
| 769 |
endif |
| 770 |
c |
| 771 |
c might consider other costs, too |
| 772 |
c if (NOironcost .eq. 1)then |
| 773 |
c |
| 774 |
c endif |
| 775 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 776 |
#endif |
| 777 |
|
| 778 |
c Now Check Against General Nutrient Limiting Tendency |
| 779 |
if (ksatNH4(np).gt.0. _d 0.or.ksatNO2(np).gt.0. _d 0 |
| 780 |
& .or.ksatNO3(np).gt.0. _d 0) then |
| 781 |
if(Nlimit(np) .lt. limit(np)) limit(np) = Nlimit(np) |
| 782 |
endif |
| 783 |
else |
| 784 |
ngrow(np)=1. _d 0 |
| 785 |
Nlimit(np)=1. _d 0 |
| 786 |
NO3limit(np)=0. _d 0 |
| 787 |
NO2limit(np)=0. _d 0 |
| 788 |
NH4limit(np)=0. _d 0 |
| 789 |
endif ! diaz |
| 790 |
limit(np)=min(limit(np),1. _d 0) |
| 791 |
enddo !np |
| 792 |
if (debug.eq.1) print*,'nut limit', |
| 793 |
& limit, PO4local, FeTlocal, Silocal |
| 794 |
if (debug.eq.1) print*,'Nlimit', |
| 795 |
& Nlimit |
| 796 |
if (debug.eq.1) print*,'NH4limit', |
| 797 |
& NH4limit, NH4local |
| 798 |
if (debug.eq.1) print*,'NO2limit', |
| 799 |
& NO2limit, NO2local |
| 800 |
if (debug.eq.1) print*,'NO3limit', |
| 801 |
& NO3limit, NO3local |
| 802 |
if (debug.eq.1) print*,'ngrow', |
| 803 |
& ngrow |
| 804 |
|
| 805 |
|
| 806 |
#ifdef GEIDER |
| 807 |
|
| 808 |
#ifdef WAVEBANDS |
| 809 |
c ANNA if wavebands then uses spectral alphachl derived from spectral alpha * I |
| 810 |
c so first get value for alphachl_nl * PARwlocal |
| 811 |
c value will depend on matchup between spectra of alphachl_nl (ie. aphy_chl) and PARwlocal |
| 812 |
c integrate alpha*PAR over wavebands |
| 813 |
do np = 1,npmax |
| 814 |
alpha_I(np) = 0 _d 0 |
| 815 |
do nl = 1,tlam |
| 816 |
alpha_I(np) = alpha_I(np) + alphachl_nl(np,nl)*PARwlocal(nl) |
| 817 |
end do |
| 818 |
end do |
| 819 |
c Geider growth (and chl2c) now depends on this (sinlge) value of alpha_chl * I |
| 820 |
|
| 821 |
c alpha_mean now precomputed in darwin_init_vari |
| 822 |
#else |
| 823 |
c ANNA if not wavebands uses alphachl derived from mQyield * aphy_chl_ave |
| 824 |
c for use with generic geider equation need to use alpha_I (ie. alphachl*PARlocal) |
| 825 |
do np = 1, npmax |
| 826 |
alpha_I(np)=alphachl(np)*PARlocal |
| 827 |
enddo |
| 828 |
c ANNA endif |
| 829 |
#endif |
| 830 |
|
| 831 |
do np = 1, npmax |
| 832 |
pcm(np)=pcmax(np)*limit(np)*phytoTempFunction(np) |
| 833 |
#ifdef DYNAMIC_CHL |
| 834 |
if (phyto(np).gt. 0. _d 0) then |
| 835 |
chl2c(np)=phychl(np)/(phyto(np)*R_PC(np)) |
| 836 |
else |
| 837 |
chl2c(np)= 0. _d 0 |
| 838 |
endif |
| 839 |
#endif |
| 840 |
if (pcm(np).gt.0.d0) then |
| 841 |
#ifndef DYNAMIC_CHL |
| 842 |
c assumes balanced growth, eq A14 in Geider et al 1997 |
| 843 |
chl2c(np)=chl2cmax(np)/ |
| 844 |
& (1+(chl2cmax(np)*alpha_I(np))/ |
| 845 |
& (2*pcm(np))) |
| 846 |
chl2c(np)=min(chl2c(np),chl2cmax(np)) |
| 847 |
chl2c(np)=max(chl2c(np),chl2cmin(np)) |
| 848 |
#endif |
| 849 |
if (PARlocal.gt.1. _d -1) then |
| 850 |
c Eq A1 in Geider et al 1997 |
| 851 |
pcarbon(np)=pcm(np)*( 1 - |
| 852 |
& exp((-alpha_I(np)*chl2c(np))/(pcm(np))) ) |
| 853 |
c for inhibition |
| 854 |
if (inhibcoef_geid(np).gt.0. _d 0) then |
| 855 |
#ifdef WAVEBANDS |
| 856 |
Ek = pcm(np)/(chl2c(np)*alpha_mean(np)) |
| 857 |
#else |
| 858 |
Ek = pcm(np)/(chl2c(np)*alphachl(np)) |
| 859 |
#endif |
| 860 |
EkoverE = Ek / PARlocal |
| 861 |
if (PARlocal .ge. Ek) then !photoinhibition begins |
| 862 |
pcarbon(np) = pcarbon(np)*(EkoverE*inhibcoef_geid(np)) |
| 863 |
endif |
| 864 |
endif |
| 865 |
c end inhib |
| 866 |
if (pcarbon(np).lt. 0. _d 0) |
| 867 |
& print*,'QQ ERROR pc=',np,pcarbon(np) |
| 868 |
if (pcm(np).gt.0. _d 0) then |
| 869 |
ilimit(np)=pcarbon(np)/pcm(np) |
| 870 |
else |
| 871 |
ilimit(np)= 0. _d 0 |
| 872 |
endif |
| 873 |
else |
| 874 |
ilimit(np)=0. _d 0 |
| 875 |
pcarbon(np)=0. _d 0 |
| 876 |
endif |
| 877 |
#ifdef DYNAMIC_CHL |
| 878 |
c Chl:C acclimated to current conditions |
| 879 |
c (eq A14 in Geider et al 1997) |
| 880 |
acclim(np)=chl2cmax(np)/ |
| 881 |
& (1+(chl2cmax(np)*alpha_I(np))/ |
| 882 |
& (2*pcm(np))) |
| 883 |
acclim(np)=min(acclim(np),chl2cmax(np)) |
| 884 |
c acclim(np)=max(acclim(np),chl2cmin(np)) |
| 885 |
#endif |
| 886 |
else ! if pcm 0 |
| 887 |
pcm(np)=0. _d 0 |
| 888 |
#ifdef DYNAMIC_CHL |
| 889 |
acclim(np)=0. _d 0 |
| 890 |
c acclim(np)=max(acclim(np),chl2cmin(np)) |
| 891 |
#else |
| 892 |
chl2c(np)=chl2cmin(np) |
| 893 |
#endif |
| 894 |
pcarbon(np)=0. _d 0 |
| 895 |
ilimit(np)=0. _d 0 |
| 896 |
endif |
| 897 |
#ifndef DYNAMIC_CHL |
| 898 |
phychl(np)=phyto(np)*R_PC(np)*chl2c(np) |
| 899 |
#endif |
| 900 |
enddo |
| 901 |
if (debug.eq.14) print*,'ilimit',ilimit, PARlocal |
| 902 |
if (debug.eq.14) print*,'chl:c',chl2c |
| 903 |
if (debug.eq.14) print*,'chl',phychl |
| 904 |
#ifdef DYNAMIC_CHL |
| 905 |
if (debug.eq.14) print*,'acclim',acclim |
| 906 |
#endif |
| 907 |
#endif /* GEIDER */ |
| 908 |
|
| 909 |
#ifdef DAR_DIAG_CHL |
| 910 |
c diagnostic version of the above that does not feed back to growth |
| 911 |
ChlGeiderlocal = 0. _d 0 |
| 912 |
do np = 1, npmax |
| 913 |
tmppcm = mu(np)*limit(np)*phytoTempFunction(np) |
| 914 |
if (tmppcm.gt.0.d0) then |
| 915 |
tmpchl2c = Geider_chl2cmax(np)/ |
| 916 |
& (1+(Geider_chl2cmax(np)*Geider_alphachl(np)*PARdaylocal)/ |
| 917 |
& (2*tmppcm)) |
| 918 |
tmpchl2c = min(tmpchl2c, Geider_chl2cmax(np)) |
| 919 |
tmpchl2c = max(tmpchl2c, Geider_chl2cmin(np)) |
| 920 |
else |
| 921 |
tmpchl2c = Geider_chl2cmin(np) |
| 922 |
endif |
| 923 |
ChlGeiderlocal = ChlGeiderlocal + phyto(np)*R_PC(np)*tmpchl2c |
| 924 |
enddo |
| 925 |
C Chl a la Doney |
| 926 |
ChlDoneylocal = 0. _d 0 |
| 927 |
do np = 1, npmax |
| 928 |
tmpchl2c = (Doney_Bmax - (Doney_Bmax-Doney_Bmin)* |
| 929 |
& MIN(1. _d 0,PARdaylocal/Doney_PARstar)) |
| 930 |
& *limit(np) |
| 931 |
ChlDoneylocal = ChlDoneylocal + |
| 932 |
& tmpchl2c*R_PC(np)*phyto(np) |
| 933 |
enddo |
| 934 |
C Chl a la Cloern |
| 935 |
ChlCloernlocal = 0. _d 0 |
| 936 |
do np = 1, npmax |
| 937 |
tmpchl2c = Cloern_chl2cmin + |
| 938 |
& Cloern_A*exp(Cloern_B*Tlocal) |
| 939 |
& *exp(-Cloern_C*PARdaylocal) |
| 940 |
& *limit(np) |
| 941 |
ChlCloernlocal = ChlCloernlocal + |
| 942 |
& tmpchl2c*R_PC(np)*phyto(np) |
| 943 |
enddo |
| 944 |
#endif /* DAR_DIAG_CHL */ |
| 945 |
|
| 946 |
|
| 947 |
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 948 |
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 949 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 950 |
c ******************* END GROWTH PHYTO ******************************* |
| 951 |
|
| 952 |
|
| 953 |
#ifdef OLD_GRAZE |
| 954 |
c------------------------------------------------------------------------ |
| 955 |
c GRAZING sum contributions of all zooplankton |
| 956 |
do np=1,npmax |
| 957 |
grazing_phyto(np) = 0.0 _d 0 |
| 958 |
do nz = 1, nzmax |
| 959 |
grazing_phyto(np) = grazing_phyto(np) |
| 960 |
& + graze(np,nz)*zooP(nz)*zooTempFunction(nz) |
| 961 |
enddo |
| 962 |
enddo |
| 963 |
if (debug.eq.2) print*,'grazing_phyto',grazing_phyto |
| 964 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 965 |
#else |
| 966 |
c------------------------------------------------------------------------ |
| 967 |
c sum all palatability*phyto and find phyto specific grazing rate |
| 968 |
do nz=1,nzmax |
| 969 |
allphyto(nz)=0. _d 0 |
| 970 |
do np=1,npmax |
| 971 |
allphyto(nz)=allphyto(nz)+palat(np,nz)*phyto(np) |
| 972 |
enddo |
| 973 |
if (allphyto(nz).le.0. _d 0) allphyto(nz)=phygrazmin |
| 974 |
do np=1,npmax |
| 975 |
tmpz=max(0. _d 0,(allphyto(nz)-phygrazmin) ) |
| 976 |
grazphy(np,nz)=grazemax(nz)*zooTempFunction(nz)* |
| 977 |
& (palat(np,nz)*phyto(np)/allphyto(nz))* |
| 978 |
& ( tmpz/ |
| 979 |
& (tmpz+kgrazesat) ) |
| 980 |
enddo |
| 981 |
enddo |
| 982 |
if (debug.eq.2) print*,'allphyto',allphyto |
| 983 |
c if (debug.eq.2) print*,'grazephy',grazphy |
| 984 |
c sum over zoo for impact on phyto |
| 985 |
do np=1,npmax |
| 986 |
sumgrazphy(np)=0. _d 0 |
| 987 |
do nz=1,nzmax |
| 988 |
sumgrazphy(np)=sumgrazphy(np)+ |
| 989 |
& grazphy(np,nz)*zooP(nz) |
| 990 |
enddo |
| 991 |
enddo |
| 992 |
if (debug.eq.2) print*,'sumgrazephy',sumgrazphy |
| 993 |
c sum over phy for impact on zoo, and all remainder to go to POM |
| 994 |
do nz=1,nzmax |
| 995 |
sumgrazzoo(nz)=0. _d 0 |
| 996 |
sumgrazzooN(nz)=0. _d 0 |
| 997 |
sumgrazzooFe(nz)=0. _d 0 |
| 998 |
sumgrazzooSi(nz)=0. _d 0 |
| 999 |
sumgrazloss(nz)=0. _d 0 |
| 1000 |
sumgrazlossN(nz)=0. _d 0 |
| 1001 |
sumgrazlossFe(nz)=0. _d 0 |
| 1002 |
sumgrazlossSi(nz)=0. _d 0 |
| 1003 |
#ifdef ALLOW_CARBON |
| 1004 |
sumgrazzooC(nz)=0. _d 0 |
| 1005 |
sumgrazlossC(nz)=0. _d 0 |
| 1006 |
sumgrazlossPIC(nz)=0. _d 0 |
| 1007 |
#endif |
| 1008 |
do np=1,npmax |
| 1009 |
sumgrazzoo(nz)=sumgrazzoo(nz)+ |
| 1010 |
& asseff(np,nz)*grazphy(np,nz)*zooP(nz) |
| 1011 |
sumgrazloss(nz)=sumgrazloss(nz)+ |
| 1012 |
& (1. _d 0-asseff(np,nz))*grazphy(np,nz)*zooP(nz) |
| 1013 |
sumgrazzooN(nz)=sumgrazzooN(nz)+ |
| 1014 |
& asseff(np,nz)*grazphy(np,nz)*zooP(nz)*R_NP(np) |
| 1015 |
sumgrazlossN(nz)=sumgrazlossN(nz)+ |
| 1016 |
& (1. _d 0-asseff(np,nz))*grazphy(np,nz)* |
| 1017 |
& zooP(nz)*R_NP(np) |
| 1018 |
sumgrazzooFe(nz)=sumgrazzooFe(nz)+ |
| 1019 |
& asseff(np,nz)*grazphy(np,nz)* |
| 1020 |
& zooP(nz)*R_FeP(np) |
| 1021 |
sumgrazlossFe(nz)=sumgrazlossFe(nz)+ |
| 1022 |
& (1. _d 0-asseff(np,nz))*grazphy(np,nz)* |
| 1023 |
& zooP(nz)*R_FeP(np) |
| 1024 |
sumgrazzooSi(nz)=sumgrazzooSi(nz)+ |
| 1025 |
& asseff(np,nz)*grazphy(np,nz)* |
| 1026 |
& zooP(nz)*R_SiP(np) |
| 1027 |
sumgrazlossSi(nz)=sumgrazlossSi(nz)+ |
| 1028 |
& (1. _d 0-asseff(np,nz))*grazphy(np,nz)* |
| 1029 |
& zooP(nz)*R_SiP(np) |
| 1030 |
#ifdef ALLOW_CARBON |
| 1031 |
sumgrazzooC(nz)=sumgrazzooC(nz)+ |
| 1032 |
& asseff(np,nz)*grazphy(np,nz)*zooP(nz)*R_PC(np) |
| 1033 |
sumgrazlossC(nz)=sumgrazlossC(nz)+ |
| 1034 |
& (1. _d 0-asseff(np,nz))*grazphy(np,nz)* |
| 1035 |
& zooP(nz)*R_PC(np) |
| 1036 |
sumgrazlossPIC(nz)=sumgrazlossPIC(nz)+ |
| 1037 |
& (1. _d 0)*grazphy(np,nz)* |
| 1038 |
& zooP(nz)*R_PC(np)*R_PICPOC(np) |
| 1039 |
#endif |
| 1040 |
enddo |
| 1041 |
enddo |
| 1042 |
if (debug.eq.2) print*,'sumgrazzoo',sumgrazzoo |
| 1043 |
if (debug.eq.2) print*,'sumgrazloss',sumgrazloss |
| 1044 |
if (debug.eq.2) print*,'sumgrazzooN',sumgrazzooN |
| 1045 |
if (debug.eq.2) print*,'sumgrazlossN',sumgrazlossN |
| 1046 |
if (debug.eq.2) print*,'sumgrazzooFe',sumgrazzooFe |
| 1047 |
if (debug.eq.2) print*,'sumgrazlossFe',sumgrazlossFe |
| 1048 |
if (debug.eq.2) print*,'sumgrazzooSi',sumgrazzooSi |
| 1049 |
if (debug.eq.2) print*,'sumgrazlossSi',sumgrazlossSi |
| 1050 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 1051 |
#endif |
| 1052 |
|
| 1053 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 1054 |
c accumulate particulate and dissolved detritus |
| 1055 |
do np=1, npmax |
| 1056 |
totphy_pop=totphy_pop+ |
| 1057 |
& ExportFracP(np)*mortphy(np)* |
| 1058 |
& mortPTempFunction*phytomin(np) |
| 1059 |
totphy_dop=totphy_dop+ |
| 1060 |
& (1. _d 0-ExportFracP(np))*mortphy(np)* |
| 1061 |
& mortPTempFunction*phytomin(np) |
| 1062 |
totphy_pon=totphy_pon+ R_NP(np)* |
| 1063 |
& ExportFracP(np)*mortphy(np)* |
| 1064 |
& mortPTempFunction*phytomin(np) |
| 1065 |
totphy_don=totphy_don+ R_NP(np)* |
| 1066 |
& (1. _d 0-ExportFracP(np))*mortphy(np)* |
| 1067 |
& mortPTempFunction*phytomin(np) |
| 1068 |
totphy_pofe=totphy_pofe+ R_FeP(np)* |
| 1069 |
& ExportFracP(np)*mortphy(np)* |
| 1070 |
& mortPTempFunction*phytomin(np) |
| 1071 |
totphy_dofe=totphy_dofe+ R_FeP(np)* |
| 1072 |
& (1. _d 0-ExportFracP(np))*mortphy(np)* |
| 1073 |
& mortPTempFunction*phytomin(np) |
| 1074 |
totphy_posi=totphy_posi+ R_SiP(np)* |
| 1075 |
& mortphy(np)* |
| 1076 |
& mortPTempFunction*phytomin(np) |
| 1077 |
#ifdef ALLOW_CARBON |
| 1078 |
totphy_poc=totphy_poc+ R_PC(np)* |
| 1079 |
& ExportFracP(np)*mortphy(np)* |
| 1080 |
& mortPTempFunction*phytomin(np) |
| 1081 |
totphy_doc=totphy_doc+ R_PC(np)* |
| 1082 |
& (1. _d 0-ExportFracP(np))*mortphy(np)* |
| 1083 |
& mortPTempFunction*phytomin(np) |
| 1084 |
totphy_pic=totphy_pic+ R_PC(np)*R_PICPOC(np)* |
| 1085 |
& mortphy(np)* |
| 1086 |
& mortPTempFunction*phytomin(np) |
| 1087 |
#endif |
| 1088 |
enddo |
| 1089 |
if (debug.eq.3) print*,'tot_phy_pop',totphy_pop |
| 1090 |
if (debug.eq.3) print*,'tot_phy_dop',totphy_dop |
| 1091 |
if (debug.eq.3) print*,'tot_phy_pon',totphy_pon |
| 1092 |
if (debug.eq.3) print*,'tot_phy_don',totphy_don |
| 1093 |
if (debug.eq.3) print*,'tot_phy_pofe',totphy_pofe |
| 1094 |
if (debug.eq.3) print*,'tot_phy_dofe',totphy_dofe |
| 1095 |
if (debug.eq.3) print*,'tot_phy_posi',totphy_posi |
| 1096 |
|
| 1097 |
|
| 1098 |
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 1099 |
|
| 1100 |
|
| 1101 |
#ifdef OLD_GRAZE |
| 1102 |
c ****************** ZOO GRAZING RATE **************************** |
| 1103 |
c determine zooplankton grazing rates |
| 1104 |
do nz = 1, nzmax |
| 1105 |
c grazing: sum contribution from all phytoplankton |
| 1106 |
grazingP(nz) = 0.0 _d 0 |
| 1107 |
grazingN(nz) = 0.0 _d 0 |
| 1108 |
grazingFe(nz) = 0.0 _d 0 |
| 1109 |
grazingSi(nz) = 0.0 _d 0 |
| 1110 |
#ifdef ALLOW_CARBON |
| 1111 |
grazingC(nz) = 0.0 _d 0 |
| 1112 |
#endif |
| 1113 |
do np = 1, npmax |
| 1114 |
facpz = (phytomin(np)/(phytomin(np) + kgrazesat)) |
| 1115 |
& *zooTempFunction(nz) |
| 1116 |
grazingP(nz) = grazingP(nz) + |
| 1117 |
& graze(np,nz)*facpz |
| 1118 |
grazingN(nz) = grazingN(nz) + |
| 1119 |
& graze(np,nz)*R_NP(np)*facpz |
| 1120 |
grazingFe(nz) = grazingFe(nz) + |
| 1121 |
& graze(np,nz)*R_FeP(np)*facpz |
| 1122 |
grazingSi(nz) = grazingSi(nz) + |
| 1123 |
& graze(np,nz)*R_SiP(np)*facpz |
| 1124 |
#ifdef ALLOW_CARBON |
| 1125 |
grazingC(nz) = grazingC(nz) + |
| 1126 |
& graze(np,nz)*R_PC(np)*facpz |
| 1127 |
#endif |
| 1128 |
enddo |
| 1129 |
enddo |
| 1130 |
if (debug.eq.4) print*,'grazingP', grazingP |
| 1131 |
if (debug.eq.4) print*,'grazingN', grazingN |
| 1132 |
if (debug.eq.4) print*,'grazingFe', grazingFe |
| 1133 |
if (debug.eq.4) print*,'grazingSi', grazingSi |
| 1134 |
c ************* END ZOO GRAZING ********************************* |
| 1135 |
#endif |
| 1136 |
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 1137 |
c accumulate particulate and dissolved detritus |
| 1138 |
do nz=1, nzmax |
| 1139 |
totzoo_pop=totzoo_pop+ |
| 1140 |
& ExportFracZ(nz)*( mortzoo(nz)* |
| 1141 |
& mortZTempFunction*zooP(nz) |
| 1142 |
& + mortzoo2(nz)* |
| 1143 |
& mortZ2TempFunction*zooP(nz)**2 ) |
| 1144 |
totzoo_dop=totzoo_dop+ |
| 1145 |
& (1. _d 0-ExportFracZ(nz))*( |
| 1146 |
& mortzoo(nz)* |
| 1147 |
& mortZTempFunction*zooP(nz)+ |
| 1148 |
& mortzoo2(nz)* |
| 1149 |
& mortZ2TempFunction*zooP(nz)**2 ) |
| 1150 |
totzoo_pon=totzoo_pon+ |
| 1151 |
& ExportFracZ(nz)*( mortzoo(nz)* |
| 1152 |
& mortZTempFunction*zooN(nz) |
| 1153 |
& + mortzoo2(nz)* |
| 1154 |
& mortZ2TempFunction*zooN(nz)*zooP(nz) ) |
| 1155 |
totzoo_don=totzoo_don+ |
| 1156 |
& (1. _d 0-ExportFracZ(nz))*( |
| 1157 |
& mortzoo(nz)* |
| 1158 |
& mortZTempFunction*zooN(nz)+ |
| 1159 |
& mortzoo2(nz)* |
| 1160 |
& mortZ2TempFunction*zooN(nz)*zooP(nz) ) |
| 1161 |
totzoo_pofe=totzoo_pofe+ |
| 1162 |
& ExportFracZ(nz)*( mortzoo(nz)* |
| 1163 |
& mortZTempFunction*zooFe(nz) |
| 1164 |
& + mortzoo2(nz)* |
| 1165 |
& mortZ2TempFunction*zooFe(nz)*zooP(nz) ) |
| 1166 |
totzoo_dofe=totzoo_dofe+ |
| 1167 |
& (1. _d 0-ExportFracZ(nz))*( |
| 1168 |
& mortzoo(nz)* |
| 1169 |
& mortZTempFunction*zooFe(nz) + |
| 1170 |
& mortzoo2(nz)* |
| 1171 |
& mortZ2TempFunction*zooFe(nz)*zooP(nz) ) |
| 1172 |
totzoo_posi=totzoo_posi+ |
| 1173 |
& ( mortzoo(nz)* |
| 1174 |
& mortZTempFunction*zooSi(nz)+ |
| 1175 |
& mortzoo2(nz)* |
| 1176 |
& mortZ2TempFunction*zooSi(nz)*zooP(nz) ) |
| 1177 |
#ifdef ALLOW_CARBON |
| 1178 |
totzoo_poc=totzoo_poc+ |
| 1179 |
& ExportFracZ(nz)*( mortzoo(nz)* |
| 1180 |
& mortZTempFunction*zooClocal(nz) |
| 1181 |
& + mortzoo2(nz)* |
| 1182 |
& mortZ2TempFunction*zooClocal(nz)*zooP(nz) ) |
| 1183 |
totzoo_doc=totzoo_doc+ |
| 1184 |
& (1. _d 0-ExportFracZ(nz))*( mortzoo(nz)* |
| 1185 |
& mortZTempFunction*zooClocal(nz) |
| 1186 |
& + mortzoo2(nz)* |
| 1187 |
& mortZ2TempFunction*zooClocal(nz)*zooP(nz) ) |
| 1188 |
#endif |
| 1189 |
enddo |
| 1190 |
|
| 1191 |
#ifndef OLD_GRAZE |
| 1192 |
do nz=1, nzmax |
| 1193 |
totzoo_pop=totzoo_pop+ |
| 1194 |
& ExportFracGraz(nz)*sumgrazloss(nz) |
| 1195 |
totzoo_dop=totzoo_dop+ |
| 1196 |
& (1. _d 0-ExportFracGraz(nz))*sumgrazloss(nz) |
| 1197 |
totzoo_pon=totzoo_pon+ |
| 1198 |
& ExportFracGraz(nz)*sumgrazlossN(nz) |
| 1199 |
totzoo_don=totzoo_don+ |
| 1200 |
& (1. _d 0-ExportFracGraz(nz))*sumgrazlossN(nz) |
| 1201 |
totzoo_pofe=totzoo_pofe+ |
| 1202 |
& ExportFracGraz(nz)*sumgrazlossFe(nz) |
| 1203 |
totzoo_dofe=totzoo_dofe+ |
| 1204 |
& (1. _d 0-ExportFracGraz(nz))*sumgrazlossFe(nz) |
| 1205 |
totzoo_posi=totzoo_posi+ |
| 1206 |
& sumgrazlossSi(nz) |
| 1207 |
#ifdef ALLOW_CARBON |
| 1208 |
totzoo_poc=totzoo_poc+ |
| 1209 |
& ExportFracGraz(nz)*sumgrazlossC(nz) |
| 1210 |
totzoo_doc=totzoo_doc+ |
| 1211 |
& (1. _d 0-ExportFracGraz(nz))*sumgrazlossC(nz) |
| 1212 |
totzoo_pic=totzoo_pic+ |
| 1213 |
& sumgrazlossPIC(nz) |
| 1214 |
#endif |
| 1215 |
enddo |
| 1216 |
#endif |
| 1217 |
if (debug.eq.5) print*,'totzoo_pop',totzoo_pop |
| 1218 |
if (debug.eq.5) print*,'totzoo_dop',totzoo_dop |
| 1219 |
if (debug.eq.5) print*,'totzoo_pon',totzoo_pon |
| 1220 |
if (debug.eq.5) print*,'totzoo_don',totzoo_don |
| 1221 |
if (debug.eq.5) print*,'totzoo_pofe',totzoo_pofe |
| 1222 |
if (debug.eq.5) print*,'totzoo_dofe',totzoo_dofe |
| 1223 |
if (debug.eq.5) print*,'totzoo_posi',totzoo_posi |
| 1224 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 1225 |
|
| 1226 |
c ********************* NUTRIENT UPTAKE ******************************* |
| 1227 |
c determine nutrient uptake |
| 1228 |
c consumption - sum of phytoplankton contributions |
| 1229 |
do np = 1, npmax |
| 1230 |
c phospate uptake by each phytoplankton |
| 1231 |
#ifndef GEIDER |
| 1232 |
grow(np)=ngrow(np)*mu(np)*limit(np)*ilimit(np)* |
| 1233 |
& phytoTempFunction(np) |
| 1234 |
#endif |
| 1235 |
#ifdef GEIDER |
| 1236 |
grow(np)=ngrow(np)*pcarbon(np) |
| 1237 |
if (debug.eq.1) print*,'grow', grow(np), pcarbon(np) |
| 1238 |
if (debug.eq.14) print*,'grow', grow(np), pcarbon(np) |
| 1239 |
#ifdef DYNAMIC_CHL |
| 1240 |
c geider 97 for dChl/dt (source part) Eq. 3 |
| 1241 |
if (acclim(np).gt. 0. _d 0.and. |
| 1242 |
& alpha_I(np).gt. 0. _d 0) then |
| 1243 |
rhochl(np)=chl2cmax(np) * |
| 1244 |
& (grow(np)/(alpha_I(np)*acclim(np)) ) |
| 1245 |
else |
| 1246 |
rhochl(np)= 0. _d 0 |
| 1247 |
endif |
| 1248 |
if (debug.eq.14) print*,'rhochl',rhochl(np) |
| 1249 |
#endif |
| 1250 |
#endif |
| 1251 |
PspecificPO4(np) = grow(np)*phyto(np) |
| 1252 |
c write(6,*)'np =',np, ' PspecificPO4 =' |
| 1253 |
c & ,PspecificPO4(np) |
| 1254 |
consumpPO4 = consumpPO4 + PspecificPO4(np) |
| 1255 |
consumpFeT = consumpFeT + PspecificPO4(np)*R_FeP(np) |
| 1256 |
consumpSi = consumpSi + PspecificPO4(np)*R_SiP(np) |
| 1257 |
cswd should have O2prod as function of np? |
| 1258 |
c New Way of doing Nitrogen Consumption ....................... |
| 1259 |
if(diazotroph(np) .ne. 1.0 _d 0)then |
| 1260 |
if (Nlimit(np).le.0. _d 0) then |
| 1261 |
consumpNO3 = consumpNO3 |
| 1262 |
consumpNO2 = consumpNO2 |
| 1263 |
consumpNH4 = consumpNH4 |
| 1264 |
else |
| 1265 |
consumpNO3 = consumpNO3 + |
| 1266 |
& NO3limit(np)/Nlimit(np)*PspecificPO4(np)*R_NP(np) |
| 1267 |
consumpNO2 = consumpNO2 + |
| 1268 |
& NO2limit(np)/Nlimit(np)* PspecificPO4(np)*R_NP(np) |
| 1269 |
consumpNH4 = consumpNH4 + |
| 1270 |
& NH4limit(np)/Nlimit(np)*PspecificPO4(np)*R_NP(np) |
| 1271 |
endif |
| 1272 |
else |
| 1273 |
consumpNO3 = consumpNO3 |
| 1274 |
consumpNO2 = consumpNO2 |
| 1275 |
consumpNH4 = consumpNH4 |
| 1276 |
Nfix=Nfix+PspecificPO4(np)*R_NP(np) |
| 1277 |
#ifdef ALLOW_DIAZ |
| 1278 |
#ifdef DAR_DIAG_NFIXP |
| 1279 |
NfixPlocal(np)=PspecificPO4(np)*R_NP(np) |
| 1280 |
#endif |
| 1281 |
#endif |
| 1282 |
endif |
| 1283 |
#ifdef ALLOW_CARBON |
| 1284 |
consumpDIC = consumpDIC + PspecificPO4(np)*R_PC(np) |
| 1285 |
consumpDIC_PIC = consumpDIC_PIC + |
| 1286 |
& PspecificPO4(np)*R_PC(np)*R_PICPOC(np) |
| 1287 |
#endif |
| 1288 |
enddo |
| 1289 |
if (debug.eq.7) print*,'local', parlocal,tlocal,po4local, |
| 1290 |
& no3local, no2local,nh4local,fetlocal,silocal |
| 1291 |
if (debug.eq.7) print*,'grow',grow |
| 1292 |
if (debug.eq.6) print*,'pspecificpo4', PspecificPO4 |
| 1293 |
if (debug.eq.6) print*,'consumpPO4', consumpPO4 |
| 1294 |
if (debug.eq.6) print*,'consumpFeT', consumpFeT |
| 1295 |
if (debug.eq.6) print*,'consumpSi ', consumpsi |
| 1296 |
if (debug.eq.6) print*,'consumpNO3', consumpNO3 |
| 1297 |
if (debug.eq.6) print*,'consumpNO2', consumpNO2 |
| 1298 |
if (debug.eq.6) print*,'consumpNH4', consumpNH4 |
| 1299 |
c ****************** END NUTRIENT UPTAKE **************************** |
| 1300 |
|
| 1301 |
c sinking phytoplankton and POM |
| 1302 |
|
| 1303 |
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 1304 |
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 1305 |
c MONICA: MODIFICATION 2: Change bottom boundary condition |
| 1306 |
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 1307 |
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 1308 |
c THe if loop was not commented in original version: |
| 1309 |
c if(bottom .eq. 1.0 _d 0)then |
| 1310 |
c psinkP = (wp_sink*POPuplocal)/(dzlocal) |
| 1311 |
c psinkN = (wn_sink*PONuplocal)/(dzlocal) |
| 1312 |
c psinkFe = (wfe_sink*POFeuplocal)/(dzlocal) |
| 1313 |
c psinkSi = (wsi_sink*PSiuplocal)/(dzlocal) |
| 1314 |
c do np=1,npmax |
| 1315 |
c psinkPhy(np) = |
| 1316 |
c & (wsink(np)*Phytoup(np))/(dzlocal) |
| 1317 |
c enddo |
| 1318 |
c#ifdef DYNAMIC_CHL |
| 1319 |
c do np=1,npmax |
| 1320 |
c psinkChl(np) = |
| 1321 |
c & (wsink(np)*Chlup(np))/(dzlocal) |
| 1322 |
c enddo |
| 1323 |
c#endif |
| 1324 |
c#ifdef ALLOW_CARBON |
| 1325 |
c psinkC = (wc_sink*POCuplocal)/(dzlocal) |
| 1326 |
c psinkPIC = (wpic_sink*PICuplocal)/(dzlocal) |
| 1327 |
c#endif |
| 1328 |
c else |
| 1329 |
psinkP = (wp_sink*(POPuplocal-POPlocal))/(dzlocal) |
| 1330 |
psinkN = (wn_sink*(PONuplocal-PONlocal))/(dzlocal) |
| 1331 |
psinkFe = (wfe_sink*(POFeuplocal-POFelocal))/(dzlocal) |
| 1332 |
psinkSi = (wsi_sink*(PSiuplocal-PSilocal))/(dzlocal) |
| 1333 |
do np=1,npmax |
| 1334 |
psinkPhy(np) = |
| 1335 |
& (wsink(np))*(Phytoup(np)-Phyto(np))/(dzlocal) |
| 1336 |
enddo |
| 1337 |
#ifdef DYNAMIC_CHL |
| 1338 |
do np=1,npmax |
| 1339 |
psinkChl(np) = |
| 1340 |
& (wsink(np))*(Chlup(np)-phychl(np))/(dzlocal) |
| 1341 |
enddo |
| 1342 |
#endif |
| 1343 |
#ifdef ALLOW_CARBON |
| 1344 |
psinkC = (wc_sink*(POCuplocal-POClocal))/(dzlocal) |
| 1345 |
psinkPIC = (wpic_sink*(PICuplocal-PIClocal))/(dzlocal) |
| 1346 |
#endif |
| 1347 |
c endif |
| 1348 |
|
| 1349 |
c DOM remineralization rates |
| 1350 |
DOPremin = reminTempFunction * Kdop * DOPlocal |
| 1351 |
DONremin = reminTempFunction * Kdon * DONlocal |
| 1352 |
DOFeremin = reminTempFunction * KdoFe * DOFelocal |
| 1353 |
|
| 1354 |
c remineralization of sinking particulate |
| 1355 |
preminP = reminTempFunction * Kpremin_P*POPlocal |
| 1356 |
preminN = reminTempFunction * Kpremin_N*PONlocal |
| 1357 |
preminFe = reminTempFunction * Kpremin_Fe*POFelocal |
| 1358 |
preminSi = reminTempFunction * Kpremin_Si*PSilocal |
| 1359 |
|
| 1360 |
#ifdef ALLOW_CARBON |
| 1361 |
DOCremin = reminTempFunction * Kdoc * DOClocal |
| 1362 |
preminC = reminTempFunction * Kpremin_C*POClocal |
| 1363 |
|
| 1364 |
omegaCLocal = calciumLocal * CO3Local / KspTPLocal |
| 1365 |
|
| 1366 |
c water column dissolution |
| 1367 |
#ifdef NAVIAUX_DISSOLUTION |
| 1368 |
|
| 1369 |
c Naviaux et al. 2019, Marine Chemistry dissolution rate law |
| 1370 |
if (omegaCLocal .LT. 1.0 _d 0) then |
| 1371 |
if (omegaCLocal .LT. 0.8272 _d 0) then |
| 1372 |
disscPIC = PIClocal*5.22 _d -9 * |
| 1373 |
& (1-omegaCLocal)**0.11 _d 0 |
| 1374 |
else |
| 1375 |
disscPIC = PIClocal*1.65 _d -5 * |
| 1376 |
& (1-omegaCLocal)**4.7 _d 0 |
| 1377 |
endif |
| 1378 |
else |
| 1379 |
disscPIC = 0.0 _d 0 |
| 1380 |
endif |
| 1381 |
|
| 1382 |
#else /* NAVIAUX_DISSOLUTION */ |
| 1383 |
disscPIC = Kdissc*PIClocal |
| 1384 |
#endif /* NAVIAUX_DISSOLUTION */ |
| 1385 |
|
| 1386 |
#endif /* ALLOW_CARBON */ |
| 1387 |
|
| 1388 |
c chemistry |
| 1389 |
c NH4 -> NO2 -> NO3 by bacterial action |
| 1390 |
NO2prod = knita*( 1. _d 0-min(PARlocal/PAR0,1. _d 0) ) |
| 1391 |
& *NH4local |
| 1392 |
NO3prod = knitb*( 1. _d 0-min(PARlocal/PAR0,1. _d 0) ) |
| 1393 |
& *NO2local |
| 1394 |
c NO2prod = knita*NH4local |
| 1395 |
c NO3prod = knitb*NO2local |
| 1396 |
c |
| 1397 |
#ifdef PART_SCAV |
| 1398 |
scav_poc=POPlocal/1.1321 _d -4 |
| 1399 |
c scav rate |
| 1400 |
scav_part=scav_rat*scav_inter*(scav_poc**scav_exp) |
| 1401 |
#endif |
| 1402 |
c ------------------------------------------------------------------- |
| 1403 |
c calculate tendency terms (and some diagnostics) |
| 1404 |
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 1405 |
c phytoplankton |
| 1406 |
do np=1,npmax |
| 1407 |
dphytodt(np) = PspecificPO4(np) |
| 1408 |
#ifdef OLD_GRAZE |
| 1409 |
& - grazing_phyto(np)* |
| 1410 |
& (phytomin(np)/(phytomin(np) + kgrazesat)) |
| 1411 |
#else |
| 1412 |
& - sumgrazphy(np) |
| 1413 |
#endif |
| 1414 |
& - mortphy(np)* |
| 1415 |
& mortPTempFunction*phytomin(np) |
| 1416 |
& + psinkphy(np) |
| 1417 |
#ifdef GEIDER |
| 1418 |
#ifdef DYNAMIC_CHL |
| 1419 |
dphychl(np) = acclim(np)*PspecificPO4(np)*R_PC(np) |
| 1420 |
c dphychl(np) = rhochl(np)*PspecificPO4(np)*R_PC(np) |
| 1421 |
& + acclimtimescl * |
| 1422 |
& (acclim(np)-chl2c(np))*phyto(np)*R_PC(np) |
| 1423 |
& +( |
| 1424 |
#ifdef OLD_GRAZE |
| 1425 |
& - grazing_phyto(np)* |
| 1426 |
& (phytomin(np)/(phytomin(np) + kgrazesat)) |
| 1427 |
#else |
| 1428 |
& - sumgrazphy(np) |
| 1429 |
#endif |
| 1430 |
& - mortphy(np)* |
| 1431 |
& mortPTempFunction*phytomin(np)) |
| 1432 |
& *chl2c(np)*R_PC(np) |
| 1433 |
& + psinkChl(np) |
| 1434 |
#endif |
| 1435 |
Chl=Chl + phychl(np) |
| 1436 |
#endif |
| 1437 |
c %% diagnostics |
| 1438 |
PP = PP + PspecificPO4(np) |
| 1439 |
c%%% |
| 1440 |
#ifdef OLD_GRAZE |
| 1441 |
tmpr=grazing_phyto(np)* |
| 1442 |
& (phytomin(np)/(phytomin(np) + kgrazesat)) |
| 1443 |
& + mortphy(np)* |
| 1444 |
& mortPTempFunction*phytomin(np) |
| 1445 |
& - psinkphy(np) |
| 1446 |
#else |
| 1447 |
tmpr=sumgrazphy(np) |
| 1448 |
& + mortphy(np)* |
| 1449 |
& mortPTempFunction*phytomin(np) |
| 1450 |
& - psinkphy(np) |
| 1451 |
#endif |
| 1452 |
#ifdef DAR_DIAG_RSTAR |
| 1453 |
#ifndef GEIDER |
| 1454 |
tmpgrow=ngrow(np)*mu(np)*ilimit(np)* |
| 1455 |
& phytoTempFunction(np) |
| 1456 |
#endif |
| 1457 |
#ifdef GEIDER |
| 1458 |
tmpgrow=grow(np)/limit(np) |
| 1459 |
#endif |
| 1460 |
tmp1=tmpgrow*phyto(np)-tmpr |
| 1461 |
tmp2=tmpgrow*phyto(np)*(exp(-sig1*nh4local)+NH4limit(np)) |
| 1462 |
& -tmpr |
| 1463 |
if (tmp1.ne.0. _d 0) then |
| 1464 |
Rstarlocal(np)=ksatPO4(np)*tmpr/tmp1 |
| 1465 |
else |
| 1466 |
Rstarlocal(np)=-9999. _d 0 |
| 1467 |
endif |
| 1468 |
if (tmp2.ne.0. _d 0) then |
| 1469 |
RNstarlocal(np)=ksatNO3(np)* |
| 1470 |
& (tmpr-tmpgrow*NH4limit(np)*phyto(np))/tmp2 |
| 1471 |
else |
| 1472 |
RNstarlocal(np)=-9999. _d 0 |
| 1473 |
endif |
| 1474 |
#endif |
| 1475 |
#ifdef DAR_DIAG_GROW |
| 1476 |
c include temp, light, nutrients |
| 1477 |
c Growlocal(np)=grow(np) |
| 1478 |
c include temp and light, but not nutrients |
| 1479 |
Growlocal(np)=ngrow(np)*mu(np)*ilimit(np)* |
| 1480 |
& phytoTempFunction(np) |
| 1481 |
c include temp, but not nutrients or light |
| 1482 |
c Growlocal(np)=ngrow(np)*mu(np)* |
| 1483 |
c & phytoTempFunction(np) |
| 1484 |
Growsqlocal(np)=Growlocal(np)**2 |
| 1485 |
#endif |
| 1486 |
enddo |
| 1487 |
c end np loop |
| 1488 |
if (debug.eq.10) print*,'dphytodt',dphytodt |
| 1489 |
c |
| 1490 |
#ifdef OLD_GRAZE |
| 1491 |
c zooplankton growth by grazing |
| 1492 |
do nz=1,nzmax |
| 1493 |
c zoo in P currency |
| 1494 |
dzooPdt(nz) = grazingP(nz)*zooP(nz) |
| 1495 |
C zooplankton stoichiometry varies according to food source |
| 1496 |
dzooNdt(nz) = grazingN(nz)*zooP(nz) |
| 1497 |
dzooFedt(nz) = grazingFe(nz)*zooP(nz) |
| 1498 |
dzooSidt(nz) = grazingSi(nz)*zooP(nz) |
| 1499 |
enddo |
| 1500 |
#else |
| 1501 |
do nz=1,nzmax |
| 1502 |
c zoo in P currency |
| 1503 |
dzooPdt(nz) = sumgrazzoo(nz) |
| 1504 |
C zooplankton stoichiometry varies according to food source |
| 1505 |
dzooNdt(nz) = sumgrazzooN(nz) |
| 1506 |
dzooFedt(nz) = sumgrazzooFe(nz) |
| 1507 |
dzooSidt(nz) = sumgrazzooSi(nz) |
| 1508 |
enddo |
| 1509 |
#endif |
| 1510 |
if (debug.eq.10) print*,'dZooPdt',dZooPdt |
| 1511 |
|
| 1512 |
c zooplankton mortality |
| 1513 |
do nz=1,nzmax |
| 1514 |
c zoo in P currency |
| 1515 |
dzooPdt(nz) = dzooPdt(nz) |
| 1516 |
& - mortzoo(nz)* |
| 1517 |
& mortZTempFunction*zooP(nz) |
| 1518 |
& - mortzoo2(nz)* |
| 1519 |
& mortZ2TempFunction*zooP(nz)**2 |
| 1520 |
c zooplankton in other currencies |
| 1521 |
C zooplankton stoichiometry varies according to food source |
| 1522 |
dzooNdt(nz) = dzooNdt(nz) |
| 1523 |
& - mortzoo(nz)* |
| 1524 |
& mortZTempFunction*zooN(nz) |
| 1525 |
& - mortzoo2(nz)* |
| 1526 |
& mortZ2TempFunction*zooN(nz)*zooP(nz) |
| 1527 |
dzooFedt(nz) = dzooFedt(nz) |
| 1528 |
& - mortzoo(nz)* |
| 1529 |
& mortZTempFunction*zooFe(nz) |
| 1530 |
& - mortzoo2(nz)* |
| 1531 |
& mortZ2TempFunction*zooFe(nz)*zooP(nz) |
| 1532 |
dzooSidt(nz) = dzooSidt(nz) |
| 1533 |
& - mortzoo(nz)* |
| 1534 |
& mortZTempFunction*zooSi(nz) |
| 1535 |
& - mortzoo2(nz)* |
| 1536 |
& mortZ2TempFunction*zooSi(nz)*zooP(nz) |
| 1537 |
enddo |
| 1538 |
|
| 1539 |
|
| 1540 |
c sum contributions to inorganic nutrient tendencies |
| 1541 |
dPO4dt = - consumpPO4 + preminP + DOPremin |
| 1542 |
dNH4dt = - consumpNH4 + preminN + DONremin |
| 1543 |
& - NO2prod |
| 1544 |
dNO2dt = - consumpNO2 |
| 1545 |
& + NO2prod - NO3prod |
| 1546 |
dNO3dt = - consumpNO3 |
| 1547 |
& + NO3prod |
| 1548 |
c-ONLYNO3 dNO3dt = C consumpNO3 + preminN + DONremin |
| 1549 |
#ifdef ALLOW_DENIT |
| 1550 |
if (O2local.le.O2crit) then |
| 1551 |
if (NO3local.gt.1. _d -2) then |
| 1552 |
denit = denit_np*(preminP + DOPremin) |
| 1553 |
dNO3dt = dNO3dt - |
| 1554 |
& (104. _d 0/denit_np)*denit |
| 1555 |
dNH4dt = dNH4dt - (preminN + DONremin) |
| 1556 |
else |
| 1557 |
denit = 0. _d 0 |
| 1558 |
dPO4dt = dPO4dt - (preminP + DOPremin) |
| 1559 |
dNH4dt = dNH4dt - (preminN + DONremin) |
| 1560 |
DOPremin = 0. _d 0 |
| 1561 |
preminP = 0. _d 0 |
| 1562 |
DONremin = 0. _d 0 |
| 1563 |
preminN = 0. _d 0 |
| 1564 |
DOFeremin = 0. _d 0 |
| 1565 |
preminFe = 0. _d 0 |
| 1566 |
#ifdef ALLOW_CARBON |
| 1567 |
DOCremin = 0. _d 0 |
| 1568 |
preminC = 0. _d 0 |
| 1569 |
#endif |
| 1570 |
endif |
| 1571 |
endif |
| 1572 |
#endif |
| 1573 |
dFeTdt = - consumpFeT + preminFe + DOFeremin |
| 1574 |
#ifdef PART_SCAV |
| 1575 |
& - scav_part*freefelocal + |
| 1576 |
#else |
| 1577 |
& - scav*freefelocal + |
| 1578 |
#endif |
| 1579 |
& alpfe*inputFelocal/dzlocal |
| 1580 |
dSidt = - consumpSi + preminSi |
| 1581 |
|
| 1582 |
c tendency of dissolved organic pool |
| 1583 |
dDOPdt = totphy_dop + totzoo_dop - DOPremin |
| 1584 |
dDONdt = totphy_don + totzoo_don - DONremin |
| 1585 |
dDOFedt = totphy_dofe + totzoo_dofe - DOFeremin |
| 1586 |
c tendency of particulate detritus pools |
| 1587 |
dpopdt = totphy_pop + totzoo_pop - preminP + psinkP |
| 1588 |
dpondt = totphy_pon + totzoo_pon - preminN + psinkN |
| 1589 |
dpofedt = totphy_pofe + totzoo_pofe - preminFe + psinkFe |
| 1590 |
dpSidt = totphy_posi + totzoo_posi - preminSi + psinkSi |
| 1591 |
#ifdef ALLOW_CARBON |
| 1592 |
dDICdt = - consumpDIC - consumpDIC_PIC |
| 1593 |
& + preminC + DOCremin |
| 1594 |
& + disscPIC |
| 1595 |
dDOCdt = totphy_doc + totzoo_doc - DOCremin |
| 1596 |
dPOCdt = totphy_poc + totzoo_poc - preminC + psinkC |
| 1597 |
dPICdt = totphy_pic + totzoo_pic - disscPIC + psinkPIC |
| 1598 |
dALKdt = - dNO3dt - 2.d0 * (consumpDIC_PIC - disscPIC) |
| 1599 |
c should be = O2prod - preminP - DOPremin? |
| 1600 |
c OLD WAY |
| 1601 |
c dO2dt = - R_OP*dPO4dt |
| 1602 |
c production of O2 by photosynthesis |
| 1603 |
dO2dt = R_OP*consumpPO4 |
| 1604 |
c loss of O2 by remineralization |
| 1605 |
if (O2local.gt.O2crit) then |
| 1606 |
dO2dt = dO2dt - R_OP*(preminP + DOPremin) |
| 1607 |
endif |
| 1608 |
#ifdef OLD_GRAZE |
| 1609 |
do nz=1,nzmax |
| 1610 |
dzooCdt(nz) = grazingC(nz)*zooClocal(nz) |
| 1611 |
& - mortzoo(nz)* |
| 1612 |
& mortZTempFunction*zooClocal(nz) |
| 1613 |
& - mortzoo2(nz)* |
| 1614 |
& mortZ2TempFunction*zooClocal(nz)*zooP(nz) |
| 1615 |
enddo |
| 1616 |
#else |
| 1617 |
do nz=1,nzmax |
| 1618 |
dzooCdt(nz) = sumgrazzooc(nz) |
| 1619 |
& - mortzoo(nz)* |
| 1620 |
& mortZTempFunction*zooClocal(nz) |
| 1621 |
& - mortzoo2(nz)* |
| 1622 |
& mortZ2TempFunction*zooClocal(nz)*zooP(nz) |
| 1623 |
enddo |
| 1624 |
#endif |
| 1625 |
|
| 1626 |
#endif |
| 1627 |
|
| 1628 |
if (debug.eq.10) print*,'dDOPdt', dDOPdt |
| 1629 |
if (debug.eq.10) print*,'dpopdt',dpopdt |
| 1630 |
if (debug.eq.10) print*,'dDONdt',dDONdt |
| 1631 |
if (debug.eq.10) print*,'dpondt',dpondt |
| 1632 |
c |
| 1633 |
c ------------------------------------------------------------------- |
| 1634 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 1635 |
c -------------------------------------------------------------------------- |
| 1636 |
|
| 1637 |
c -m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m- |
| 1638 |
c Mutation - apply mutation to tendencies [jbmodif] |
| 1639 |
|
| 1640 |
#ifdef ALLOW_MUTANTS |
| 1641 |
c apply to all sisters when first sister is encountered |
| 1642 |
if(runtim .gt. threeyr) then |
| 1643 |
mutfor=1 _d -8 |
| 1644 |
mutback=1 _d -12 |
| 1645 |
if(numtax .gt. 1)then |
| 1646 |
do np=1,npro |
| 1647 |
if(mod(np,numtax).eq. 1. _d 0)then |
| 1648 |
nsisone = np |
| 1649 |
nsistwo = np+1 |
| 1650 |
nsisthree = np+2 |
| 1651 |
nsisfour = np+3 |
| 1652 |
|
| 1653 |
grow1 = PspecificPO4(nsisone) |
| 1654 |
grow2 = PspecificPO4(nsistwo) |
| 1655 |
|
| 1656 |
if(numtax.eq.2)grow3 = 0.0 _d 0 |
| 1657 |
if(numtax.eq.2)grow4 = 0.0 _d 0 |
| 1658 |
|
| 1659 |
if(numtax.eq.3)grow4 = 0.0 _d 0 |
| 1660 |
if(numtax.ge.3)grow3 = PspecificPO4(nsisthree) |
| 1661 |
|
| 1662 |
if(numtax.eq.4)grow4 = PspecificPO4(nsisfour) |
| 1663 |
|
| 1664 |
|
| 1665 |
|
| 1666 |
dphytodt(nsisone) = dphytodt(nsisone) |
| 1667 |
& - grow1 *1.4427 _d 0*mutfor |
| 1668 |
& - grow1 *1.4427 _d 0*mutfor |
| 1669 |
& - grow1 *1.4427 _d 0*mutfor |
| 1670 |
& + grow2 *1.4427 _d 0*mutback |
| 1671 |
& + grow3 *1.4427 _d 0*mutback |
| 1672 |
& + grow4 *1.4427 _d 0*mutback |
| 1673 |
|
| 1674 |
dphytodt(nsistwo) = dphytodt(nsistwo) |
| 1675 |
& - grow2 *1.4427 _d 0*mutback |
| 1676 |
& + grow1 *1.4427 _d 0*mutfor |
| 1677 |
|
| 1678 |
if(numtax .ge. 3)then |
| 1679 |
dphytodt(nsisthree) = dphytodt(nsisthree) |
| 1680 |
& - grow3 *1.4427 _d 0*mutback |
| 1681 |
& + grow1 *1.4427 _d 0*mutfor |
| 1682 |
endif |
| 1683 |
|
| 1684 |
if(numtax .eq. 4)then |
| 1685 |
dphytodt(nsisfour) = dphytodt(nsisfour) |
| 1686 |
& - grow4 *1.4427 _d 0*mutback |
| 1687 |
& + grow1 *1.4427 _d 0*mutfor |
| 1688 |
c QQQQQQQQQQ FIX FOR NIT RUNS ONLY!!! |
| 1689 |
if (phyto(nsisfour).eq.0. _d 0) then |
| 1690 |
if (phyto(nsistwo).eq.0. _d 0) then |
| 1691 |
if (dphytodt(nsistwo).gt.dphytodt(nsisfour)) then |
| 1692 |
dphytodt(nsisfour)=dphytodt(nsistwo) |
| 1693 |
endif |
| 1694 |
endif |
| 1695 |
if (phyto(nsisthree).eq.0. _d 0) then |
| 1696 |
if (dphytodt(nsisthree).gt.dphytodt(nsisfour)) then |
| 1697 |
dphytodt(nsisfour)=dphytodt(nsisthree) |
| 1698 |
endif |
| 1699 |
endif |
| 1700 |
endif |
| 1701 |
c QQQQQQQQQQQQQ |
| 1702 |
endif |
| 1703 |
|
| 1704 |
c QQQQQQQQQQQQTEST |
| 1705 |
if (debug.eq.11) then |
| 1706 |
if (PARlocal.gt.1. _d 0) then |
| 1707 |
if (dphytodt(nsistwo).gt.dphytodt(nsisfour).and. |
| 1708 |
& dphytodt(nsisfour).gt.0. _d 0) then |
| 1709 |
print*,'QQQQ nsistwo>nsisfour',nsistwo,nsisfour, |
| 1710 |
& dphytodt(nsistwo), dphytodt(nsisfour), |
| 1711 |
& phyto(nsistwo), phyto(nsisfour), |
| 1712 |
& phyto(nsisone) |
| 1713 |
endif |
| 1714 |
if (dphytodt(nsisthree).gt.dphytodt(nsisfour).and. |
| 1715 |
& dphytodt(nsisfour).gt.0. _d 0) then |
| 1716 |
print*,'QQQQ nsisthree>nsisfour',nsisthree,nsisfour, |
| 1717 |
& dphytodt(nsisthree), dphytodt(nsisfour), |
| 1718 |
& phyto(nsisthree), phyto(nsisfour), |
| 1719 |
& phyto(nsisone) |
| 1720 |
endif |
| 1721 |
if (dphytodt(nsisfour).gt.dphytodt(nsisone).and. |
| 1722 |
& dphytodt(nsisone).gt.0. _d 0) then |
| 1723 |
print*,' BIG QQQQ nsisfour>nsisone',nsisone,nsisfour, |
| 1724 |
& dphytodt(nsisfour), dphytodt(nsisone), |
| 1725 |
& phyto(nsisfour), phyto(nsisone) |
| 1726 |
endif |
| 1727 |
endif |
| 1728 |
endif |
| 1729 |
c QQQQQQQQQTEST |
| 1730 |
endif |
| 1731 |
enddo |
| 1732 |
endif |
| 1733 |
endif |
| 1734 |
|
| 1735 |
c mutation is finished |
| 1736 |
c -m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m- |
| 1737 |
#endif |
| 1738 |
|
| 1739 |
|
| 1740 |
|
| 1741 |
RETURN |
| 1742 |
END |
| 1743 |
#endif /*DARWIN*/ |
| 1744 |
#endif /*ALLOW_PTRACERS*/ |
| 1745 |
c ================================================================== |