1 |
benw |
1.4 |
c $Header: /u/gcmpack/MITgcm_contrib/darwin2/pkg/quota/quota_generate_phyto.F,v 1.3 2013/06/12 17:53:27 jahn Exp $ |
2 |
jahn |
1.1 |
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "CPP_OPTIONS.h" |
5 |
|
|
#include "PTRACERS_OPTIONS.h" |
6 |
|
|
#include "DARWIN_OPTIONS.h" |
7 |
|
|
|
8 |
|
|
#ifdef ALLOW_PTRACERS |
9 |
|
|
#ifdef ALLOW_DARWIN |
10 |
|
|
#ifdef ALLOW_QUOTA |
11 |
|
|
|
12 |
|
|
c ========================================================== |
13 |
|
|
c SUBROUTINE QUOTA_GENERATE_PHYTO |
14 |
|
|
c generate parameters for "Operational Taxonomic Units" of plankton (index jp) |
15 |
|
|
c using an allometric approach |
16 |
|
|
c |
17 |
|
|
c Ben Ward 2009/10 |
18 |
|
|
c ========================================================== |
19 |
|
|
SUBROUTINE QUOTA_GENERATE_PHYTO(myThid) |
20 |
|
|
|
21 |
|
|
implicit none |
22 |
|
|
#include "EEPARAMS.h" |
23 |
|
|
#include "DARWIN_PARAMS.h" |
24 |
|
|
#include "QUOTA_SIZE.h" |
25 |
|
|
#include "QUOTA.h" |
26 |
|
|
|
27 |
|
|
C !INPUT PARAMETERS: =================================================== |
28 |
|
|
C myThid :: thread number |
29 |
|
|
INTEGER myThid |
30 |
|
|
|
31 |
|
|
C === Functions === |
32 |
|
|
_RL DARWIN_RANDOM |
33 |
|
|
EXTERNAL DARWIN_RANDOM |
34 |
|
|
_RL DARWIN_RANDOM_NORMAL |
35 |
|
|
EXTERNAL DARWIN_RANDOM_NORMAL |
36 |
|
|
|
37 |
|
|
|
38 |
|
|
C !LOCAL VARIABLES: |
39 |
|
|
C === Local variables === |
40 |
|
|
C msgBuf - Informational/error meesage buffer |
41 |
|
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
42 |
|
|
|
43 |
|
|
_RL RandNo |
44 |
|
|
_RL mortdays |
45 |
|
|
_RL year |
46 |
|
|
_RL rtime |
47 |
|
|
_RL standin |
48 |
|
|
_RL tmpsrt |
49 |
|
|
_RL tmpend |
50 |
|
|
_RL tmprng |
51 |
|
|
_RL iimaxm1 |
52 |
|
|
_RL npmaxm1 |
53 |
|
|
_RL komaxm1 |
54 |
|
|
_RL prd_pry |
55 |
|
|
_RL factor |
56 |
benw |
1.4 |
#ifdef ALLOWPFT |
57 |
jahn |
1.1 |
_RL taxon_mu(npmax) |
58 |
benw |
1.4 |
#endif |
59 |
jahn |
1.1 |
_RL a,b,p,error |
60 |
|
|
_RL heterotrophy(npmax) |
61 |
benw |
1.4 |
_RL tau1,tau2 |
62 |
|
|
_RL ESD1,pi |
63 |
|
|
_RL logvol(npmax) |
64 |
|
|
INTEGER ii,io,jp,ko,ni |
65 |
|
|
INTEGER jp2,icount,ntroph |
66 |
jahn |
1.1 |
INTEGER signvar |
67 |
|
|
CEOP |
68 |
|
|
c |
69 |
benw |
1.4 |
standin= 0. _d 0 |
70 |
|
|
pi = 4. _d 0 * datan(1. _d 0) |
71 |
jahn |
1.1 |
c each time generate another functional group add one to ngroups |
72 |
|
|
ngroups = ngroups + 1 |
73 |
|
|
|
74 |
|
|
iimaxm1 = float(iimax-1) |
75 |
|
|
npmaxm1 = float(npmax-1) |
76 |
|
|
komaxm1 = float(komax-1) |
77 |
|
|
c |
78 |
|
|
c.......................................................... |
79 |
|
|
c Generate plankton volumes and stochastic parameters |
80 |
|
|
c.......................................................... |
81 |
benw |
1.4 |
#ifdef ALLOWPFT |
82 |
jahn |
1.1 |
factor = 2. _d 0 |
83 |
benw |
1.4 |
tau1=1.0 _d 0 |
84 |
|
|
tau2=1.0 _d 0 |
85 |
jahn |
1.1 |
c Allocate Phytoplankton Taxa |
86 |
|
|
c Prochloro |
87 |
|
|
do jp=1,2 |
88 |
benw |
1.2 |
biovol(jp) = 0.125 _d 0 * factor**(jp-1) |
89 |
jahn |
1.1 |
autotrophy(jp)= 1.00 _d 0 |
90 |
benw |
1.2 |
use_NO3(jp) = 1 |
91 |
jahn |
1.1 |
use_Si(jp) = 0 |
92 |
|
|
taxon_mu(jp) = 1.00 _d 0 |
93 |
|
|
pft(jp) = 1 |
94 |
|
|
enddo |
95 |
|
|
c Synnecho |
96 |
|
|
do jp=3,5 |
97 |
|
|
biovol(jp) = 0.50 _d 0 * factor**(jp-3) |
98 |
|
|
autotrophy(jp)= 1.00 _d 0 |
99 |
|
|
use_NO3(jp) = 1 |
100 |
|
|
use_Si(jp) = 0 |
101 |
benw |
1.2 |
taxon_mu(jp) = 1.40 _d 0 |
102 |
jahn |
1.1 |
pft(jp) = 2 |
103 |
|
|
enddo |
104 |
|
|
c Small Euk |
105 |
|
|
do jp=6,9 |
106 |
|
|
biovol(jp) = 4.00 _d 0 * factor**(jp-6) |
107 |
|
|
autotrophy(jp)= 1.0 _d 0 |
108 |
|
|
use_NO3(jp) = 1 |
109 |
|
|
use_Si(jp) = 0 |
110 |
|
|
taxon_mu(jp) = 2.10 _d 0 |
111 |
|
|
pft(jp) = 3 |
112 |
|
|
enddo |
113 |
|
|
c Diatoms |
114 |
|
|
do jp=10,15 |
115 |
jahn |
1.3 |
biovol(jp) = 128.0 _d 0 * factor**(jp-10) |
116 |
jahn |
1.1 |
autotrophy(jp)= 1.0 _d 0 |
117 |
|
|
use_NO3(jp) = 1 |
118 |
|
|
use_Si(jp) = 0 |
119 |
|
|
taxon_mu(jp) = 3.8 _d 0 |
120 |
|
|
pft(jp) = 4 |
121 |
|
|
enddo |
122 |
|
|
c Specialist grazers |
123 |
|
|
do jp=16,16 |
124 |
jahn |
1.3 |
biovol(jp) = 8.0 _d 0 * factor**(jp-16) |
125 |
jahn |
1.1 |
autotrophy(jp)= 0.00 _d 0 |
126 |
|
|
use_NO3(jp) = 0 |
127 |
|
|
use_Si(jp) = 0 |
128 |
|
|
taxon_mu(jp) = 0.00 _d 0 |
129 |
|
|
pft(jp) = 6 |
130 |
|
|
enddo |
131 |
|
|
c |
132 |
|
|
do jp=1,16 |
133 |
|
|
heterotrophy(jp)=1.0 _d 0 - autotrophy(jp) |
134 |
|
|
enddo |
135 |
benw |
1.4 |
#else |
136 |
|
|
ESD1 = 0.5 _d 0 ! minimum plankton ESD |
137 |
|
|
ni = 2 ! ni size classes within diameter gaps of * 10 |
138 |
|
|
factor = 1000. _d 0 ** (1. _d 0 / float(ni)) |
139 |
|
|
tau1 = 1.25 _d 0 |
140 |
|
|
tau2 = 1.0 _d 0 / tau1 |
141 |
|
|
ntroph = 2 |
142 |
|
|
if (ntroph.eq.1) then |
143 |
|
|
tau1 = 0.0 _d 0 |
144 |
|
|
tau2 = 0.0 _d 0 |
145 |
|
|
endif |
146 |
|
|
c Allocate plankton traits |
147 |
|
|
icount=0 |
148 |
|
|
do jp2=1,ntroph |
149 |
|
|
do jp=1,npmax/ntroph |
150 |
|
|
icount = icount + 1 |
151 |
|
|
biovol(icount) = pi*ESD1**3/6. _d 0 *factor**(jp-1) |
152 |
|
|
logvol(icount) = log10(biovol(icount)) |
153 |
|
|
use_NO3(icount) = 1 |
154 |
|
|
use_Si(icount) = 0 |
155 |
|
|
if (ntroph.gt.1) then |
156 |
|
|
autotrophy(icount) = 1.0 _d 0 - float(jp2-1) |
157 |
|
|
& / float(ntroph - 1) |
158 |
|
|
heterotrophy(icount)= 1.0 _d 0 - autotrophy(icount) |
159 |
|
|
else |
160 |
|
|
autotrophy(icount) = 0.5 _d 0 |
161 |
|
|
heterotrophy(icount)= 0.5 _d 0 |
162 |
|
|
endif |
163 |
|
|
enddo |
164 |
|
|
enddo |
165 |
|
|
#endif |
166 |
jahn |
1.1 |
c ---------------------------------------------------------------------- |
167 |
|
|
c Allometry |
168 |
|
|
#ifdef UNCERTAINTY |
169 |
|
|
error = 1.0 _d 0 |
170 |
|
|
#else |
171 |
|
|
error = 0.0 _d 0 |
172 |
|
|
! set stdev of allometric parameters to zero |
173 |
|
|
#endif |
174 |
|
|
c ---------------------------------------------------------------------- |
175 |
|
|
do jp=1,npmax |
176 |
|
|
! parameters independent of nutrient element |
177 |
|
|
c CARBON CONTENT |
178 |
|
|
p = darwin_random(myThid) |
179 |
|
|
call invnormal(a,p, |
180 |
|
|
& log10(a_qcarbon),log10(ae_qcarbon)*error) |
181 |
|
|
call invnormal(b,p,b_qcarbon,be_qcarbon*error) |
182 |
|
|
qcarbon(jp) = 10. _d 0**a * biovol(jp) ** b |
183 |
|
|
c INITIAL SLOPE P-I |
184 |
|
|
p = darwin_random(myThid) |
185 |
|
|
call invnormal(a,p, |
186 |
|
|
& log10(a_alphachl),log10(ae_alphachl)*error) |
187 |
|
|
call invnormal(b,p,b_alphachl,be_alphachl*error) |
188 |
|
|
alphachl(jp) = 10. _d 0**a * biovol(jp) ** b |
189 |
|
|
c RESPIRATION RATE |
190 |
|
|
p = darwin_random(myThid) |
191 |
|
|
IF (a_respir.NE.0. _d 0) THEN |
192 |
|
|
call invnormal(a,p, |
193 |
|
|
& log10(a_respir),log10(ae_respir)*error) |
194 |
|
|
call invnormal(b,p,b_respir,be_respir*error) |
195 |
benw |
1.4 |
respiration(jp) = 10. _d 0**a * biovol(jp) ** b |
196 |
jahn |
1.1 |
ELSE |
197 |
|
|
respiration(jp) = 0.0 _d 0 |
198 |
|
|
ENDIF |
199 |
benw |
1.4 |
c GRAZING SIZE PREFERENCE RATIO |
200 |
|
|
p = darwin_random(myThid) |
201 |
|
|
call invnormal(a,p, |
202 |
|
|
& log10(a_prdpry),log10(ae_prdpry)*error) |
203 |
|
|
call invnormal(b,p,b_prdpry,be_prdpry*error) |
204 |
|
|
pp_opt(jp) = 10. _d 0**a * biovol(jp) ** b |
205 |
|
|
c MAXIMUM GRAZING RATE + WIDTH OF GRAZING KERNEL |
206 |
jahn |
1.1 |
p = darwin_random(myThid) |
207 |
|
|
call invnormal(a,p, |
208 |
|
|
& log10(a_graz),log10(ae_graz)*error) |
209 |
|
|
call invnormal(b,p,b_graz,be_graz*error) |
210 |
benw |
1.4 |
!#ifdef ONEGRAZER |
211 |
|
|
!! if only one grazer, set max grazing by 1 * prey size |
212 |
|
|
!! only P are grazed |
213 |
|
|
! graz(jp) = 10. _d 0**a * (biovol(jp)*pp_opt(jp)) ** b |
214 |
|
|
! & * autotrophy(jp) ** tau2 |
215 |
|
|
!! temp fix to remove size dep. |
216 |
|
|
! graz(jp) = 10. _d 0**a * (biovol(npmax)) ** b |
217 |
|
|
! & * autotrophy(jp) ** tau2 |
218 |
|
|
!! temp fix to remove size dep. |
219 |
|
|
! pp_sig(jp) = 1. _d 10 |
220 |
|
|
!#else |
221 |
|
|
! set grazing rate by grazer size, non-grazers to zero |
222 |
|
|
graz(jp) = 10. _d 0**a * biovol(jp) ** b |
223 |
|
|
& * heterotrophy(jp) ** tau2 |
224 |
|
|
pp_sig(jp) = 2. _d 0 |
225 |
|
|
!#endif |
226 |
|
|
c FRACTION GRAZED TAND MORTALITY TO DOM |
227 |
jahn |
1.1 |
do io=1,iomax-iChl |
228 |
benw |
1.4 |
#ifdef ALLOWPFT |
229 |
|
|
if (pft(jp).lt.3) beta_graz(io,jp)=0.8 |
230 |
|
|
if (pft(jp).gt.2) beta_graz(io,jp)=0.5 |
231 |
|
|
#else |
232 |
|
|
beta_graz(io,jp) = 0.9 _d 0 - 0.7 _d 0 |
233 |
|
|
& / (1.0 _d 0 + exp(-logvol(jp)+2.0 _d 0)) |
234 |
|
|
#endif |
235 |
|
|
beta_mort(io,jp) = beta_graz(io,jp) |
236 |
jahn |
1.1 |
enddo |
237 |
|
|
c GRAZING HALF-SATURATION |
238 |
|
|
p = darwin_random(myThid) |
239 |
|
|
call invnormal(a,p, |
240 |
|
|
& log10(a_kg),log10(ae_kg)*error) |
241 |
|
|
call invnormal(b,p,b_kg,be_kg*error) |
242 |
|
|
kg(jp) = 10. _d 0**a * biovol(jp) ** b |
243 |
benw |
1.4 |
#ifdef DIFFLIMIT |
244 |
|
|
& * heterotrophy(jp) ** tau1 |
245 |
|
|
#endif |
246 |
jahn |
1.1 |
c PHYTOPLANKTON SINKING |
247 |
|
|
p = darwin_random(myThid) |
248 |
|
|
call invnormal(a,p, |
249 |
|
|
& log10(a_biosink),log10(ae_biosink)*error) |
250 |
|
|
call invnormal(b,p,b_biosink,be_biosink*error) |
251 |
benw |
1.4 |
biosink(jp) = (10.0 _d 0**a) * biovol(jp) ** b |
252 |
|
|
#ifdef ALLOWPFT |
253 |
|
|
if (pft(jp).eq.6) biosink(jp) = 0. _d 0 |
254 |
|
|
#endif |
255 |
|
|
c MORTALITY |
256 |
|
|
! constant background mortality |
257 |
jahn |
1.1 |
p = darwin_random(myThid) |
258 |
|
|
call invnormal(a,p, |
259 |
benw |
1.4 |
& log10(a_mort),log10(ae_mort)*error) |
260 |
|
|
call invnormal(b,p,b_mort,be_mort*error) |
261 |
|
|
kmort(jp) = (10.0 _d 0**a) * biovol(jp) ** b |
262 |
jahn |
1.1 |
! parameters relating to inorganic nutrients |
263 |
|
|
do ii=1,iimax |
264 |
|
|
c MAXIMUM NUTRIENT UPTAKE RATE |
265 |
|
|
p = darwin_random(myThid) |
266 |
|
|
call invnormal(a,p, |
267 |
|
|
& log10(a_vmaxi(ii)),log10(ae_vmaxi(ii))*error) |
268 |
|
|
call invnormal(b,p,b_vmaxi(ii),be_vmaxi(ii)*error) |
269 |
|
|
if (ii.eq.iDIC) then |
270 |
benw |
1.4 |
#ifdef ALLOWPFT |
271 |
jahn |
1.1 |
vmaxi(ii,jp)= 10. _d 0**a * biovol(jp) ** b |
272 |
|
|
& * taxon_mu(jp) |
273 |
benw |
1.4 |
#else |
274 |
|
|
vmaxi(ii,jp)= (3.1 _d 0+logvol(jp)) |
275 |
|
|
& / (5.0 _d 0 - 3.8 _d 0*logvol(jp) + logvol(jp)**2) |
276 |
|
|
& / 86400. _d 0 |
277 |
|
|
& * autotrophy(jp) ** tau1 |
278 |
|
|
#endif |
279 |
jahn |
1.1 |
else |
280 |
|
|
vmaxi(ii,jp)= 10. _d 0**a * biovol(jp) ** b |
281 |
benw |
1.4 |
& * autotrophy(jp) ** tau1 |
282 |
|
|
c NUTRIENT HALF-SATURATION CONSTANT |
283 |
jahn |
1.1 |
p = darwin_random(myThid) |
284 |
|
|
call invnormal(a,p, |
285 |
|
|
& log10(a_kn(ii)),log10(ae_kn(ii))*error) |
286 |
|
|
call invnormal(b,p,b_kn(ii),be_kn(ii)*error) |
287 |
|
|
kn(ii,jp) = 10. _d 0**a * biovol(jp) ** b |
288 |
benw |
1.4 |
#ifdef DIFFLIMIT |
289 |
|
|
& * autotrophy(jp) ** tau1 |
290 |
|
|
#endif |
291 |
jahn |
1.1 |
endif |
292 |
|
|
enddo |
293 |
|
|
#ifdef SQUOTA |
294 |
|
|
! Silicate parameters to zero for non-diatoms |
295 |
|
|
vmaxi(iSi,jp) = vmaxi(iSi,jp) * float(use_Si(jp)) |
296 |
|
|
#endif |
297 |
|
|
c |
298 |
|
|
if (use_NO3(jp).eq.0) then |
299 |
|
|
! prochlorocococcus can't use NO3 |
300 |
|
|
vmaxi(iNO3,jp) = 0.0 _d 0 |
301 |
|
|
! but have higher NH4 affinity |
302 |
|
|
vmaxi(iNH4,jp) = vmaxi(iNH4,jp) * 2.0 _d 0 |
303 |
|
|
endif |
304 |
|
|
! parameters relating to quota nutrients |
305 |
|
|
do io=1,iomax-iChl |
306 |
|
|
c EXCRETION |
307 |
|
|
if ((io.eq.iCarb.or.io.eq.iNitr.or.io.eq.iPhos) |
308 |
|
|
& .and.a_kexc(io).NE.0. _d 0 |
309 |
|
|
& .and.ae_kexc(io).NE.0. _d 0) then |
310 |
|
|
p = darwin_random(myThid) |
311 |
|
|
call invnormal(a,p, |
312 |
|
|
& log10(a_kexc(io)),log10(ae_kexc(io))*error) |
313 |
|
|
call invnormal(b,p,b_kexc(io),be_kexc(io)*error) |
314 |
|
|
kexc(io,jp) = 10. _d 0**a * biovol(jp) ** b |
315 |
|
|
else |
316 |
|
|
kexc(io,jp) = 0. _d 0 |
317 |
|
|
endif |
318 |
|
|
if (io.ne.iCarb) then |
319 |
|
|
c MINIMUM QUOTA |
320 |
|
|
p = darwin_random(myThid) |
321 |
|
|
call invnormal(a,p, |
322 |
|
|
& log10(a_qmin(io)),log10(ae_qmin(io))*error) |
323 |
|
|
call invnormal(b,p,b_qmin(io),be_qmin(io)*error) |
324 |
|
|
qmin(io,jp) = 10. _d 0**a * biovol(jp) ** b |
325 |
benw |
1.4 |
! & * (autotrophy(jp) ** tau2 |
326 |
|
|
! & + heterotrophy(jp) ** tau2) |
327 |
jahn |
1.1 |
c MAXIMUM QUOTA |
328 |
|
|
p = darwin_random(myThid) |
329 |
|
|
call invnormal(a,p, |
330 |
|
|
& log10(a_qmax(io)),log10(ae_qmax(io))*error) |
331 |
|
|
call invnormal(b,p,b_qmax(io),be_qmax(io)*error) |
332 |
|
|
qmax(io,jp) = 10. _d 0**a * biovol(jp) ** b |
333 |
|
|
endif |
334 |
|
|
enddo |
335 |
|
|
#ifdef SQUOTA |
336 |
|
|
! Silicate parameters to zero for non-diatoms |
337 |
|
|
qmin(iSili,jp) = qmin(iSili,jp) * float(use_Si(jp)) |
338 |
|
|
qmax(iSili,jp) = qmax(iSili,jp) * float(use_Si(jp)) |
339 |
|
|
#endif |
340 |
benw |
1.4 |
#ifdef ALLOWPFT |
341 |
jahn |
1.1 |
c Zooplankton have approximately Redfieldian N:C ratio |
342 |
|
|
if (pft(jp).eq.6) then |
343 |
|
|
qmin(iNitr,jp) = 0.0755 _d 0 |
344 |
|
|
qmax(iNitr,jp) = 0.1510 _d 0 |
345 |
|
|
endif |
346 |
benw |
1.4 |
#endif |
347 |
jahn |
1.1 |
c PREFERENCE FUNCTION |
348 |
|
|
! assign grazing preference according to predator/prey radius ratio |
349 |
|
|
do jp2=1,npmax ! jp2 denotes prey |
350 |
benw |
1.4 |
#ifdef ALLOWPFT |
351 |
jahn |
1.1 |
if (heterotrophy(jp).gt.0. _d 0.and.pft(jp2).ne.6) then |
352 |
benw |
1.4 |
#else |
353 |
|
|
if (heterotrophy(jp).gt.0. _d 0) then |
354 |
|
|
#endif |
355 |
jahn |
1.1 |
prd_pry = biovol(jp) / biovol(jp2) |
356 |
|
|
graz_pref(jp,jp2) = |
357 |
benw |
1.4 |
#ifdef SWITCHING |
358 |
benw |
1.2 |
& 1.0 _d 0 |
359 |
jahn |
1.1 |
#else |
360 |
benw |
1.4 |
& exp(-log(prd_pry/pp_opt(jp))**2 / (2*pp_sig(jp)**2)) |
361 |
jahn |
1.1 |
#endif |
362 |
|
|
if (graz_pref(jp,jp2).lt.1. _d -4) then |
363 |
|
|
graz_pref(jp,jp2)=0. _d 0 |
364 |
|
|
endif |
365 |
|
|
assim_graz(jp,jp2) = ass_eff |
366 |
|
|
else |
367 |
|
|
graz_pref(jp,jp2) = 0. _d 0 |
368 |
|
|
endif |
369 |
|
|
enddo |
370 |
|
|
c |
371 |
|
|
c.......................................................... |
372 |
|
|
c generate phyto Temperature Function parameters |
373 |
|
|
c....................................................... |
374 |
|
|
phytoTempCoeff(jp) = tempcoeff1 |
375 |
|
|
phytoTempExp1(jp) = tempcoeff3 |
376 |
|
|
phytoTempExp2(jp) = tempcoeff2_small |
377 |
|
|
& + (tempcoeff2_big-tempcoeff2_small) |
378 |
|
|
& * float(jp-1)/npmaxm1 |
379 |
|
|
phytoTempOptimum(jp) = 2. _d 0 |
380 |
|
|
phytoDecayPower(jp) = tempdecay |
381 |
|
|
|
382 |
|
|
c.......................................................... |
383 |
|
|
enddo |
384 |
|
|
|
385 |
|
|
|
386 |
|
|
RETURN |
387 |
|
|
END |
388 |
|
|
#endif /*ALLOW_QUOTA*/ |
389 |
|
|
#endif /*ALLOW_DARWIN*/ |
390 |
|
|
#endif /*ALLOW_PTRACERS*/ |
391 |
|
|
|
392 |
|
|
c =========================================================== |