1 |
C $Header: /u/gcmpack/MITgcm_contrib/darwin2/pkg/quota/quota_forcing.F,v 1.2 2012/07/02 09:47:43 benw Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "CPP_OPTIONS.h" |
5 |
#include "PTRACERS_OPTIONS.h" |
6 |
#include "DARWIN_OPTIONS.h" |
7 |
|
8 |
#ifdef ALLOW_PTRACERS |
9 |
#ifdef ALLOW_DARWIN |
10 |
#ifdef ALLOW_QUOTA |
11 |
|
12 |
c============================================================= |
13 |
c subroutine quota_forcing |
14 |
c step forward bio-chemical tracers in time |
15 |
C============================================================== |
16 |
SUBROUTINE QUOTA_FORCING( |
17 |
U Ptr, |
18 |
I bi,bj,imin,imax,jmin,jmax, |
19 |
I myTime,myIter,myThid) |
20 |
#include "SIZE.h" |
21 |
#include "EEPARAMS.h" |
22 |
#include "PARAMS.h" |
23 |
#include "GRID.h" |
24 |
#include "PTRACERS_SIZE.h" |
25 |
#include "PTRACERS_PARAMS.h" |
26 |
#include "GCHEM.h" |
27 |
#include "QUOTA_SIZE.h" |
28 |
#include "QUOTA.h" |
29 |
#include "DARWIN_IO.h" |
30 |
#include "DYNVARS.h" |
31 |
#ifdef USE_QSW |
32 |
#include "FFIELDS.h" |
33 |
#endif |
34 |
|
35 |
C === Global variables === |
36 |
c tracers |
37 |
_RL Ptr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy,nDarwin) |
38 |
INTEGER bi,bj,imin,imax,jmin,jmax |
39 |
_RL myTime |
40 |
INTEGER myIter |
41 |
INTEGER myThid |
42 |
|
43 |
C============== Local variables ============================================ |
44 |
c biomodel tracer arrays |
45 |
_RL nutrient(iimax) |
46 |
_RL biomass(iomax,npmax) |
47 |
_RL orgmat(iomax-iChl,komax) |
48 |
#ifdef FQUOTA |
49 |
c iron partitioning |
50 |
_RL freefe(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
51 |
_RL freefu |
52 |
_RL inputFel |
53 |
#endif |
54 |
c upstream arrays for sinking/swimming |
55 |
_RL bioabove(iomax,npmax) |
56 |
_RL biobelow(iomax,npmax) |
57 |
_RL orgabove(iomax-iChl,komax) |
58 |
c some working variables |
59 |
_RL sumpy |
60 |
_RL sumpyup |
61 |
c light variables |
62 |
_RL PAR(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
63 |
_RL sfac(1-OLy:sNy+OLy) |
64 |
_RL atten,lite |
65 |
_RL newtime ! for sub-timestepping |
66 |
_RL runtim ! time from tracer initialization |
67 |
c |
68 |
#ifdef ALLOW_DIAGNOSTICS |
69 |
COJ for diagnostics |
70 |
_RL PParr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
71 |
#endif |
72 |
#ifdef ALLOW_TIMEAVE |
73 |
#ifdef QUOTA_DIAG_LIMIT |
74 |
_RL Nlim(npmax) |
75 |
_RL Flim(npmax) |
76 |
_RL Ilim(npmax) |
77 |
_RL Tlim |
78 |
#endif |
79 |
#endif |
80 |
c |
81 |
|
82 |
c some local variables |
83 |
_RL Tlocal |
84 |
_RL Slocal |
85 |
_RL PARlocal |
86 |
_RL dzlocal |
87 |
_RL dtplankton |
88 |
_RL PP |
89 |
c local tendencies |
90 |
_RL dbiomass(iomax,npmax) |
91 |
_RL dorgmat(iomax-iChl,komax) |
92 |
_RL dnutrient(iimax) |
93 |
_RL tmp |
94 |
|
95 |
INTEGER bottom |
96 |
INTEGER surface |
97 |
INTEGER i,j,k,it,itmp,ktmp |
98 |
INTEGER ii,io,jp,ko, jp2, jpsave |
99 |
INTEGER place |
100 |
INTEGER debug |
101 |
CHARACTER*8 diagname |
102 |
|
103 |
c |
104 |
c-------------------------------------------------- |
105 |
c initialise variables |
106 |
DO j=1-OLy,sNy+OLy |
107 |
DO i=1-OLx,sNx+OLx |
108 |
do k=1,Nr |
109 |
#ifdef FQUOTA |
110 |
freefe(i,j,k) = 0.0 _d 0 |
111 |
# endif |
112 |
PAR(i,j,k) = 0.0 _d 0 |
113 |
#ifdef ALLOW_DIAGNOSTICS |
114 |
COJ for diagnostics |
115 |
PParr(i,j,k) = 0. _d 0 |
116 |
#endif |
117 |
enddo !k |
118 |
ENDDO !i |
119 |
ENDDO !j |
120 |
c |
121 |
c bio-chemical time loop |
122 |
c-------------------------------------------------- |
123 |
DO it=1,nsubtime |
124 |
c ------------------------------------------------- |
125 |
COJ cannot use dfloat because of adjoint |
126 |
COJ division will be double precision anyway because of dTtracerLev |
127 |
newtime=myTime-dTtracerLev(1)+ |
128 |
& float(it)*dTtracerLev(1)/float(nsubtime) |
129 |
c print*,'it ',it,newtime,nsubtime,myTime |
130 |
runtim=myTime-float(PTRACERS_Iter0)*dTtracerLev(1) |
131 |
|
132 |
#ifdef FQUOTA |
133 |
c determine iron partitioning - solve for free iron |
134 |
call darwin_fe_chem(bi,bj,iMin,iMax,jMin,jMax, |
135 |
& Ptr(1-OLx,1-OLy,1,bi,bj,iFeT), freefe, |
136 |
& myIter, mythid) |
137 |
#endif |
138 |
|
139 |
c find light in each grid cell |
140 |
c --------------------------- |
141 |
c determine incident light |
142 |
#ifndef READ_PAR |
143 |
#ifdef USE_QSW |
144 |
DO j=1-OLy,sNy+OLy |
145 |
DO i=1-OLx,sNx+OLx |
146 |
sur_par(i,j,bi,bj)=-parfrac*Qsw(i,j,bi,bj)* |
147 |
& parconv*maskC(i,j,1,bi,bj) |
148 |
ENDDO |
149 |
ENDDO |
150 |
#else |
151 |
DO j=1-OLy,sNy+OLy |
152 |
sfac(j)=0. _d 0 |
153 |
ENDDO |
154 |
call darwin_insol(newTime,sfac,bj) |
155 |
DO j=1-OLy,sNy+OLy |
156 |
DO i=1-OLx,sNx+OLx |
157 |
sur_par(i,j,bi,bj)=sfac(j)*maskC(i,j,1,bi,bj)/86400. _d 6 |
158 |
c if (i.eq.1.and.j.ge.1.and.j.le.sNy) |
159 |
c & write(24,*) sur_par(i,j,bi,bj) |
160 |
ENDDO |
161 |
ENDDO |
162 |
#endif |
163 |
#endif |
164 |
|
165 |
C................................................................. |
166 |
C................................................................. |
167 |
|
168 |
|
169 |
DO j=1,sNy |
170 |
DO i=1,sNx |
171 |
c surface PAR |
172 |
c take ice coverage into account |
173 |
#if (defined (ALLOW_SEAICE) && defined (USE_QSW)) |
174 |
COJ ice coverage already taken into account by seaice package |
175 |
lite=sur_par(i,j,bi,bj) |
176 |
#else |
177 |
#if (defined (ALLOW_SEAICE) && defined (USE_QSW)) |
178 |
c if using Qsw and seaice, then ice fraction is already |
179 |
c taken into account |
180 |
lite=sur_par(i,j,bi,bj) |
181 |
#else |
182 |
lite=sur_par(i,j,bi,bj)*(1. _d 0-fice(i,j,bi,bj)) |
183 |
#endif |
184 |
#endif |
185 |
atten = 0. _d 0 |
186 |
sumpy = 0. _d 0 |
187 |
c |
188 |
c FOR EACH LAYER ... |
189 |
do k= 1, NR |
190 |
if (HFacC(i,j,k,bi,bj).gt.0. _d 0) then |
191 |
c --------------------------------------------------------------------- |
192 |
c benw |
193 |
c |
194 |
c Fetch biomodel variables from ptr (ptracers) |
195 |
c (making sure they are .ge. 0 - brute force) |
196 |
c |
197 |
c (set biomodel tendencies to zero, at the same time) |
198 |
c |
199 |
c ********************************************************************* |
200 |
place = 0 |
201 |
c Inorganic Nutrients |
202 |
do ii=1,iimax |
203 |
place = place + 1 |
204 |
c ambient nutrients for each element (1 to iimax) |
205 |
nutrient(ii) = max(Ptr(i,j,k,bi,bj,place),0. _d 0) |
206 |
dnutrient(ii) = 0. _d 0 |
207 |
enddo ! ii |
208 |
c ********************************************************************* |
209 |
c Unicellular biomass (including chlorophyll biomass - for non-grazers) |
210 |
do io=1,iomax |
211 |
do jp=1,npmax |
212 |
if (io.ne.iChlo.or.pft(jp).ne.6) then ! no grazer chlorophyll |
213 |
place = place + 1 |
214 |
biomass(io,jp) = max(Ptr(i,j,k,bi,bj,place),0. _d 0) |
215 |
! biomasses above current layer for sinking |
216 |
if (k.eq.1) then |
217 |
bioabove(io,jp)=0. _d 0 |
218 |
endif |
219 |
! biomasses below current layer for swimming |
220 |
if (k.eq.Nr) then |
221 |
biobelow(io,jp)=0. _d 0 |
222 |
elseif (hFacC(i,j,k+1,bi,bj).eq.0. _d 0) then |
223 |
biobelow(io,jp)=0. _d 0 |
224 |
else |
225 |
biobelow(io,jp)=max(Ptr(i,j,k+1,bi,bj,place),0. _d 0) |
226 |
endif |
227 |
! initialise biomass rate of change |
228 |
dbiomass(io,jp) = 0. _d 0 |
229 |
else ! if grazer, fill chl biomass with zeros |
230 |
biomass(io,jp) = 0. _d 0 |
231 |
endif |
232 |
enddo ! jp |
233 |
enddo |
234 |
c ********************************************************************* |
235 |
c Organic matter |
236 |
do io=1,iomax-iChl |
237 |
do ko=1,komax |
238 |
c mass of element x for all OM classes |
239 |
place = place + 1 |
240 |
orgmat(io,ko) = max(Ptr(i,j,k,bi,bj,place),0. _d 0) |
241 |
! biomasses above current layer for sinking |
242 |
if (k.eq.1) then |
243 |
orgabove(io,ko) = 0. _d 0 |
244 |
endif |
245 |
#ifdef SQUOTA |
246 |
if (ko.and.1.and.io.eq.iSili) then |
247 |
place = place - 1 |
248 |
orgmat(iSili,1) = 0. _d 0 |
249 |
orgabove(iSili,1) = 0. _d 0 |
250 |
endif |
251 |
#endif |
252 |
dorgmat(io,ko) = 0. _d 0 |
253 |
enddo ! ko |
254 |
enddo ! io |
255 |
c ********************************************************************* |
256 |
c |
257 |
c --------------------------------------------------------------------- |
258 |
|
259 |
|
260 |
c find local light for level k |
261 |
sumpyup = sumpy |
262 |
sumpy = 0. _d 0 |
263 |
do jp=1,npmax |
264 |
#ifndef GEIDER |
265 |
! sum nitrogen biomass |
266 |
sumpy = sumpy + biomass(iNitr,jp) |
267 |
#else |
268 |
! sum chlorophyll |
269 |
sumpy = sumpy + biomass(iChlo,jp) |
270 |
#endif |
271 |
enddo |
272 |
|
273 |
atten= atten + (k_w + k_chl*sumpy)*5. _d -1*drF(k) |
274 |
if (k.gt.1)then |
275 |
atten = atten + (k_w+k_chl*sumpyup)*5. _d -1*drF(k-1) |
276 |
endif |
277 |
PAR(i,j,k) = lite*exp(-atten) |
278 |
c |
279 |
c Physical variables |
280 |
PARlocal = PAR(i,j,k) |
281 |
Tlocal = theta(i,j,k,bi,bj) |
282 |
Slocal = salt(i,j,k,bi,bj) |
283 |
c Free Iron |
284 |
#ifdef FQUOTA |
285 |
freefu = max(freefe(i,j,k),0. _d 0) |
286 |
if (k.eq.1) then |
287 |
inputFel = inputFe(i,j,bi,bj) |
288 |
else |
289 |
inputFel = 0. _d 0 |
290 |
endif |
291 |
#endif |
292 |
c Layer thickness |
293 |
dzlocal = drF(k)*HFacC(i,j,k,bi,bj) |
294 |
c |
295 |
c set bottom=1.0 if the layer below is not ocean |
296 |
ktmp=min(nR,k+1) |
297 |
if(hFacC(i,j,ktmp,bi,bj).eq.0. _d 0.or.k.eq.Nr) then |
298 |
bottom = 1 |
299 |
else |
300 |
bottom = 0 |
301 |
endif |
302 |
if (k.eq.1) then |
303 |
surface = 1 |
304 |
else |
305 |
surface = 0 |
306 |
endif |
307 |
|
308 |
c set other arguments to zero |
309 |
debug=0 |
310 |
|
311 |
if (debug.eq.7) print*,'Inorganic nutrients',nutrient |
312 |
if (debug.eq.7) print*,'Plankton biomass', biomass |
313 |
if (debug.eq.7) print*,'Organic nutrients',orgmat |
314 |
if (debug.eq.8) print*,'k, PARlocal, dzlocal', |
315 |
& k,PARlocal,dzlocal |
316 |
c --------------------------------------------------------------------- |
317 |
CALL QUOTA_PLANKTON( |
318 |
I biomass, orgmat, nutrient, |
319 |
O PP, |
320 |
I bioabove, biobelow, |
321 |
I orgabove, |
322 |
#ifdef FQUOTA |
323 |
I freefu, inputFel, |
324 |
#endif |
325 |
#ifdef ALLOW_TIMEAVE |
326 |
#ifdef QUOTA_DIAG_LIMIT |
327 |
O Nlim, Flim, Ilim, Tlim, |
328 |
#endif |
329 |
#endif |
330 |
I PARlocal, Tlocal, Slocal, |
331 |
I bottom, surface, dzlocal, |
332 |
O dbiomass, dorgmat, dnutrient, |
333 |
I debug, |
334 |
I runtim, |
335 |
I MyThid) |
336 |
c --------------------------------------------------------------------- |
337 |
#ifdef FQUOTA |
338 |
#ifdef IRON_SED_SOURCE |
339 |
c only above minimum depth (continental shelf) |
340 |
if (rF(k).lt.depthfesed) then |
341 |
c only if bottom layer |
342 |
if (HFacC(i,j,k+1,bi,bj).eq.0. _d 0) then |
343 |
#ifdef IRON_SED_SOURCE_VARIABLE |
344 |
c calculate sink of POC into bottom layer |
345 |
tmp=orgsink(2)*orgabove(iCarb,2)/dzlocal |
346 |
c convert to dPOCl |
347 |
dnutrient(iFeT) = dnutrient(iFeT) |
348 |
& + fesedflux_pcm*tmp |
349 |
#else |
350 |
dnutrient(iFeT) = dnutrient(iFeT) |
351 |
& + fesedflux/(drF(k)*hFacC(i,j,k,bi,bj)) |
352 |
#endif |
353 |
endif |
354 |
endif |
355 |
#endif |
356 |
#endif |
357 |
c --------------------------------------------------------------------- |
358 |
c save un-updated biomass as layer above |
359 |
do io=1,iomax |
360 |
do jp=1,npmax |
361 |
bioabove(io,jp)=biomass(io,jp) |
362 |
enddo |
363 |
if (io.ne.iChlo) then |
364 |
do ko=1,komax |
365 |
orgabove(io,ko)=orgmat(io,ko) |
366 |
enddo |
367 |
endif |
368 |
enddo |
369 |
c --------------------------------------------------------------------- |
370 |
c now update main tracer arrays |
371 |
c for timestep dtplankton |
372 |
dtplankton = dTtracerLev(k)/float(nsubtime) |
373 |
cccccccccccccccccccccccccccccccccccccccccccccccccccc |
374 |
place = 0 |
375 |
cccccccccccccccccccccccccccccccccccccccccccccccccccc |
376 |
c Inorganic nutrients |
377 |
do ii=1,iimax |
378 |
place = place + 1 |
379 |
Ptr(i,j,k,bi,bj,place) = Ptr(i,j,k,bi,bj,place) |
380 |
& + dtplankton*dnutrient(ii) |
381 |
enddo ! ii |
382 |
cccccccccccccccccccccccccccccccccccccccccccccccccccc |
383 |
c Biomass |
384 |
do io=1,iomax |
385 |
do jp=1,npmax |
386 |
if (io.ne.iChlo.or.pft(jp).ne.6) then ! if not a grazer |
387 |
place = place + 1 |
388 |
Ptr(i,j,k,bi,bj,place) = Ptr(i,j,k,bi,bj,place) |
389 |
& + dtplankton*dbiomass(io,jp) |
390 |
if (pft(jp).eq.6.and.io.eq.iChlo) then |
391 |
Ptr(i,j,k,bi,bj,place) = 0. _d 0 |
392 |
endif |
393 |
endif |
394 |
enddo ! jp |
395 |
enddo ! io |
396 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
397 |
c Organic matter |
398 |
do io=1,iomax-iChl |
399 |
do ko=1,komax |
400 |
if (ko.ne.1.or.io.ne.iSili) then |
401 |
place = place + 1 |
402 |
Ptr(i,j,k,bi,bj,place) = Ptr(i,j,k,bi,bj,place) |
403 |
& + dtplankton*dorgmat(io,ko) |
404 |
endif |
405 |
enddo ! ko |
406 |
enddo ! io |
407 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
408 |
c |
409 |
#ifdef ALLOW_DIAGNOSTICS |
410 |
COJ for diagnostics |
411 |
PParr(i,j,k) = PP |
412 |
#endif /* ALLOW_DIAGNOSTICS */ |
413 |
|
414 |
#ifdef ALLOW_TIMEAVE |
415 |
PPave(i,j,k,bi,bj) = PPave(i,j,k,bi,bj) |
416 |
& + PP * dtplankton |
417 |
PARave(i,j,k,bi,bj) = PARave(i,j,k,bi,bj) |
418 |
& + PARlocal * dtplankton |
419 |
c |
420 |
#ifdef QUOTA_DIAG_LIMIT |
421 |
do jp=1,npmax |
422 |
Nlimave(i,j,k,bi,bj,jp) = Nlimave(i,j,k,bi,bj,jp) |
423 |
& + Nlim(jp) * dtplankton |
424 |
Flimave(i,j,k,bi,bj,jp) = Flimave(i,j,k,bi,bj,jp) |
425 |
& + Flim(jp) * dtplankton |
426 |
Ilimave(i,j,k,bi,bj,jp) = Ilimave(i,j,k,bi,bj,jp) |
427 |
& + Ilim(jp) * dtplankton |
428 |
enddo |
429 |
Tlimave(i,j,k,bi,bj) = Tlimave(i,j,k,bi,bj) |
430 |
& + Tlim * dtplankton |
431 |
#endif |
432 |
#endif |
433 |
endif |
434 |
c end if hFac>0 |
435 |
enddo ! k |
436 |
c end layer loop |
437 |
c |
438 |
ENDDO ! i |
439 |
ENDDO ! j |
440 |
c |
441 |
c |
442 |
COJ fill diagnostics |
443 |
#ifdef ALLOW_DIAGNOSTICS |
444 |
IF ( useDiagnostics ) THEN |
445 |
diagname = 'PP ' |
446 |
CALL DIAGNOSTICS_FILL( PParr(1-Olx,1-Oly,1), diagname, |
447 |
& 0,Nr,2,bi,bj,myThid ) |
448 |
ENDIF |
449 |
#endif |
450 |
COJ |
451 |
|
452 |
#ifdef FQUOTA |
453 |
c determine iron partitioning - solve for free iron |
454 |
call darwin_fe_chem(bi,bj,iMin,iMax,jMin,jMax, |
455 |
& Ptr(1-OLx,1-OLy,1,bi,bj,iFeT), freefe, |
456 |
& myIter, mythid) |
457 |
#endif |
458 |
|
459 |
c |
460 |
#ifdef ALLOW_TIMEAVE |
461 |
c save averages |
462 |
dar_timeave(bi,bj) = dar_timeave(bi,bj) + dtplankton |
463 |
#endif |
464 |
c |
465 |
c ----------------------------------------------------- |
466 |
ENDDO ! it |
467 |
c ----------------------------------------------------- |
468 |
c end of bio-chemical time loop |
469 |
c |
470 |
RETURN |
471 |
END |
472 |
|
473 |
#endif /*ALLOW_QUOTA*/ |
474 |
#endif /*ALLOW_DARWIN*/ |
475 |
#endif /*ALLOW_PTRACERS*/ |
476 |
|
477 |
C============================================================================ |