1 |
C $Header: /u/gcmpack/MITgcm_contrib/darwin2/pkg/monod/monod_plankton.F,v 1.3 2011/10/05 20:43:39 stephd Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "CPP_OPTIONS.h" |
5 |
#include "PTRACERS_OPTIONS.h" |
6 |
#include "DARWIN_OPTIONS.h" |
7 |
|
8 |
#ifdef ALLOW_PTRACERS |
9 |
#ifdef ALLOW_MONOD |
10 |
|
11 |
c ==================================================================== |
12 |
c SUBROUTINE MONOD_PLANKTON |
13 |
c 1. Local ecological interactions for models with many phytoplankton |
14 |
c "functional groups" |
15 |
c 2. Timestep plankton and nutrients locally |
16 |
c 3. Includes explicit DOM and POM |
17 |
c 4. Remineralization of detritus also determined in routine |
18 |
c 5. Sinking particles and phytoplankton |
19 |
c 6. NOT in this routine: iron chemistry |
20 |
c |
21 |
c Mick Follows, Scott Grant, Fall/Winter 2005 |
22 |
c Stephanie Dutkiewicz Spring/Summer 2006 |
23 |
c |
24 |
c - add extra diagnostics, including R* (#define DAR_DIAG_RSTAR) - Stephanie, Spring 2007 |
25 |
c - add check for conservation (#define CHECK_CONS) - Stephanie, Spring 2007 |
26 |
c - improve grazing (#undef OLD_GRAZING) - Stephanie, Spring 2007 |
27 |
c - add diazotrophy (#define ALLOW_DIAZ) - Stephanie, Spring 2007 |
28 |
c - add mutation code (#define ALLOW_MUTANTS) - Jason Bragg, Spring/Summer 2007 |
29 |
c - new nitrogen limiting scheme (#undef OLD_NSCHEME) - Jason Bragg, Summer 2007 |
30 |
c - fix bug in diazotroph code - Stephanie, Fall 2007 |
31 |
c - add additional r* diagnostic for (no3+no2) - Stephanie, Winter 2007 |
32 |
c - add diversity diagnostics - Stephanie, Winter 2007 |
33 |
c - add geider chl:c ratio and growth rate dependence, |
34 |
c though has no photo-inhibtion at this point - Stephanie, Spring 2008 |
35 |
c - add waveband dependence of light attenuation and absorption, |
36 |
c NOTE: need to have geider turned on too - Anna Hickman, Summer 2008 |
37 |
c ==================================================================== |
38 |
|
39 |
c ANNA pass extra variables if WAVEBANDS |
40 |
SUBROUTINE MONOD_PLANKTON( |
41 |
U phyto, |
42 |
I zooP, zooN, zooFe, zooSi, |
43 |
O PP, Chl, Nfix, denit, |
44 |
I PO4local, NO3local, FeTlocal, Silocal, |
45 |
I NO2local, NH4local, |
46 |
I DOPlocal, DONlocal, DOFelocal, |
47 |
I POPlocal, PONlocal, POFelocal, PSilocal, |
48 |
I phytoup, popuplocal, ponuplocal, |
49 |
I pofeuplocal, psiuplocal, |
50 |
I PARlocal,Tlocal, Slocal, |
51 |
I freefelocal, inputFelocal, |
52 |
I bottom, dzlocal, |
53 |
O Rstarlocal, RNstarlocal, |
54 |
#ifdef DAR_DIAG_GROW |
55 |
O Growlocal, Growsqlocal, |
56 |
#endif |
57 |
#ifdef ALLOW_DIAZ |
58 |
#ifdef DAR_DIAG_NFIXP |
59 |
O NfixPlocal, |
60 |
#endif |
61 |
#endif |
62 |
O dphytodt, dzooPdt, dzooNdt, dzooFedt, |
63 |
O dzooSidt, |
64 |
O dPO4dt, dNO3dt, dFeTdt, dSidt, |
65 |
O dNH4dt, dNO2dt, |
66 |
O dDOPdt, dDONdt, dDOFedt, |
67 |
O dPOPdt, dPONdt, dPOFedt, dPSidt, |
68 |
#ifdef ALLOW_CARBON |
69 |
I DIClocal, DOClocal, POClocal, PIClocal, |
70 |
I ALKlocal, O2local, ZooClocal, |
71 |
I POCuplocal, PICuplocal, |
72 |
O dDICdt, dDOCdt, dPOCdt, dPICdt, |
73 |
O dALKdt, dO2dt, dZOOCdt, |
74 |
#endif |
75 |
#ifdef GEIDER |
76 |
I phychl, |
77 |
#ifdef DYNAMIC_CHL |
78 |
O dphychl, Chlup, |
79 |
#endif |
80 |
#ifdef WAVEBANDS |
81 |
I PARwlocal, |
82 |
#endif |
83 |
#endif |
84 |
#ifdef ALLOW_PAR_DAY |
85 |
I PARdaylocal, |
86 |
#endif |
87 |
#ifdef DAR_DIAG_CHL |
88 |
O ChlGeiderlocal, ChlDoneylocal, |
89 |
O ChlCloernlocal, |
90 |
#endif |
91 |
I debug, |
92 |
I runtim, |
93 |
I MyThid) |
94 |
|
95 |
|
96 |
implicit none |
97 |
#include "EEPARAMS.h" |
98 |
#include "MONOD_SIZE.h" |
99 |
#include "MONOD.h" |
100 |
#include "DARWIN_PARAMS.h" |
101 |
|
102 |
c ANNA set wavebands params |
103 |
#ifdef WAVEBANDS |
104 |
#include "SPECTRAL_SIZE.h" |
105 |
#include "WAVEBANDS_PARAMS.h" |
106 |
#endif |
107 |
|
108 |
|
109 |
C !INPUT PARAMETERS: =================================================== |
110 |
C myThid :: thread number |
111 |
INTEGER myThid |
112 |
CEOP |
113 |
c === GLOBAL VARIABLES ===================== |
114 |
c npmax = no of phyto functional groups |
115 |
c nzmax = no of grazer species |
116 |
c phyto = phytoplankton |
117 |
c zoo = zooplankton |
118 |
_RL phyto(npmax) |
119 |
_RL zooP(nzmax) |
120 |
_RL zooN(nzmax) |
121 |
_RL zooFe(nzmax) |
122 |
_RL zooSi(nzmax) |
123 |
_RL PP |
124 |
_RL Nfix |
125 |
_RL denit |
126 |
_RL Chl |
127 |
_RL PO4local |
128 |
_RL NO3local |
129 |
_RL FeTlocal |
130 |
_RL Silocal |
131 |
_RL NO2local |
132 |
_RL NH4local |
133 |
_RL DOPlocal |
134 |
_RL DONlocal |
135 |
_RL DOFelocal |
136 |
_RL POPlocal |
137 |
_RL PONlocal |
138 |
_RL POFelocal |
139 |
_RL PSilocal |
140 |
_RL phytoup(npmax) |
141 |
_RL POPuplocal |
142 |
_RL PONuplocal |
143 |
_RL POFeuplocal |
144 |
_RL PSiuplocal |
145 |
_RL PARlocal |
146 |
_RL Tlocal |
147 |
_RL Slocal |
148 |
_RL freefelocal |
149 |
_RL inputFelocal |
150 |
_RL bottom |
151 |
_RL dzlocal |
152 |
_RL Rstarlocal(npmax) |
153 |
_RL RNstarlocal(npmax) |
154 |
#ifdef DAR_DIAG_GROW |
155 |
_RL Growlocal(npmax) |
156 |
_RL Growsqlocal(npmax) |
157 |
#endif |
158 |
#ifdef ALLOW_DIAZ |
159 |
#ifdef DAR_DIAG_NFIXP |
160 |
_RL NfixPlocal(npmax) |
161 |
#endif |
162 |
#endif |
163 |
INTEGER debug |
164 |
_RL dphytodt(npmax) |
165 |
_RL dzooPdt(nzmax) |
166 |
_RL dzooNdt(nzmax) |
167 |
_RL dzooFedt(nzmax) |
168 |
_RL dzooSidt(nzmax) |
169 |
_RL dPO4dt |
170 |
_RL dNO3dt |
171 |
_RL dNO2dt |
172 |
_RL dNH4dt |
173 |
_RL dFeTdt |
174 |
_RL dSidt |
175 |
_RL dDOPdt |
176 |
_RL dDONdt |
177 |
_RL dDOFedt |
178 |
_RL dPOPdt |
179 |
_RL dPONdt |
180 |
_RL dPOFedt |
181 |
_RL dPSidt |
182 |
#ifdef ALLOW_CARBON |
183 |
_RL DIClocal |
184 |
_RL DOClocal |
185 |
_RL POClocal |
186 |
_RL PIClocal |
187 |
_RL ALKlocal |
188 |
_RL O2local |
189 |
_RL ZooClocal(nzmax) |
190 |
_RL POCuplocal |
191 |
_RL PICuplocal |
192 |
_RL dDICdt |
193 |
_RL dDOCdt |
194 |
_RL dPOCdt |
195 |
_RL dPICdt |
196 |
_RL dALKdt |
197 |
_RL dO2dt |
198 |
_RL dZOOCdt(nzmax) |
199 |
#endif |
200 |
#ifdef GEIDER |
201 |
_RL phychl(npmax) |
202 |
#ifdef DYNAMIC_CHL |
203 |
_RL dphychl(npmax) |
204 |
_RL Chlup(npmax) |
205 |
#endif |
206 |
#endif |
207 |
#ifdef ALLOW_PAR_DAY |
208 |
_RL PARdaylocal |
209 |
#endif |
210 |
#ifdef DAR_DIAG_CHL |
211 |
_RL ChlGeiderlocal, ChlDoneylocal, ChlCloernlocal |
212 |
#endif |
213 |
_RL runtim |
214 |
|
215 |
c ANNA Global variables for WAVEBANDS |
216 |
c ANNA these variables are passed in/out of darwin_forcing.F |
217 |
#ifdef WAVEBANDS |
218 |
_RL PARwlocal(tlam) !PAR at midpoint of previous(in) and local(out) gridcell |
219 |
#endif |
220 |
c ANNA endif |
221 |
|
222 |
|
223 |
|
224 |
|
225 |
|
226 |
c LOCAL VARIABLES |
227 |
c ------------------------------------------------------------- |
228 |
|
229 |
c WORKING VARIABLES |
230 |
c np = phytoplankton index |
231 |
integer np |
232 |
c nz = zooplankton index |
233 |
integer nz |
234 |
|
235 |
c variables for phytoplankton growth rate/nutrient limitation |
236 |
c phytoplankton specific nutrient limitation term |
237 |
_RL limit(npmax) |
238 |
c phytoplankton light limitation term |
239 |
_RL ilimit(npmax) |
240 |
_RL ngrow(npmax) |
241 |
_RL grow(npmax) |
242 |
_RL PspecificPO4(npmax) |
243 |
_RL phytoTempFunction(npmax) |
244 |
_RL dummy |
245 |
_RL Ndummy |
246 |
_RL Nsourcelimit(npmax) |
247 |
_RL Nlimit(npmax) |
248 |
_RL NO3limit(npmax) |
249 |
_RL NO2limit(npmax) |
250 |
_RL NH4limit(npmax) |
251 |
|
252 |
c for check N limit scheme |
253 |
_RL Ndiff |
254 |
_RL NO3limcheck |
255 |
_RL NO2limcheck |
256 |
_RL Ndummy1 |
257 |
LOGICAL check_nlim |
258 |
|
259 |
#ifndef OLD_NSCHEME |
260 |
c [jbmodif] some new N terms |
261 |
integer N2only |
262 |
integer noNOdadv |
263 |
integer NOreducost |
264 |
_RL NO2zoNH4 |
265 |
_RL NOXzoNH4 |
266 |
#endif |
267 |
|
268 |
c varible for mimumum phyto |
269 |
_RL phytomin(npmax) |
270 |
|
271 |
#ifdef OLD_GRAZE |
272 |
c variables for zooplankton grazing rates |
273 |
_RL zooTempFunction(nzmax) |
274 |
_RL grazing_phyto(npmax) |
275 |
_RL grazingP(nzmax) |
276 |
_RL grazingN(nzmax) |
277 |
_RL grazingFe(nzmax) |
278 |
_RL grazingSi(nzmax) |
279 |
#else |
280 |
c variables for zooplankton grazing rates |
281 |
_RL zooTempFunction(nzmax) |
282 |
_RL allphyto(nzmax) |
283 |
_RL denphyto(nzmax) |
284 |
_RL grazphy(npmax,nzmax) |
285 |
_RL sumgrazphy(npmax) |
286 |
_RL sumgrazzoo(nzmax) |
287 |
_RL sumgrazzooN(nzmax) |
288 |
_RL sumgrazzooFe(nzmax) |
289 |
_RL sumgrazzooSi(nzmax) |
290 |
_RL sumgrazloss(nzmax) |
291 |
_RL sumgrazlossN(nzmax) |
292 |
_RL sumgrazlossFe(nzmax) |
293 |
_RL sumgrazlossSi(nzmax) |
294 |
#endif |
295 |
|
296 |
#ifdef GEIDER |
297 |
_RL alpha_I(npmax) |
298 |
_RL pcarbon(npmax) |
299 |
_RL pcm(npmax) |
300 |
_RL chl2c(npmax) |
301 |
#ifdef DYNAMIC_CHL |
302 |
_RL acclim(npmax) |
303 |
_RL psinkchl(npmax) |
304 |
_RL rhochl(npmax) |
305 |
#endif |
306 |
#endif |
307 |
|
308 |
#ifdef DAR_DIAG_CHL |
309 |
_RL tmppcm |
310 |
_RL tmpchl2c |
311 |
#endif |
312 |
c variables for nutrient uptake |
313 |
_RL consumpPO4 |
314 |
_RL consumpNO3 |
315 |
_RL consumpNO2 |
316 |
_RL consumpNH4 |
317 |
_RL consumpFeT |
318 |
_RL consumpSi |
319 |
|
320 |
c variables for reminerlaization of DOM and POM |
321 |
_RL reminTempFunction |
322 |
_RL DOPremin |
323 |
_RL DONremin |
324 |
_RL DOFeremin |
325 |
_RL preminP |
326 |
_RL preminN |
327 |
_RL preminFe |
328 |
_RL preminSi |
329 |
|
330 |
c for sinking matter |
331 |
_RL psinkP |
332 |
_RL psinkN |
333 |
_RL psinkFe |
334 |
_RL psinkSi |
335 |
_RL psinkphy(npmax) |
336 |
|
337 |
#ifdef ALLOW_CARBON |
338 |
_RL consumpDIC |
339 |
_RL consumpDIC_PIC |
340 |
_RL preminC |
341 |
_RL DOCremin |
342 |
_RL totphy_doc |
343 |
_RL totzoo_doc |
344 |
_RL totphy_poc |
345 |
_RL totzoo_poc |
346 |
_RL totphy_pic |
347 |
_RL totzoo_pic |
348 |
_RL psinkC |
349 |
_RL psinkPIC |
350 |
_RL disscPIC |
351 |
#ifdef OLD_GRAZE |
352 |
_RL grazingC(nzmax) |
353 |
#else |
354 |
c variables for zooplankton grazing rates |
355 |
_RL sumgrazzooC(nzmax) |
356 |
_RL sumgrazlossC(nzmax) |
357 |
_RL sumgrazlossPIC(nzmax) |
358 |
#endif |
359 |
|
360 |
#endif |
361 |
|
362 |
c variables for conversions from phyto and zoo to DOM and POM |
363 |
_RL totphy_dop |
364 |
_RL totphy_pop |
365 |
_RL totphy_don |
366 |
_RL totphy_pon |
367 |
_RL totphy_dofe |
368 |
_RL totphy_pofe |
369 |
_RL totphy_dosi |
370 |
_RL totphy_posi |
371 |
|
372 |
_RL totzoo_dop |
373 |
_RL totzoo_pop |
374 |
_RL totzoo_don |
375 |
_RL totzoo_pon |
376 |
_RL totzoo_dofe |
377 |
_RL totzoo_pofe |
378 |
_RL totzoo_posi |
379 |
|
380 |
_RL NO2prod |
381 |
_RL NO3prod |
382 |
|
383 |
_RL facpz |
384 |
|
385 |
_RL kpar, kinh |
386 |
|
387 |
_RL tmpr,tmpz, tmpgrow, tmp1, tmp2 |
388 |
|
389 |
integer ITEST |
390 |
|
391 |
#ifdef PART_SCAV |
392 |
_RL scav_part |
393 |
_RL scav_poc |
394 |
#endif |
395 |
|
396 |
|
397 |
c ANNA local variables for WAVEBANDS |
398 |
#ifdef WAVEBANDS |
399 |
integer i,ilam |
400 |
integer nl |
401 |
|
402 |
c ANNA for interpolation |
403 |
_RL cu_area |
404 |
C _RL waves_diff |
405 |
C _RL light_diff |
406 |
C _RL alphaI_diff |
407 |
C _RL squ_part |
408 |
C _RL tri_part |
409 |
C _RL seg_area |
410 |
|
411 |
c ANNA inportant but local variables that can be fogotten |
412 |
_RL PARwdn(tlam) !light at bottom of local gridcell |
413 |
_RL attenwl(tlam) !attenuation (m-1) |
414 |
_RL sumaphy_nl(tlam) !total phyto absorption at each wavelength |
415 |
#endif |
416 |
c ANNA endif |
417 |
|
418 |
c ANNA - for inhib |
419 |
_RL Ek |
420 |
_RL EkoverE |
421 |
|
422 |
c................................................................. |
423 |
|
424 |
#ifdef ALLOW_MUTANTS |
425 |
c -m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m- |
426 |
c mutation variables [jbmodif] |
427 |
INTEGER nsisone |
428 |
INTEGER nsistwo |
429 |
INTEGER nsisthree |
430 |
INTEGER nsisfour |
431 |
INTEGER npro |
432 |
INTEGER taxind |
433 |
_RL mutfor, mutback |
434 |
_RL grow1 |
435 |
_RL grow2 |
436 |
_RL grow3 |
437 |
_RL grow4 |
438 |
#endif |
439 |
|
440 |
INTEGER numtax |
441 |
_RL oneyr,threeyr |
442 |
|
443 |
#ifdef ALLOW_MUTANTS |
444 |
c compile time options -- could maybe be moved to |
445 |
c run time and set in data.gchem??? |
446 |
c QQQQQQQ |
447 |
c Initialize sister taxon mutation scheme |
448 |
c if numtax = 1, mutation is off |
449 |
numtax = 4 |
450 |
c number of plankton types to assign for |
451 |
c wild and mutants types |
452 |
npro = 60 |
453 |
#else |
454 |
numtax=1 |
455 |
#endif |
456 |
|
457 |
oneyr = 86400.0 _d 0*360.0 _d 0 |
458 |
threeyr = oneyr*3. _d 0 |
459 |
|
460 |
c end mutation variables [jbmodif] |
461 |
c -m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m- |
462 |
|
463 |
#ifndef OLD_NSCHEME |
464 |
c [jbmodif] init new N terms |
465 |
c if those not using NO3 has |
466 |
c N limit with denominator with NO3 or not: 0=NO3 in denom; 1=NO2 only |
467 |
N2only = 1 |
468 |
c ?? |
469 |
noNOdadv = 1 |
470 |
c energetic disadvantage of using NO2/No3: off=0, on=1 |
471 |
NOreducost =0 |
472 |
#endif |
473 |
|
474 |
#ifdef GEIDER |
475 |
do np=1,npmax |
476 |
pcarbon(np) = 0. _d 0 |
477 |
pcm(np)=0. _d 0 |
478 |
chl2c(np)=0. _d 0 |
479 |
#ifdef DYNAMIC_CHL |
480 |
acclim(np)=0. _d 0 |
481 |
psinkChl(np)=0. _d 0 |
482 |
#endif |
483 |
enddo |
484 |
#endif |
485 |
|
486 |
|
487 |
c set sum totals to zero |
488 |
totphy_pop = 0. _d 0 |
489 |
totphy_dop = 0. _d 0 |
490 |
totphy_don = 0. _d 0 |
491 |
totphy_pon = 0. _d 0 |
492 |
totphy_dofe = 0. _d 0 |
493 |
totphy_pofe = 0. _d 0 |
494 |
totphy_posi = 0. _d 0 |
495 |
|
496 |
totzoo_dop = 0. _d 0 |
497 |
totzoo_pop = 0. _d 0 |
498 |
totzoo_don = 0. _d 0 |
499 |
totzoo_pon = 0. _d 0 |
500 |
totzoo_dofe = 0. _d 0 |
501 |
totzoo_pofe = 0. _d 0 |
502 |
totzoo_posi = 0. _d 0 |
503 |
|
504 |
consumpPO4 = 0.0 _d 0 |
505 |
consumpNO3 = 0.0 _d 0 |
506 |
consumpNO2 = 0.0 _d 0 |
507 |
consumpNH4 = 0.0 _d 0 |
508 |
consumpFeT = 0.0 _d 0 |
509 |
consumpSi = 0.0 _d 0 |
510 |
|
511 |
#ifdef ALLOW_CARBON |
512 |
totphy_doc = 0. _d 0 |
513 |
totphy_poc = 0. _d 0 |
514 |
totphy_pic = 0. _d 0 |
515 |
totzoo_doc = 0. _d 0 |
516 |
totzoo_poc = 0. _d 0 |
517 |
totzoo_pic = 0. _d 0 |
518 |
consumpDIC = 0.0 _d 0 |
519 |
consumpDIC_PIC = 0.0 _d 0 |
520 |
#endif |
521 |
|
522 |
c zeros for diagnostics |
523 |
PP=0. _d 0 |
524 |
Nfix=0. _d 0 |
525 |
denit=0. _d 0 |
526 |
Chl=0. _d 0 |
527 |
|
528 |
c set up phtyoplankton array to be used for grazing and mortality |
529 |
c set up other variable used more than once to zero |
530 |
do np = 1, npmax |
531 |
dummy = phyto(np)-phymin |
532 |
phytomin(np)=max(dummy,0. _d 0) |
533 |
NH4limit(np)=0. _d 0 |
534 |
NO2limit(np)=0. _d 0 |
535 |
NO3limit(np)=0. _d 0 |
536 |
#ifdef ALLOW_DIAZ |
537 |
#ifdef DAR_DIAG_NFIXP |
538 |
NfixPlocal(np)=0. _d 0 |
539 |
#endif |
540 |
#endif |
541 |
enddo |
542 |
|
543 |
|
544 |
#ifdef ALLOW_MUTANTS |
545 |
c SWD if parent population is zero (ie. negative) treat all mutants |
546 |
c as zeros too |
547 |
if(runtim .gt. threeyr) then |
548 |
if(numtax .gt. 1)then |
549 |
do np=1,npro |
550 |
if(mod(np,numtax).eq. 1. _d 0)then |
551 |
nsisone = np |
552 |
nsistwo = np+1 |
553 |
nsisthree = np+2 |
554 |
nsisfour = np+3 |
555 |
|
556 |
if (phyto(nsisone).le.0. _d 0) then |
557 |
if (numtax.gt.1) phyto(nsistwo)=0. _d 0 |
558 |
if (numtax.gt.2) phyto(nsisthree)=0. _d 0 |
559 |
if (numtax.gt.3) phyto(nsisfour)=0. _d 0 |
560 |
endif |
561 |
endif |
562 |
enddo |
563 |
endif |
564 |
endif |
565 |
ccccccccccccccccccccccccccccccc |
566 |
#endif |
567 |
|
568 |
|
569 |
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
570 |
call MONOD_TEMPFUNC(Tlocal,phytoTempFunction, |
571 |
& zooTempFunction, reminTempFunction, myThid) |
572 |
if (debug.eq.1) print*,'phytoTempFunction', |
573 |
& phytoTempFunction, Tlocal |
574 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
575 |
|
576 |
c ******************** GROWTH OF PHYTO **************************** |
577 |
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
578 |
#ifndef GEIDER |
579 |
c ANNA also if not wavebands |
580 |
#ifndef WAVEBANDS |
581 |
c Determine phytoplantkon light limitation: will affect growth rate |
582 |
c using Platt-like equations with inhibition |
583 |
do np = 1, npmax |
584 |
if (PARlocal.gt.1. _d 0) then |
585 |
kpar=ksatPAR(np)/10. _d 0; |
586 |
kinh=kinhib(np)/1000. _d 0; |
587 |
ilimit(np)=(1.0 _d 0 - EXP(-PARlocal*kpar)) |
588 |
& *(EXP(-PARlocal*kinh)) / |
589 |
& ( kpar/(kpar+kinh)*EXP(kinh/kpar*LOG(kinh/(kpar+kinh))) ) |
590 |
ilimit(np)=min(ilimit(np),1. _d 0) |
591 |
else |
592 |
ilimit(np)=0. _d 0 |
593 |
endif |
594 |
enddo |
595 |
if (debug.eq.1) print*,'ilimit',ilimit, PARlocal |
596 |
#endif |
597 |
#endif |
598 |
c ANNA endif |
599 |
|
600 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
601 |
c Determine phytoplankton nutrient limitation as mimimum of |
602 |
c P,N,Si,Fe. However N can be utilized in several forms, so |
603 |
c also determine which is used |
604 |
do np=1, npmax |
605 |
limit(np) = 1.0 _d 0 |
606 |
c P limitation |
607 |
if (ksatPO4(np).gt.0. _d 0) then |
608 |
dummy = PO4local/(PO4local+ksatPO4(np)) |
609 |
if (dummy .lt. limit(np)) limit(np) = dummy |
610 |
endif |
611 |
c Fe limitation |
612 |
if (ksatFeT(np).gt.0. _d 0) then |
613 |
dummy = FeTlocal/(FeTlocal+ksatFeT(np)) |
614 |
if (dummy .lt. limit(np))limit(np) = dummy |
615 |
endif |
616 |
c Si limiation |
617 |
if (R_SiP(np) .ne. 0. _d 0.and.ksatSi(np).gt.0. _d 0) then |
618 |
dummy = Silocal/(Silocal+ksatSi(np)) |
619 |
if (dummy .lt. limit(np))limit(np) = dummy |
620 |
endif |
621 |
|
622 |
c N limitation [jbmodif] |
623 |
c nsource: genetic preference for {1:NH4&NO2 2:NH4 3:ALL Sources} |
624 |
c Nsourcelimit marker for which nsource will be consumed {1:NO3 2:NO2 3:NH4} |
625 |
c (Note: very different to way 1-D model does this) |
626 |
if(diazotroph(np) .ne. 1.0 _d 0)then |
627 |
|
628 |
c NH4, all nsource |
629 |
if (ksatNH4(np).gt.0. _d 0) then |
630 |
NH4limit(np) = NH4local/(NH4local+ksatNH4(np)) |
631 |
endif |
632 |
|
633 |
#ifdef OLD_NSCHEME |
634 |
if (ksatNO2(np).gt.0. _d 0) then |
635 |
c NO2, if nsource is 1 or 3 |
636 |
NO2limit(np) = NO2local/(NO2local+ksatNO2(np))* |
637 |
& EXP(-sig1*NH4local) |
638 |
NO2limcheck = NO2local/(NO2local+ksatNO2(np)) |
639 |
endif |
640 |
c NO3, if nsource is 3 |
641 |
if (ksatNO3(np).gt.0. _d 0) then |
642 |
NO3limit(np) = NO3local/(NO3local+ksatNO3(np))* |
643 |
& EXP(-sig2*NH4local - sig3*NO2local) |
644 |
NO3limcheck = NO3local/(NO3local+ksatNO3(np)) |
645 |
endif |
646 |
#else |
647 |
c [jbmodif] |
648 |
c NO2, if nsource is 1 or 3 |
649 |
if (ksatNO2(np).gt.0. _d 0 .and. nsource(np).ne.2) then |
650 |
if (N2only.eq.1 .and. nsource(np).eq.1) then |
651 |
c if (nsource(np).eq.1) then |
652 |
NO2limit(np) = NO2local/(NO2local+ksatNO2(np)) |
653 |
& *EXP(-sig1*NH4local) |
654 |
NO2limcheck = NO2local/(NO2local+ksatNO2(np)) |
655 |
else |
656 |
if (ksatNO3(np).gt.0. _d 0) then |
657 |
NO2limit(np)=NO2local/(NO3local+NO2local+ksatNO3(np)) |
658 |
& *EXP(-sig1*NH4local) |
659 |
NO2limcheck=NO2local/(NO3local+NO2local+ksatNO3(np)) |
660 |
endif |
661 |
endif |
662 |
endif |
663 |
c NO3, if nsource is 3 |
664 |
if (ksatNO3(np).gt.0. _d 0 .and. nsource(np).eq.3) then |
665 |
NO3limit(np)=NO3local/(NO3local+NO2local+ksatNO3(np)) |
666 |
& *EXP(-sig1*NH4local) |
667 |
NO3limcheck=NO3local/(NO3local+NO2local+ksatNO3(np)) |
668 |
endif |
669 |
|
670 |
#endif |
671 |
|
672 |
if (nsource(np).eq.2) then |
673 |
NO2limit(np) = 0. _d 0 |
674 |
NO3limit(np) = 0. _d 0 |
675 |
NO2limcheck = 0. _d 0 |
676 |
NO3limcheck = 0. _d 0 |
677 |
endif |
678 |
if (nsource(np).eq.1) then |
679 |
NO3limit(np) = 0. _d 0 |
680 |
NO3limcheck = 0. _d 0 |
681 |
endif |
682 |
if (nsource(np).eq.3) then |
683 |
c don't do anything |
684 |
endif |
685 |
|
686 |
Ndummy = NO3limit(np)+NO2limit(np)+NH4limit(np) |
687 |
c |
688 |
c make sure no Nlim disadvantage; |
689 |
c check that limit doesn't decrease at high NH4 levels |
690 |
check_nlim=.FALSE. |
691 |
if (check_nlim) then |
692 |
Ndummy1=NO3limcheck+NO2limcheck |
693 |
if (Ndummy.gt.0. _d 0.and.Ndummy.lt.Ndummy1) then |
694 |
c print*,'QQ N limit WARNING',Ndummy, Ndummy1, |
695 |
c & NO3local,NO2local,NH4local |
696 |
Ndiff=Ndummy1-NH4limit(np) |
697 |
NO2limit(np)=Ndiff * |
698 |
& NO2limit(np)/(NO2limit(np)+NO3limit(np)) |
699 |
NO3limit(np)=Ndiff * |
700 |
& NO3limit(np)/(NO2limit(np)+NO3limit(np)) |
701 |
Ndummy = NO3limit(np)+NO2limit(np)+NH4limit(np) |
702 |
endif |
703 |
endif |
704 |
|
705 |
if (Ndummy.gt.1. _d 0) then |
706 |
NO3limit(np) = NO3limit(np)/Ndummy |
707 |
NO2limit(np) = NO2limit(np)/Ndummy |
708 |
NH4limit(np) = NH4limit(np)/Ndummy |
709 |
endif |
710 |
Nlimit(np)=NO3limit(np)+NO2limit(np)+NH4limit(np) |
711 |
if (Nlimit(np).gt.1.01 _d 0) then |
712 |
print*,'QQ Nlimit', Nlimit(np), NO3limit(np), |
713 |
& NO2limit(np), NH4limit(np) |
714 |
endif |
715 |
if (Nlimit(np).le.0. _d 0) then |
716 |
c if (np.eq.1) then |
717 |
c print*,'QQ Nlimit', Nlimit(np), NO3limit(np), |
718 |
c & NO2limit(np), NH4limit(np) |
719 |
c print*,'QQ limit',limit(np), np |
720 |
c endif |
721 |
Nlimit(np)=0. _d 0 !1 _d -10 |
722 |
endif |
723 |
|
724 |
#ifdef OLD_NSCHEME |
725 |
c lower growth for higher NO3 consumption at higher light |
726 |
if (Nlimit(np).le.0. _d 0) then |
727 |
ngrow(np)=1. _d 0 |
728 |
else |
729 |
if (parlocal.gt.ilight) then |
730 |
ngrow(np)=ngrowfac+(1. _d 0-ngrowfac)* |
731 |
& (NH4limit(np)+NO2limit(np))/Nlimit(np) |
732 |
else |
733 |
ngrow(np)=1. _d 0 |
734 |
endif |
735 |
ngrow(np)=min(ngrow(np),1. _d 0) |
736 |
endif |
737 |
#else |
738 |
c disadvantage of oxidized inorganic N |
739 |
c for now, ignore - a first attempt is included below |
740 |
ngrow(np) = 1.0 _d 0 |
741 |
|
742 |
cc lower growth for higher NO3 consumption at higher light |
743 |
c one possible way of counting cost of reducing NOX |
744 |
if (NOreducost .eq. 1)then |
745 |
if (Nlimit(np).le.0. _d 0) then |
746 |
ngrow(np)=1. _d 0 |
747 |
else |
748 |
ngrow(np)= (10. _d 0*4. _d 0 +2. _d 0) / |
749 |
& (10. _d 0*4. _d 0 +2. _d 0*NH4limit(np)/Nlimit(np) |
750 |
& +8. _d 0*NO2limit(np)/Nlimit(np) |
751 |
& +10. _d 0*NO3limit(np)/Nlimit(np)) |
752 |
ngrow(np)=min(ngrow(np),1. _d 0) |
753 |
endif |
754 |
endif |
755 |
c |
756 |
c might consider other costs, too |
757 |
c if (NOironcost .eq. 1)then |
758 |
c |
759 |
c endif |
760 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
761 |
#endif |
762 |
|
763 |
c Now Check Against General Nutrient Limiting Tendency |
764 |
if (ksatNH4(np).gt.0. _d 0.or.ksatNO2(np).gt.0. _d 0 |
765 |
& .or.ksatNO3(np).gt.0. _d 0) then |
766 |
if(Nlimit(np) .lt. limit(np)) limit(np) = Nlimit(np) |
767 |
endif |
768 |
else |
769 |
ngrow(np)=1. _d 0 |
770 |
Nlimit(np)=1. _d 0 |
771 |
NO3limit(np)=0. _d 0 |
772 |
NO2limit(np)=0. _d 0 |
773 |
NH4limit(np)=0. _d 0 |
774 |
endif ! diaz |
775 |
limit(np)=min(limit(np),1. _d 0) |
776 |
enddo !np |
777 |
if (debug.eq.1) print*,'nut limit', |
778 |
& limit, PO4local, FeTlocal, Silocal |
779 |
if (debug.eq.1) print*,'Nlimit', |
780 |
& Nlimit |
781 |
if (debug.eq.1) print*,'NH4limit', |
782 |
& NH4limit, NH4local |
783 |
if (debug.eq.1) print*,'NO2limit', |
784 |
& NO2limit, NO2local |
785 |
if (debug.eq.1) print*,'NO3limit', |
786 |
& NO3limit, NO3local |
787 |
if (debug.eq.1) print*,'ngrow', |
788 |
& ngrow |
789 |
|
790 |
|
791 |
#ifdef GEIDER |
792 |
|
793 |
#ifdef WAVEBANDS |
794 |
c ANNA if wavebands then uses spectral alphachl derived from spectral alpha * I |
795 |
c so first get value for alphachl_nl * PARwlocal |
796 |
c value will depend on matchup between spectra of alphachl_nl (ie. aphy_chl) and PARwlocal |
797 |
c integrate alpha*PAR over wavebands |
798 |
do np = 1,npmax |
799 |
alpha_I(np) = 0 _d 0 |
800 |
do nl = 1,tlam |
801 |
alpha_I(np) = alpha_I(np) + alphachl_nl(np,nl)*PARwlocal(nl) |
802 |
end do |
803 |
end do |
804 |
c Geider growth (and chl2c) now depends on this (sinlge) value of alpha_chl * I |
805 |
|
806 |
c alpha_mean now precomputed in darwin_init_vari |
807 |
#else |
808 |
c ANNA if not wavebands uses alphachl derived from mQyield * aphy_chl_ave |
809 |
c for use with generic geider equation need to use alpha_I (ie. alphachl*PARlocal) |
810 |
do np = 1, npmax |
811 |
alpha_I(np)=alphachl(np)*PARlocal |
812 |
enddo |
813 |
c ANNA endif |
814 |
#endif |
815 |
|
816 |
do np = 1, npmax |
817 |
pcm(np)=pcmax(np)*limit(np)*phytoTempFunction(np) |
818 |
#ifdef DYNAMIC_CHL |
819 |
if (phyto(np).gt. 0. _d 0) then |
820 |
chl2c(np)=phychl(np)/(phyto(np)*R_PC(np)) |
821 |
else |
822 |
chl2c(np)= 0. _d 0 |
823 |
endif |
824 |
#endif |
825 |
if (pcm(np).gt.0.d0) then |
826 |
#ifndef DYNAMIC_CHL |
827 |
c assumes balanced growth, eq A14 in Geider et al 1997 |
828 |
chl2c(np)=chl2cmax(np)/ |
829 |
& (1+(chl2cmax(np)*alpha_I(np))/ |
830 |
& (2*pcm(np))) |
831 |
chl2c(np)=min(chl2c(np),chl2cmax(np)) |
832 |
chl2c(np)=max(chl2c(np),chl2cmin(np)) |
833 |
#endif |
834 |
if (PARlocal.gt.1. _d -1) then |
835 |
c Eq A1 in Geider et al 1997 |
836 |
pcarbon(np)=pcm(np)*( 1 - |
837 |
& exp((-alpha_I(np)*chl2c(np))/(pcm(np))) ) |
838 |
c for inhibition |
839 |
if (inhibcoef_geid(np).gt.0. _d 0) then |
840 |
#ifdef WAVEBANDS |
841 |
Ek = pcm(np)/(chl2c(np)*alpha_mean(np)) |
842 |
#else |
843 |
Ek = pcm(np)/(chl2c(np)*alphachl(np)) |
844 |
#endif |
845 |
EkoverE = Ek / PARlocal |
846 |
if (PARlocal .ge. Ek) then !photoinhibition begins |
847 |
pcarbon(np) = pcarbon(np)*(EkoverE*inhibcoef_geid(np)) |
848 |
endif |
849 |
endif |
850 |
c end inhib |
851 |
if (pcarbon(np).lt. 0. _d 0) |
852 |
& print*,'QQ ERROR pc=',np,pcarbon(np) |
853 |
if (pcm(np).gt.0. _d 0) then |
854 |
ilimit(np)=pcarbon(np)/pcm(np) |
855 |
else |
856 |
ilimit(np)= 0. _d 0 |
857 |
endif |
858 |
else |
859 |
ilimit(np)=0. _d 0 |
860 |
pcarbon(np)=0. _d 0 |
861 |
endif |
862 |
else ! if pcm 0 |
863 |
pcm(np)=0.d0 |
864 |
#ifndef DYNAMIC_CHL |
865 |
chl2c(np)=chl2cmin(np) |
866 |
#endif |
867 |
pcarbon(np)=0.d0 |
868 |
ilimit(np)=0.d0 |
869 |
endif |
870 |
#ifdef DYNAMIC_CHL |
871 |
c Chl:C acclimated to current conditions |
872 |
c (eq A14 in Geider et al 1997) |
873 |
acclim(np)=chl2cmax(np)/ |
874 |
& (1+(chl2cmax(np)*alpha_I(np))/ |
875 |
& (2*pcm(np))) |
876 |
acclim(np)=min(acclim(np),chl2cmax(np)) |
877 |
c acclim(np)=max(acclim(np),chl2cmin(np)) |
878 |
#else |
879 |
phychl(np)=phyto(np)*R_PC(np)*chl2c(np) |
880 |
#endif |
881 |
enddo |
882 |
if (debug.eq.14) print*,'ilimit',ilimit, PARlocal |
883 |
if (debug.eq.14) print*,'chl:c',chl2c |
884 |
if (debug.eq.14) print*,'chl',phychl |
885 |
#ifdef DYNAMIC_CHL |
886 |
if (debug.eq.14) print*,'acclim',acclim |
887 |
#endif |
888 |
#endif /* GEIDER */ |
889 |
|
890 |
#ifdef DAR_DIAG_CHL |
891 |
c diagnostic version of the above that does not feed back to growth |
892 |
ChlGeiderlocal = 0. _d 0 |
893 |
do np = 1, npmax |
894 |
tmppcm = mu(np)*limit(np)*phytoTempFunction(np) |
895 |
if (tmppcm.gt.0.d0) then |
896 |
tmpchl2c = Geider_chl2cmax(np)/ |
897 |
& (1+(Geider_chl2cmax(np)*Geider_alphachl(np)*PARdaylocal)/ |
898 |
& (2*tmppcm)) |
899 |
tmpchl2c = min(tmpchl2c, Geider_chl2cmax(np)) |
900 |
tmpchl2c = max(tmpchl2c, Geider_chl2cmin(np)) |
901 |
else |
902 |
tmpchl2c = Geider_chl2cmin(np) |
903 |
endif |
904 |
ChlGeiderlocal = ChlGeiderlocal + phyto(np)*R_PC(np)*tmpchl2c |
905 |
enddo |
906 |
C Chl a la Doney |
907 |
ChlDoneylocal = 0. _d 0 |
908 |
do np = 1, npmax |
909 |
tmpchl2c = (Doney_Bmax - (Doney_Bmax-Doney_Bmin)* |
910 |
& MIN(1. _d 0,PARdaylocal/Doney_PARstar)) |
911 |
& *limit(np) |
912 |
ChlDoneylocal = ChlDoneylocal + |
913 |
& tmpchl2c*R_PC(np)*phyto(np) |
914 |
enddo |
915 |
C Chl a la Cloern |
916 |
ChlCloernlocal = 0. _d 0 |
917 |
do np = 1, npmax |
918 |
tmpchl2c = Cloern_chl2cmin + |
919 |
& Cloern_A*exp(Cloern_B*Tlocal) |
920 |
& *exp(-Cloern_C*PARdaylocal) |
921 |
& *limit(np) |
922 |
ChlCloernlocal = ChlCloernlocal + |
923 |
& tmpchl2c*R_PC(np)*phyto(np) |
924 |
enddo |
925 |
#endif /* DAR_DIAG_CHL */ |
926 |
|
927 |
|
928 |
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
929 |
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
930 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
931 |
c ******************* END GROWTH PHYTO ******************************* |
932 |
|
933 |
|
934 |
#ifdef OLD_GRAZE |
935 |
c------------------------------------------------------------------------ |
936 |
c GRAZING sum contributions of all zooplankton |
937 |
do np=1,npmax |
938 |
grazing_phyto(np) = 0.0 _d 0 |
939 |
do nz = 1, nzmax |
940 |
grazing_phyto(np) = grazing_phyto(np) |
941 |
& + graze(np,nz)*zooP(nz)*zooTempFunction(nz) |
942 |
enddo |
943 |
enddo |
944 |
if (debug.eq.2) print*,'grazing_phyto',grazing_phyto |
945 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
946 |
#else |
947 |
c------------------------------------------------------------------------ |
948 |
c sum all palatability*phyto and find phyto specific grazing rate |
949 |
do nz=1,nzmax |
950 |
allphyto(nz)=0. _d 0 |
951 |
do np=1,npmax |
952 |
allphyto(nz)=allphyto(nz)+palat(np,nz)*phyto(np) |
953 |
enddo |
954 |
if (allphyto(nz).le.0. _d 0) allphyto(nz)=phygrazmin |
955 |
#ifdef SER_GRAZ |
956 |
denphyto(nz)=0. _d 0 |
957 |
do np=1,npmax |
958 |
denphyto(nz)=denphyto(nz)+ |
959 |
& (palat(np,nz)*phyto(np)/allphyto(nz))*phyto(np) |
960 |
enddo |
961 |
if (denphyto(nz).le.0. _d 0) denphyto(nz)=phygrazmin |
962 |
#endif |
963 |
do np=1,npmax |
964 |
tmpz=max(0. _d 0,(allphyto(nz)-phygrazmin) ) |
965 |
grazphy(np,nz)=grazemax(nz)* |
966 |
#ifdef SER_GRAZ |
967 |
c as in Vallina et al, 2011 |
968 |
& (((palat(np,nz)*phyto(np)/allphyto(nz))*phyto(np))/ |
969 |
& denphyto(nz)) * |
970 |
#else |
971 |
c as in Dutkiewicz et al, GBC, 2009 |
972 |
& (palat(np,nz)*phyto(np)/allphyto(nz))* |
973 |
#endif |
974 |
& ( tmpz**hollexp/ |
975 |
& (tmpz**hollexp+kgrazesat**hollexp) ) |
976 |
enddo |
977 |
enddo |
978 |
if (debug.eq.2) print*,'allphyto',allphyto |
979 |
c if (debug.eq.2) print*,'grazephy',grazphy |
980 |
c sum over zoo for impact on phyto |
981 |
do np=1,npmax |
982 |
sumgrazphy(np)=0. _d 0 |
983 |
do nz=1,nzmax |
984 |
sumgrazphy(np)=sumgrazphy(np)+ |
985 |
& grazphy(np,nz)*zooP(nz) |
986 |
enddo |
987 |
enddo |
988 |
if (debug.eq.2) print*,'sumgrazephy',sumgrazphy |
989 |
c sum over phy for impact on zoo, and all remainder to go to POM |
990 |
do nz=1,nzmax |
991 |
sumgrazzoo(nz)=0. _d 0 |
992 |
sumgrazzooN(nz)=0. _d 0 |
993 |
sumgrazzooFe(nz)=0. _d 0 |
994 |
sumgrazzooSi(nz)=0. _d 0 |
995 |
sumgrazloss(nz)=0. _d 0 |
996 |
sumgrazlossN(nz)=0. _d 0 |
997 |
sumgrazlossFe(nz)=0. _d 0 |
998 |
sumgrazlossSi(nz)=0. _d 0 |
999 |
#ifdef ALLOW_CARBON |
1000 |
sumgrazzooC(nz)=0. _d 0 |
1001 |
sumgrazlossC(nz)=0. _d 0 |
1002 |
sumgrazlossPIC(nz)=0. _d 0 |
1003 |
#endif |
1004 |
do np=1,npmax |
1005 |
sumgrazzoo(nz)=sumgrazzoo(nz)+ |
1006 |
& asseff(np,nz)*grazphy(np,nz)*zooP(nz) |
1007 |
sumgrazloss(nz)=sumgrazloss(nz)+ |
1008 |
& (1. _d 0-asseff(np,nz))*grazphy(np,nz)*zooP(nz) |
1009 |
sumgrazzooN(nz)=sumgrazzooN(nz)+ |
1010 |
& asseff(np,nz)*grazphy(np,nz)*zooP(nz)*R_NP(np) |
1011 |
sumgrazlossN(nz)=sumgrazlossN(nz)+ |
1012 |
& (1. _d 0-asseff(np,nz))*grazphy(np,nz)* |
1013 |
& zooP(nz)*R_NP(np) |
1014 |
sumgrazzooFe(nz)=sumgrazzooFe(nz)+ |
1015 |
& asseff(np,nz)*grazphy(np,nz)* |
1016 |
& zooP(nz)*R_FeP(np) |
1017 |
sumgrazlossFe(nz)=sumgrazlossFe(nz)+ |
1018 |
& (1. _d 0-asseff(np,nz))*grazphy(np,nz)* |
1019 |
& zooP(nz)*R_FeP(np) |
1020 |
sumgrazzooSi(nz)=sumgrazzooSi(nz)+ |
1021 |
& asseff(np,nz)*grazphy(np,nz)* |
1022 |
& zooP(nz)*R_SiP(np) |
1023 |
sumgrazlossSi(nz)=sumgrazlossSi(nz)+ |
1024 |
& (1. _d 0-asseff(np,nz))*grazphy(np,nz)* |
1025 |
& zooP(nz)*R_SiP(np) |
1026 |
#ifdef ALLOW_CARBON |
1027 |
sumgrazzooC(nz)=sumgrazzooC(nz)+ |
1028 |
& asseff(np,nz)*grazphy(np,nz)*zooP(nz)*R_PC(np) |
1029 |
sumgrazlossC(nz)=sumgrazlossC(nz)+ |
1030 |
& (1. _d 0-asseff(np,nz))*grazphy(np,nz)* |
1031 |
& zooP(nz)*R_PC(np) |
1032 |
sumgrazlossPIC(nz)=sumgrazlossPIC(nz)+ |
1033 |
& (1. _d 0)*grazphy(np,nz)* |
1034 |
& zooP(nz)*R_PC(np)*R_PICPOC(np) |
1035 |
#endif |
1036 |
enddo |
1037 |
enddo |
1038 |
if (debug.eq.2) print*,'sumgrazzoo',sumgrazzoo |
1039 |
if (debug.eq.2) print*,'sumgrazloss',sumgrazloss |
1040 |
if (debug.eq.2) print*,'sumgrazzooN',sumgrazzooN |
1041 |
if (debug.eq.2) print*,'sumgrazlossN',sumgrazlossN |
1042 |
if (debug.eq.2) print*,'sumgrazzooFe',sumgrazzooFe |
1043 |
if (debug.eq.2) print*,'sumgrazlossFe',sumgrazlossFe |
1044 |
if (debug.eq.2) print*,'sumgrazzooSi',sumgrazzooSi |
1045 |
if (debug.eq.2) print*,'sumgrazlossSi',sumgrazlossSi |
1046 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
1047 |
#endif |
1048 |
|
1049 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
1050 |
c accumulate particulate and dissolved detritus |
1051 |
do np=1, npmax |
1052 |
totphy_pop=totphy_pop+ |
1053 |
& ExportFracP(np)*mortphy(np)*phytomin(np) |
1054 |
totphy_dop=totphy_dop+ |
1055 |
& (1. _d 0-ExportFracP(np))*mortphy(np)*phytomin(np) |
1056 |
totphy_pon=totphy_pon+ R_NP(np)* |
1057 |
& ExportFracP(np)*mortphy(np)*phytomin(np) |
1058 |
totphy_don=totphy_don+ R_NP(np)* |
1059 |
& (1. _d 0-ExportFracP(np))*mortphy(np)*phytomin(np) |
1060 |
totphy_pofe=totphy_pofe+ R_FeP(np)* |
1061 |
& ExportFracP(np)*mortphy(np)*phytomin(np) |
1062 |
totphy_dofe=totphy_dofe+ R_FeP(np)* |
1063 |
& (1. _d 0-ExportFracP(np))*mortphy(np)*phytomin(np) |
1064 |
totphy_posi=totphy_posi+ R_SiP(np)* |
1065 |
& mortphy(np)*phytomin(np) |
1066 |
#ifdef ALLOW_CARBON |
1067 |
totphy_poc=totphy_poc+ R_PC(np)* |
1068 |
& ExportFracP(np)*mortphy(np)*phytomin(np) |
1069 |
totphy_doc=totphy_doc+ R_PC(np)* |
1070 |
& (1. _d 0-ExportFracP(np))*mortphy(np)*phytomin(np) |
1071 |
totphy_pic=totphy_pic+ R_PC(np)*R_PICPOC(np)* |
1072 |
& mortphy(np)*phytomin(np) |
1073 |
#endif |
1074 |
enddo |
1075 |
if (debug.eq.3) print*,'tot_phy_pop',totphy_pop |
1076 |
if (debug.eq.3) print*,'tot_phy_dop',totphy_dop |
1077 |
if (debug.eq.3) print*,'tot_phy_pon',totphy_pon |
1078 |
if (debug.eq.3) print*,'tot_phy_don',totphy_don |
1079 |
if (debug.eq.3) print*,'tot_phy_pofe',totphy_pofe |
1080 |
if (debug.eq.3) print*,'tot_phy_dofe',totphy_dofe |
1081 |
if (debug.eq.3) print*,'tot_phy_posi',totphy_posi |
1082 |
|
1083 |
|
1084 |
c cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
1085 |
|
1086 |
|
1087 |
#ifdef OLD_GRAZE |
1088 |
c ****************** ZOO GRAZING RATE **************************** |
1089 |
c determine zooplankton grazing rates |
1090 |
do nz = 1, nzmax |
1091 |
c grazing: sum contribution from all phytoplankton |
1092 |
grazingP(nz) = 0.0 _d 0 |
1093 |
grazingN(nz) = 0.0 _d 0 |
1094 |
grazingFe(nz) = 0.0 _d 0 |
1095 |
grazingSi(nz) = 0.0 _d 0 |
1096 |
#ifdef ALLOW_CARBON |
1097 |
grazingC(nz) = 0.0 _d 0 |
1098 |
#endif |
1099 |
do np = 1, npmax |
1100 |
facpz = (phytomin(np)/(phytomin(np) + kgrazesat)) |
1101 |
& *zooTempFunction(nz) |
1102 |
grazingP(nz) = grazingP(nz) + |
1103 |
& graze(np,nz)*facpz |
1104 |
grazingN(nz) = grazingN(nz) + |
1105 |
& graze(np,nz)*R_NP(np)*facpz |
1106 |
grazingFe(nz) = grazingFe(nz) + |
1107 |
& graze(np,nz)*R_FeP(np)*facpz |
1108 |
grazingSi(nz) = grazingSi(nz) + |
1109 |
& graze(np,nz)*R_SiP(np)*facpz |
1110 |
#ifdef ALLOW_CARBON |
1111 |
grazingC(nz) = grazingC(nz) + |
1112 |
& graze(np,nz)*R_PC(np)*facpz |
1113 |
#endif |
1114 |
enddo |
1115 |
enddo |
1116 |
if (debug.eq.4) print*,'grazingP', grazingP |
1117 |
if (debug.eq.4) print*,'grazingN', grazingN |
1118 |
if (debug.eq.4) print*,'grazingFe', grazingFe |
1119 |
if (debug.eq.4) print*,'grazingSi', grazingSi |
1120 |
c ************* END ZOO GRAZING ********************************* |
1121 |
#endif |
1122 |
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
1123 |
c accumulate particulate and dissolved detritus |
1124 |
do nz=1, nzmax |
1125 |
totzoo_pop=totzoo_pop+ |
1126 |
& ExportFracZ(nz)*( mortzoo(nz)*zooP(nz) |
1127 |
& + mortzoo2(nz)*zooP(nz)**2 ) |
1128 |
totzoo_dop=totzoo_dop+ |
1129 |
& (1. _d 0-ExportFracZ(nz))*( |
1130 |
& mortzoo(nz)*zooP(nz)+ |
1131 |
& mortzoo2(nz)*zooP(nz)**2 ) |
1132 |
totzoo_pon=totzoo_pon+ |
1133 |
& ExportFracZ(nz)*( mortzoo(nz)*zooN(nz) |
1134 |
& + mortzoo2(nz)*zooN(nz)**2 ) |
1135 |
totzoo_don=totzoo_don+ |
1136 |
& (1. _d 0-ExportFracZ(nz))*( |
1137 |
& mortzoo(nz)*zooN(nz)+ |
1138 |
& mortzoo2(nz)*zooN(nz)**2 ) |
1139 |
totzoo_pofe=totzoo_pofe+ |
1140 |
& ExportFracZ(nz)*( mortzoo(nz)*zooFe(nz) |
1141 |
& + mortzoo2(nz)*zooFe(nz)**2 ) |
1142 |
totzoo_dofe=totzoo_dofe+ |
1143 |
& (1. _d 0-ExportFracZ(nz))*( |
1144 |
& mortzoo(nz)*zooFe(nz) + |
1145 |
& mortzoo2(nz)*zooFe(nz)**2 ) |
1146 |
totzoo_posi=totzoo_posi+ |
1147 |
& ( mortzoo(nz)*zooSi(nz)+ |
1148 |
& mortzoo2(nz)*zooSi(nz)**2 ) |
1149 |
#ifdef ALLOW_CARBON |
1150 |
totzoo_poc=totzoo_poc+ |
1151 |
& ExportFracZ(nz)*( mortzoo(nz)*zooClocal(nz) |
1152 |
& + mortzoo2(nz)*zooClocal(nz)**2 ) |
1153 |
totzoo_doc=totzoo_doc+ |
1154 |
& (1. _d 0-ExportFracZ(nz))*( mortzoo(nz)*zooClocal(nz) |
1155 |
& + mortzoo2(nz)*zooClocal(nz)**2 ) |
1156 |
#endif |
1157 |
enddo |
1158 |
|
1159 |
#ifndef OLD_GRAZE |
1160 |
do nz=1, nzmax |
1161 |
totzoo_pop=totzoo_pop+ |
1162 |
& ExportFracGraz(nz)*sumgrazloss(nz) |
1163 |
totzoo_dop=totzoo_dop+ |
1164 |
& (1. _d 0-ExportFracGraz(nz))*sumgrazloss(nz) |
1165 |
totzoo_pon=totzoo_pon+ |
1166 |
& ExportFracGraz(nz)*sumgrazlossN(nz) |
1167 |
totzoo_don=totzoo_don+ |
1168 |
& (1. _d 0-ExportFracGraz(nz))*sumgrazlossN(nz) |
1169 |
totzoo_pofe=totzoo_pofe+ |
1170 |
& ExportFracGraz(nz)*sumgrazlossFe(nz) |
1171 |
totzoo_dofe=totzoo_dofe+ |
1172 |
& (1. _d 0-ExportFracGraz(nz))*sumgrazlossFe(nz) |
1173 |
totzoo_posi=totzoo_posi+ |
1174 |
& sumgrazlossSi(nz) |
1175 |
#ifdef ALLOW_CARBON |
1176 |
totzoo_poc=totzoo_poc+ |
1177 |
& ExportFracGraz(nz)*sumgrazlossC(nz) |
1178 |
totzoo_doc=totzoo_doc+ |
1179 |
& (1. _d 0-ExportFracGraz(nz))*sumgrazlossC(nz) |
1180 |
totzoo_pic=totzoo_pic+ |
1181 |
& sumgrazlossPIC(nz) |
1182 |
#endif |
1183 |
enddo |
1184 |
#endif |
1185 |
if (debug.eq.5) print*,'totzoo_pop',totzoo_pop |
1186 |
if (debug.eq.5) print*,'totzoo_dop',totzoo_dop |
1187 |
if (debug.eq.5) print*,'totzoo_pon',totzoo_pon |
1188 |
if (debug.eq.5) print*,'totzoo_don',totzoo_don |
1189 |
if (debug.eq.5) print*,'totzoo_pofe',totzoo_pofe |
1190 |
if (debug.eq.5) print*,'totzoo_dofe',totzoo_dofe |
1191 |
if (debug.eq.5) print*,'totzoo_posi',totzoo_posi |
1192 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
1193 |
|
1194 |
c ********************* NUTRIENT UPTAKE ******************************* |
1195 |
c determine nutrient uptake |
1196 |
c consumption - sum of phytoplankton contributions |
1197 |
do np = 1, npmax |
1198 |
c phospate uptake by each phytoplankton |
1199 |
#ifndef GEIDER |
1200 |
grow(np)=ngrow(np)*mu(np)*limit(np)*ilimit(np)* |
1201 |
& phytoTempFunction(np) |
1202 |
#endif |
1203 |
#ifdef GEIDER |
1204 |
grow(np)=ngrow(np)*pcarbon(np) |
1205 |
if (debug.eq.1) print*,'grow', grow(np), pcarbon(np) |
1206 |
if (debug.eq.14) print*,'grow', grow(np), pcarbon(np) |
1207 |
#ifdef DYNAMIC_CHL |
1208 |
c geider 97 for dChl/dt (source part) Eq. 3 |
1209 |
if (acclim(np).gt. 0. _d 0) then |
1210 |
rhochl(np)=chl2cmax(np) * |
1211 |
& (grow(np)/(alpha_I(np)*acclim(np)) ) |
1212 |
else |
1213 |
rhochl(np)= 0. _d 0 |
1214 |
endif |
1215 |
if (debug.eq.14) print*,'rhochl',rhochl(np) |
1216 |
#endif |
1217 |
#endif |
1218 |
PspecificPO4(np) = grow(np)*phyto(np) |
1219 |
c write(6,*)'np =',np, ' PspecificPO4 =' |
1220 |
c & ,PspecificPO4(np) |
1221 |
consumpPO4 = consumpPO4 + PspecificPO4(np) |
1222 |
consumpFeT = consumpFeT + PspecificPO4(np)*R_FeP(np) |
1223 |
consumpSi = consumpSi + PspecificPO4(np)*R_SiP(np) |
1224 |
cswd should have O2prod as function of np? |
1225 |
c New Way of doing Nitrogen Consumption ....................... |
1226 |
if(diazotroph(np) .ne. 1.0 _d 0)then |
1227 |
if (Nlimit(np).le.0. _d 0) then |
1228 |
consumpNO3 = consumpNO3 |
1229 |
consumpNO2 = consumpNO2 |
1230 |
consumpNH4 = consumpNH4 |
1231 |
else |
1232 |
consumpNO3 = consumpNO3 + |
1233 |
& NO3limit(np)/Nlimit(np)*PspecificPO4(np)*R_NP(np) |
1234 |
consumpNO2 = consumpNO2 + |
1235 |
& NO2limit(np)/Nlimit(np)* PspecificPO4(np)*R_NP(np) |
1236 |
consumpNH4 = consumpNH4 + |
1237 |
& NH4limit(np)/Nlimit(np)*PspecificPO4(np)*R_NP(np) |
1238 |
endif |
1239 |
else |
1240 |
consumpNO3 = consumpNO3 |
1241 |
consumpNO2 = consumpNO2 |
1242 |
consumpNH4 = consumpNH4 |
1243 |
Nfix=Nfix+PspecificPO4(np)*R_NP(np) |
1244 |
#ifdef ALLOW_DIAZ |
1245 |
#ifdef DAR_DIAG_NFIXP |
1246 |
NfixPlocal(np)=PspecificPO4(np)*R_NP(np) |
1247 |
#endif |
1248 |
#endif |
1249 |
endif |
1250 |
#ifdef ALLOW_CARBON |
1251 |
consumpDIC = consumpDIC + PspecificPO4(np)*R_PC(np) |
1252 |
consumpDIC_PIC = consumpDIC_PIC + |
1253 |
& PspecificPO4(np)*R_PC(np)*R_PICPOC(np) |
1254 |
#endif |
1255 |
enddo |
1256 |
if (debug.eq.7) print*,'local', parlocal,tlocal,po4local, |
1257 |
& no3local, no2local,nh4local,fetlocal,silocal |
1258 |
if (debug.eq.7) print*,'grow',grow |
1259 |
if (debug.eq.6) print*,'pspecificpo4', PspecificPO4 |
1260 |
if (debug.eq.6) print*,'consumpPO4', consumpPO4 |
1261 |
if (debug.eq.6) print*,'consumpFeT', consumpFeT |
1262 |
if (debug.eq.6) print*,'consumpSi ', consumpsi |
1263 |
if (debug.eq.6) print*,'consumpNO3', consumpNO3 |
1264 |
if (debug.eq.6) print*,'consumpNO2', consumpNO2 |
1265 |
if (debug.eq.6) print*,'consumpNH4', consumpNH4 |
1266 |
c ****************** END NUTRIENT UPTAKE **************************** |
1267 |
|
1268 |
c sinking phytoplankton and POM |
1269 |
if(bottom .eq. 1.0 _d 0)then |
1270 |
psinkP = (wp_sink*POPuplocal)/(dzlocal) |
1271 |
psinkN = (wn_sink*PONuplocal)/(dzlocal) |
1272 |
psinkFe = (wfe_sink*POFeuplocal)/(dzlocal) |
1273 |
psinkSi = (wsi_sink*PSiuplocal)/(dzlocal) |
1274 |
do np=1,npmax |
1275 |
psinkPhy(np) = |
1276 |
& (wsink(np)*Phytoup(np))/(dzlocal) |
1277 |
enddo |
1278 |
#ifdef DYNAMIC_CHL |
1279 |
do np=1,npmax |
1280 |
psinkChl(np) = |
1281 |
& (wsink(np)*Chlup(np))/(dzlocal) |
1282 |
enddo |
1283 |
#endif |
1284 |
#ifdef ALLOW_CARBON |
1285 |
psinkC = (wc_sink*POCuplocal)/(dzlocal) |
1286 |
psinkPIC = (wpic_sink*PICuplocal)/(dzlocal) |
1287 |
#endif |
1288 |
else |
1289 |
psinkP = (wp_sink*(POPuplocal-POPlocal))/(dzlocal) |
1290 |
psinkN = (wn_sink*(PONuplocal-PONlocal))/(dzlocal) |
1291 |
psinkFe = (wfe_sink*(POFeuplocal-POFelocal))/(dzlocal) |
1292 |
psinkSi = (wsi_sink*(PSiuplocal-PSilocal))/(dzlocal) |
1293 |
do np=1,npmax |
1294 |
psinkPhy(np) = |
1295 |
& (wsink(np))*(Phytoup(np)-Phyto(np))/(dzlocal) |
1296 |
enddo |
1297 |
#ifdef DYNAMIC_CHL |
1298 |
do np=1,npmax |
1299 |
psinkChl(np) = |
1300 |
& (wsink(np))*(Chlup(np)-phychl(np))/(dzlocal) |
1301 |
enddo |
1302 |
#endif |
1303 |
#ifdef ALLOW_CARBON |
1304 |
psinkC = (wc_sink*(POCuplocal-POClocal))/(dzlocal) |
1305 |
psinkPIC = (wpic_sink*(PICuplocal-PIClocal))/(dzlocal) |
1306 |
#endif |
1307 |
endif |
1308 |
|
1309 |
c DOM remineralization rates |
1310 |
DOPremin = reminTempFunction * Kdop * DOPlocal |
1311 |
DONremin = reminTempFunction * Kdon * DONlocal |
1312 |
DOFeremin = reminTempFunction * KdoFe * DOFelocal |
1313 |
|
1314 |
c remineralization of sinking particulate |
1315 |
preminP = reminTempFunction * Kpremin_P*POPlocal |
1316 |
preminN = reminTempFunction * Kpremin_N*PONlocal |
1317 |
preminFe = reminTempFunction * Kpremin_Fe*POFelocal |
1318 |
preminSi = reminTempFunction * Kpremin_Si*PSilocal |
1319 |
|
1320 |
#ifdef ALLOW_CARBON |
1321 |
DOCremin = reminTempFunction * Kdoc * DOClocal |
1322 |
preminC = reminTempFunction * Kpremin_C*POClocal |
1323 |
c dissolution |
1324 |
disscPIC = Kdissc*PIClocal |
1325 |
#endif |
1326 |
|
1327 |
c chemistry |
1328 |
c NH4 -> NO2 -> NO3 by bacterial action |
1329 |
NO2prod = knita*( 1. _d 0-min(PARlocal/PAR0,1. _d 0) ) |
1330 |
& *NH4local |
1331 |
NO3prod = knitb*( 1. _d 0-min(PARlocal/PAR0,1. _d 0) ) |
1332 |
& *NO2local |
1333 |
c NO2prod = knita*NH4local |
1334 |
c NO3prod = knitb*NO2local |
1335 |
c |
1336 |
#ifdef PART_SCAV |
1337 |
scav_poc=POPlocal/1.1321 _d -4 |
1338 |
c scav rate |
1339 |
scav_part=scav_rat*scav_inter*(scav_poc**scav_exp) |
1340 |
#endif |
1341 |
c ------------------------------------------------------------------- |
1342 |
c calculate tendency terms (and some diagnostics) |
1343 |
c ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
1344 |
c phytoplankton |
1345 |
do np=1,npmax |
1346 |
dphytodt(np) = PspecificPO4(np) |
1347 |
#ifdef OLD_GRAZE |
1348 |
& - grazing_phyto(np)* |
1349 |
& (phytomin(np)/(phytomin(np) + kgrazesat)) |
1350 |
#else |
1351 |
& - sumgrazphy(np) |
1352 |
#endif |
1353 |
& - mortphy(np)*phytomin(np) |
1354 |
& + psinkphy(np) |
1355 |
#ifdef GEIDER |
1356 |
#ifdef DYNAMIC_CHL |
1357 |
dphychl(np) = acclim(np)*PspecificPO4(np)*R_PC(np) |
1358 |
c dphychl(np) = rhochl(np)*PspecificPO4(np)*R_PC(np) |
1359 |
& + acclimtimescl * |
1360 |
& (acclim(np)-chl2c(np))*phyto(np)*R_PC(np) |
1361 |
& +( |
1362 |
#ifdef OLD_GRAZE |
1363 |
& - grazing_phyto(np)* |
1364 |
& (phytomin(np)/(phytomin(np) + kgrazesat)) |
1365 |
#else |
1366 |
& - sumgrazphy(np) |
1367 |
#endif |
1368 |
& - mortphy(np)*phytomin(np)) *chl2c(np)*R_PC(np) |
1369 |
& + psinkChl(np) |
1370 |
#endif |
1371 |
Chl=Chl + phychl(np) |
1372 |
#endif |
1373 |
c %% diagnostics |
1374 |
PP = PP + PspecificPO4(np) |
1375 |
c%%% |
1376 |
#ifdef OLD_GRAZE |
1377 |
tmpr=grazing_phyto(np)* |
1378 |
& (phytomin(np)/(phytomin(np) + kgrazesat)) |
1379 |
& + mortphy(np)*phytomin(np) |
1380 |
& - psinkphy(np) |
1381 |
#else |
1382 |
tmpr=sumgrazphy(np) |
1383 |
& + mortphy(np)*phytomin(np) |
1384 |
& - psinkphy(np) |
1385 |
#endif |
1386 |
#ifdef DAR_DIAG_RSTAR |
1387 |
#ifndef GEIDER |
1388 |
tmpgrow=ngrow(np)*mu(np)*ilimit(np)* |
1389 |
& phytoTempFunction(np) |
1390 |
#endif |
1391 |
#ifdef GEIDER |
1392 |
tmpgrow=grow(np)/limit(np) |
1393 |
#endif |
1394 |
tmp1=tmpgrow*phyto(np)-tmpr |
1395 |
tmp2=tmpgrow*phyto(np)*(exp(-sig1*nh4local)+NH4limit(np)) |
1396 |
& -tmpr |
1397 |
if (tmp1.ne.0. _d 0) then |
1398 |
Rstarlocal(np)=ksatPO4(np)*tmpr/tmp1 |
1399 |
else |
1400 |
Rstarlocal(np)=-9999. _d 0 |
1401 |
endif |
1402 |
if (tmp2.ne.0. _d 0) then |
1403 |
RNstarlocal(np)=ksatNO3(np)* |
1404 |
& (tmpr-tmpgrow*NH4limit(np)*phyto(np))/tmp2 |
1405 |
else |
1406 |
RNstarlocal(np)=-9999. _d 0 |
1407 |
endif |
1408 |
#endif |
1409 |
#ifdef DAR_DIAG_GROW |
1410 |
c include temp, light, nutrients |
1411 |
c Growlocal(np)=grow(np) |
1412 |
c include temp and light, but not nutrients |
1413 |
Growlocal(np)=ngrow(np)*mu(np)*ilimit(np)* |
1414 |
& phytoTempFunction(np) |
1415 |
c include temp, but not nutrients or light |
1416 |
c Growlocal(np)=ngrow(np)*mu(np)* |
1417 |
c & phytoTempFunction(np) |
1418 |
Growsqlocal(np)=Growlocal(np)**2 |
1419 |
#endif |
1420 |
enddo |
1421 |
c end np loop |
1422 |
if (debug.eq.10) print*,'dphytodt',dphytodt |
1423 |
c |
1424 |
#ifdef OLD_GRAZE |
1425 |
c zooplankton growth by grazing |
1426 |
do nz=1,nzmax |
1427 |
c zoo in P currency |
1428 |
dzooPdt(nz) = grazingP(nz)*zooP(nz) |
1429 |
C zooplankton stoichiometry varies according to food source |
1430 |
dzooNdt(nz) = grazingN(nz)*zooP(nz) |
1431 |
dzooFedt(nz) = grazingFe(nz)*zooP(nz) |
1432 |
dzooSidt(nz) = grazingSi(nz)*zooP(nz) |
1433 |
enddo |
1434 |
#else |
1435 |
do nz=1,nzmax |
1436 |
c zoo in P currency |
1437 |
dzooPdt(nz) = sumgrazzoo(nz) |
1438 |
C zooplankton stoichiometry varies according to food source |
1439 |
dzooNdt(nz) = sumgrazzooN(nz) |
1440 |
dzooFedt(nz) = sumgrazzooFe(nz) |
1441 |
dzooSidt(nz) = sumgrazzooSi(nz) |
1442 |
enddo |
1443 |
#endif |
1444 |
if (debug.eq.10) print*,'dZooPdt',dZooPdt |
1445 |
|
1446 |
c zooplankton mortality |
1447 |
do nz=1,nzmax |
1448 |
c zoo in P currency |
1449 |
dzooPdt(nz) = dzooPdt(nz) |
1450 |
& - mortzoo(nz)*zooP(nz) |
1451 |
& - mortzoo2(nz)*zooP(nz)**2 |
1452 |
c zooplankton in other currencies |
1453 |
C zooplankton stoichiometry varies according to food source |
1454 |
dzooNdt(nz) = dzooNdt(nz) |
1455 |
& - mortzoo(nz)*zooN(nz) |
1456 |
& - mortzoo2(nz)*zooN(nz)**2 |
1457 |
dzooFedt(nz) = dzooFedt(nz) |
1458 |
& - mortzoo(nz)*zooFe(nz) |
1459 |
& - mortzoo2(nz)*zooFe(nz)**2 |
1460 |
dzooSidt(nz) = dzooSidt(nz) |
1461 |
& - mortzoo(nz)*zooSi(nz) |
1462 |
& - mortzoo2(nz)*zooSi(nz)**2 |
1463 |
enddo |
1464 |
|
1465 |
|
1466 |
c sum contributions to inorganic nutrient tendencies |
1467 |
dPO4dt = - consumpPO4 + preminP + DOPremin |
1468 |
dNH4dt = - consumpNH4 + preminN + DONremin |
1469 |
& - NO2prod |
1470 |
dNO2dt = - consumpNO2 |
1471 |
& + NO2prod - NO3prod |
1472 |
dNO3dt = - consumpNO3 |
1473 |
& + NO3prod |
1474 |
c-ONLYNO3 dNO3dt = - consumpNO3 + preminN + DONremin |
1475 |
#ifdef ALLOW_DENIT |
1476 |
if (O2local.le.O2crit) then |
1477 |
denit = denit_np*(preminP + DOPremin) |
1478 |
dNO3dt = dNO3dt - denit |
1479 |
dNH4dt = dNH4dt - (preminN + DONremin) |
1480 |
endif |
1481 |
#endif |
1482 |
dFeTdt = - consumpFeT + preminFe + DOFeremin |
1483 |
#ifdef PART_SCAV |
1484 |
& - scav_part*freefelocal + |
1485 |
#else |
1486 |
& - scav*freefelocal + |
1487 |
#endif |
1488 |
& alpfe*inputFelocal/dzlocal |
1489 |
dSidt = - consumpSi + preminSi |
1490 |
|
1491 |
c tendency of dissolved organic pool |
1492 |
dDOPdt = totphy_dop + totzoo_dop - DOPremin |
1493 |
dDONdt = totphy_don + totzoo_don - DONremin |
1494 |
dDOFedt = totphy_dofe + totzoo_dofe - DOFeremin |
1495 |
c tendency of particulate detritus pools |
1496 |
dpopdt = totphy_pop + totzoo_pop - preminP + psinkP |
1497 |
dpondt = totphy_pon + totzoo_pon - preminN + psinkN |
1498 |
dpofedt = totphy_pofe + totzoo_pofe - preminFe + psinkFe |
1499 |
dpSidt = totphy_posi + totzoo_posi - preminSi + psinkSi |
1500 |
#ifdef ALLOW_CARBON |
1501 |
dDICdt = - consumpDIC - consumpDIC_PIC |
1502 |
& + preminC + DOCremin |
1503 |
& + disscPIC |
1504 |
dDOCdt = totphy_doc + totzoo_doc - DOCremin |
1505 |
dPOCdt = totphy_poc + totzoo_poc - preminC + psinkC |
1506 |
dPICdt = totphy_pic + totzoo_pic - disscPIC + psinkPIC |
1507 |
dALKdt = - dNO3dt - 2.d0 * (consumpDIC_PIC - disscPIC) |
1508 |
c should be = O2prod - preminP - DOPremin? |
1509 |
c OLD WAY |
1510 |
c dO2dt = - R_OP*dPO4dt |
1511 |
c production of O2 by photosynthesis |
1512 |
dO2dt = R_OP*consumpPO4 |
1513 |
c loss of O2 by remineralization |
1514 |
if (O2local.gt.O2crit) then |
1515 |
dO2dt = dO2dt - R_OP*(preminP + DOPremin) |
1516 |
endif |
1517 |
#ifdef OLD_GRAZE |
1518 |
do nz=1,nzmax |
1519 |
dzooCdt(nz) = grazingC(nz)*zooClocal(nz) |
1520 |
& - mortzoo(nz)*zooClocal(nz) |
1521 |
& - mortzoo2(nz)*zooClocal(nz)**2 |
1522 |
enddo |
1523 |
#else |
1524 |
do nz=1,nzmax |
1525 |
dzooCdt(nz) = sumgrazzooc(nz) |
1526 |
& - mortzoo(nz)*zooClocal(nz) |
1527 |
& - mortzoo2(nz)*zooClocal(nz)**2 |
1528 |
enddo |
1529 |
#endif |
1530 |
|
1531 |
#endif |
1532 |
|
1533 |
if (debug.eq.10) print*,'dDOPdt', dDOPdt |
1534 |
if (debug.eq.10) print*,'dpopdt',dpopdt |
1535 |
if (debug.eq.10) print*,'dDONdt',dDONdt |
1536 |
if (debug.eq.10) print*,'dpondt',dpondt |
1537 |
c |
1538 |
c ------------------------------------------------------------------- |
1539 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
1540 |
c -------------------------------------------------------------------------- |
1541 |
|
1542 |
c -m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m- |
1543 |
c Mutation - apply mutation to tendencies [jbmodif] |
1544 |
|
1545 |
#ifdef ALLOW_MUTANTS |
1546 |
c apply to all sisters when first sister is encountered |
1547 |
if(runtim .gt. threeyr) then |
1548 |
mutfor=1 _d -8 |
1549 |
mutback=1 _d -12 |
1550 |
if(numtax .gt. 1)then |
1551 |
do np=1,npro |
1552 |
if(mod(np,numtax).eq. 1. _d 0)then |
1553 |
nsisone = np |
1554 |
nsistwo = np+1 |
1555 |
nsisthree = np+2 |
1556 |
nsisfour = np+3 |
1557 |
|
1558 |
grow1 = PspecificPO4(nsisone) |
1559 |
grow2 = PspecificPO4(nsistwo) |
1560 |
|
1561 |
if(numtax.eq.2)grow3 = 0.0 _d 0 |
1562 |
if(numtax.eq.2)grow4 = 0.0 _d 0 |
1563 |
|
1564 |
if(numtax.eq.3)grow4 = 0.0 _d 0 |
1565 |
if(numtax.ge.3)grow3 = PspecificPO4(nsisthree) |
1566 |
|
1567 |
if(numtax.eq.4)grow4 = PspecificPO4(nsisfour) |
1568 |
|
1569 |
|
1570 |
|
1571 |
dphytodt(nsisone) = dphytodt(nsisone) |
1572 |
& - grow1 *1.4427 _d 0*mutfor |
1573 |
& - grow1 *1.4427 _d 0*mutfor |
1574 |
& - grow1 *1.4427 _d 0*mutfor |
1575 |
& + grow2 *1.4427 _d 0*mutback |
1576 |
& + grow3 *1.4427 _d 0*mutback |
1577 |
& + grow4 *1.4427 _d 0*mutback |
1578 |
|
1579 |
dphytodt(nsistwo) = dphytodt(nsistwo) |
1580 |
& - grow2 *1.4427 _d 0*mutback |
1581 |
& + grow1 *1.4427 _d 0*mutfor |
1582 |
|
1583 |
if(numtax .ge. 3)then |
1584 |
dphytodt(nsisthree) = dphytodt(nsisthree) |
1585 |
& - grow3 *1.4427 _d 0*mutback |
1586 |
& + grow1 *1.4427 _d 0*mutfor |
1587 |
endif |
1588 |
|
1589 |
if(numtax .eq. 4)then |
1590 |
dphytodt(nsisfour) = dphytodt(nsisfour) |
1591 |
& - grow4 *1.4427 _d 0*mutback |
1592 |
& + grow1 *1.4427 _d 0*mutfor |
1593 |
c QQQQQQQQQQ FIX FOR NIT RUNS ONLY!!! |
1594 |
if (phyto(nsisfour).eq.0. _d 0) then |
1595 |
if (phyto(nsistwo).eq.0. _d 0) then |
1596 |
if (dphytodt(nsistwo).gt.dphytodt(nsisfour)) then |
1597 |
dphytodt(nsisfour)=dphytodt(nsistwo) |
1598 |
endif |
1599 |
endif |
1600 |
if (phyto(nsisthree).eq.0. _d 0) then |
1601 |
if (dphytodt(nsisthree).gt.dphytodt(nsisfour)) then |
1602 |
dphytodt(nsisfour)=dphytodt(nsisthree) |
1603 |
endif |
1604 |
endif |
1605 |
endif |
1606 |
c QQQQQQQQQQQQQ |
1607 |
endif |
1608 |
|
1609 |
c QQQQQQQQQQQQTEST |
1610 |
if (debug.eq.11) then |
1611 |
if (PARlocal.gt.1. _d 0) then |
1612 |
if (dphytodt(nsistwo).gt.dphytodt(nsisfour).and. |
1613 |
& dphytodt(nsisfour).gt.0. _d 0) then |
1614 |
print*,'QQQQ nsistwo>nsisfour',nsistwo,nsisfour, |
1615 |
& dphytodt(nsistwo), dphytodt(nsisfour), |
1616 |
& phyto(nsistwo), phyto(nsisfour), |
1617 |
& phyto(nsisone) |
1618 |
endif |
1619 |
if (dphytodt(nsisthree).gt.dphytodt(nsisfour).and. |
1620 |
& dphytodt(nsisfour).gt.0. _d 0) then |
1621 |
print*,'QQQQ nsisthree>nsisfour',nsisthree,nsisfour, |
1622 |
& dphytodt(nsisthree), dphytodt(nsisfour), |
1623 |
& phyto(nsisthree), phyto(nsisfour), |
1624 |
& phyto(nsisone) |
1625 |
endif |
1626 |
if (dphytodt(nsisfour).gt.dphytodt(nsisone).and. |
1627 |
& dphytodt(nsisone).gt.0. _d 0) then |
1628 |
print*,' BIG QQQQ nsisfour>nsisone',nsisone,nsisfour, |
1629 |
& dphytodt(nsisfour), dphytodt(nsisone), |
1630 |
& phyto(nsisfour), phyto(nsisone) |
1631 |
endif |
1632 |
endif |
1633 |
endif |
1634 |
c QQQQQQQQQTEST |
1635 |
endif |
1636 |
enddo |
1637 |
endif |
1638 |
endif |
1639 |
|
1640 |
c mutation is finished |
1641 |
c -m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m-m- |
1642 |
#endif |
1643 |
|
1644 |
|
1645 |
|
1646 |
RETURN |
1647 |
END |
1648 |
#endif /*MONOD*/ |
1649 |
#endif /*ALLOW_PTRACERS*/ |
1650 |
c ================================================================== |