/[MITgcm]/MITgcm_contrib/darwin2/pkg/monod/monod_forcing.F
ViewVC logotype

Contents of /MITgcm_contrib/darwin2/pkg/monod/monod_forcing.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (show annotations) (download)
Sat Jun 30 19:23:04 2012 UTC (13 years, 1 month ago) by jahn
Branch: MAIN
CVS Tags: ctrb_darwin2_ckpt63p_20120707
Changes since 1.7: +4 -7 lines
avoid double inclusion

1 C $Header: /u/gcmpack/MITgcm_contrib/darwin2/pkg/monod/monod_forcing.F,v 1.7 2012/06/29 20:41:59 stephd Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5 #include "PTRACERS_OPTIONS.h"
6 #include "DARWIN_OPTIONS.h"
7
8 #ifdef ALLOW_PTRACERS
9 #ifdef ALLOW_MONOD
10
11 c=============================================================
12 c subroutine MONOD_forcing
13 c step forward bio-chemical tracers in time
14 C==============================================================
15 SUBROUTINE MONOD_FORCING(
16 U Ptr,
17 I bi,bj,imin,imax,jmin,jmax,
18 I myTime,myIter,myThid)
19 #include "SIZE.h"
20 #include "EEPARAMS.h"
21 #include "PARAMS.h"
22 #include "GRID.h"
23 #include "DYNVARS.h"
24 c for Qsw and/or surfaceForcingT
25 c choice which field to take pCO2 from for pCO2limit
26 c this assumes we use Ttendency from offline
27 #include "FFIELDS.h"
28 #ifdef ALLOW_LONGSTEP
29 #include "LONGSTEP.h"
30 #endif
31 #include "PTRACERS_SIZE.h"
32 #include "PTRACERS_PARAMS.h"
33 #include "GCHEM.h"
34 #include "MONOD_SIZE.h"
35 #include "MONOD.h"
36 #include "DARWIN_IO.h"
37 #include "DARWIN_FLUX.h"
38 #include "MONOD_FIELDS.h"
39
40 c ANNA include wavebands_params.h
41 #ifdef WAVEBANDS
42 #include "SPECTRAL_SIZE.h"
43 #include "SPECTRAL.h"
44 #include "WAVEBANDS_PARAMS.h"
45 #endif
46
47
48 C === Global variables ===
49 c tracers
50 _RL Ptr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy,nDarwin)
51 INTEGER bi,bj,imin,imax,jmin,jmax
52 INTEGER myIter
53 _RL myTime
54 INTEGER myThid
55
56 C !FUNCTIONS:
57 C == Functions ==
58 #ifdef ALLOW_PAR_DAY
59 LOGICAL DIFF_PHASE_MULTIPLE
60 EXTERNAL DIFF_PHASE_MULTIPLE
61 #endif
62
63 C============== Local variables ============================================
64 c plankton arrays
65 _RL ZooP(nzmax)
66 _RL ZooN(nzmax)
67 _RL ZooFe(nzmax)
68 _RL ZooSi(nzmax)
69 _RL Phy(npmax)
70 _RL Phy_k(npmax,Nr)
71 _RL Phyup(npmax)
72 _RL part_k(Nr)
73 #ifdef ALLOW_CDOM
74 _RL cdom_k(Nr)
75 #endif
76 c iron partitioning
77 _RL freefe(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
78 c some working variables
79 _RL sumpy
80 _RL sumpyup
81 c light variables
82 _RL PAR(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
83 _RL sfac(1-OLy:sNy+OLy)
84 _RL atten,lite
85 _RL newtime ! for sub-timestepping
86 _RL runtim ! time from tracer initialization
87
88
89 c ANNA define variables for wavebands
90 #ifdef WAVEBANDS
91 integer ilam
92 _RL PARw_k(tlam,Nr)
93 _RL PARwup(tlam)
94 _RL acdom_k(Nr,tlam)
95 #ifdef DAR_RADTRANS
96 integer iday,iyr,imon,isec,lp,wd,mydate(4)
97 _RL Edwsf(tlam),Eswsf(tlam)
98 _RL Edz(tlam,Nr),Esz(tlam,Nr),Euz(tlam,Nr),Eutop(tlam,Nr)
99 _RL tirrq(nr)
100 _RL tirrwq(tlam,nr)
101 _RL solz
102 _RL rmud
103 _RL actot,bctot,bbctot
104 _RL apart_k(Nr,tlam),bpart_k(Nr,tlam),bbpart_k(Nr,tlam)
105 _RL bt_k(Nr,tlam), bb_k(Nr,tlam)
106 #else
107 _RL PARwdn(tlam)
108 #endif
109 C always need for diagnostics
110 _RL a_k(Nr,tlam)
111 #endif /* WAVEBANDS */
112
113
114 #ifdef DAR_DIAG_DIVER
115 _RL Diver1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
116 _RL Diver2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
117 _RL Diver3(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
118 _RL Diver4(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
119 _RL Shannon(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
120 _RL Simpson(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
121
122 _RL tmpphy(npmax)
123 _RL totphy, biotot, maxphy, phymax
124 #endif
125
126 #ifdef GEIDER
127 _RL phychl(npmax)
128 _RL phychl_k(npmax,Nr)
129 #ifdef DYNAMIC_CHL
130 _RL dphychl(npmax)
131 _RL chlup(npmax)
132 #endif
133 #endif
134 #ifdef ALLOW_CDOM
135 _RL cdoml
136 _RL dcdoml
137 #endif
138
139 #ifdef ALLOW_DIAGNOSTICS
140 COJ for diagnostics
141 _RL PParr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
142 _RL Nfixarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
143 c ANNA_TAVE
144 #ifdef WAVES_DIAG_PCHL
145 _RL Pchlarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,npmax)
146 #endif
147 c ANNA end TAVE
148 #ifdef DAR_DIAG_RSTAR
149 _RL Rstararr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,npmax)
150 #endif
151 #ifdef ALLOW_DIAZ
152 #ifdef DAR_DIAG_NFIXP
153 _RL NfixParr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,npmax)
154 #endif
155 #endif
156 #endif
157
158
159 _RL totphyC
160 #ifdef ALLOW_PAR_DAY
161 LOGICAL itistime
162 INTEGER PARiprev, PARiaccum, iperiod, nav
163 _RL phase
164 _RL dtsubtime
165 #endif
166 #ifdef DAR_DIAG_CHL
167 _RL ChlGeiderlocal, ChlDoneylocal, ChlCloernlocal
168 #ifdef ALLOW_DIAGNOSTICS
169 _RL GeiderChlarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
170 _RL GeiderChl2Carr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
171 _RL DoneyChlarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
172 _RL DoneyChl2Carr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
173 _RL CloernChlarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
174 _RL CloernChl2Carr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
175 #endif
176 #endif
177 c
178 _RL freefu
179 _RL inputFel
180
181 c some local variables
182 _RL PO4l
183 _RL NO3l
184 _RL FeTl
185 _RL Sil
186 _RL DOPl
187 _RL DONl
188 _RL DOFel
189 _RL POPl
190 _RL PONl
191 _RL POFel
192 _RL PSil
193 _RL POPupl
194 _RL PONupl
195 _RL POFeupl
196 _RL PSiupl
197 _RL Tlocal
198 _RL Slocal
199 _RL pCO2local
200 _RL Qswlocal
201 _RL NH4l
202 _RL NO2l
203 _RL PARl
204 _RL dzlocal
205 _RL dz_k(Nr)
206 _RL dtplankton
207 _RL bottom
208 _RL PP
209 _RL Nfix
210 _RL denit
211 _RL Chl
212 _RL Rstarl(npmax)
213 _RL RNstarl(npmax)
214 #ifdef DAR_DIAG_GROW
215 _RL Growl(npmax)
216 _RL Growsql(npmax)
217 #endif
218 #ifdef ALLOW_DIAZ
219 #ifdef DAR_DIAG_NFIXP
220 _RL NfixPl(npmax)
221 #endif
222 #endif
223
224 c local tendencies
225 _RL dphy(npmax)
226 _RL dzoop(nzmax)
227 _RL dzoon(nzmax)
228 _RL dzoofe(nzmax)
229 _RL dzoosi(nzmax)
230 _RL dPO4l
231 _RL dNO3l
232 _RL dFeTl
233 _RL dSil
234 _RL dDOPl
235 _RL dDONl
236 _RL dDOFel
237 _RL dPOPl
238 _RL dPONl
239 _RL dPOFel
240 _RL dPSil
241 _RL dNH4l
242 _RL dNO2l
243
244 #ifdef ALLOW_CARBON
245 _RL dicl
246 _RL docl
247 _RL pocl
248 _RL picl
249 _RL alkl
250 _RL o2l
251 _RL ZooCl(nzmax)
252 _RL pocupl
253 _RL picupl
254 c tendencies
255 _RL ddicl
256 _RL ddocl
257 _RL dpocl
258 _RL dpicl
259 _RL dalkl
260 _RL do2l
261 _RL dZooCl(nzmax)
262 c air-sea fluxes
263 _RL flxCO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
264 _RL flxALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
265 _RL flxO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
266 #endif
267
268 _RL tot_Nfix
269
270 _RL tmp
271
272 _RL phytmp, chltmp
273
274 INTEGER i,j,k,it, ktmp
275 INTEGER np, nz, np2, npsave
276 INTEGER debug
277 CHARACTER*8 diagname
278
279 c
280 c
281 c
282 DO j=1-OLy,sNy+OLy
283 DO i=1-OLx,sNx+OLx
284 do k=1,Nr
285 freefe(i,j,k)=0. _d 0
286 PAR(i,j,k) = 0. _d 0
287 #ifdef DAR_DIAG_DIVER
288 Diver1(i,j,k)=0. _d 0
289 Diver2(i,j,k)=0. _d 0
290 Diver3(i,j,k)=0. _d 0
291 Diver4(i,j,k)=0. _d 0
292 Shannon(i,j,k)=0. _d 0
293 Simpson(i,j,k)=1. _d 0
294 #endif
295
296 #ifdef ALLOW_DIAGNOSTICS
297 COJ for diagnostics
298 PParr(i,j,k) = 0. _d 0
299 Nfixarr(i,j,k) = 0. _d 0
300 #ifdef DAR_DIAG_CHL
301 GeiderChlarr(i,j,k) = 0. _d 0
302 GeiderChl2Carr(i,j,k) = 0. _d 0
303 DoneyChlarr(i,j,k) = 0. _d 0
304 DoneyChl2Carr(i,j,k) = 0. _d 0
305 CloernChlarr(i,j,k) = 0. _d 0
306 CloernChl2Carr(i,j,k) = 0. _d 0
307 #endif
308 c ANNA_TAVE
309 #ifdef WAVES_DIAG_PCHL
310 DO np=1,npmax
311 Pchlarr(i,j,k,np) = 0. _d 0
312 ENDDO
313 #endif
314 c ANNA end TAVE
315 #ifdef DAR_DIAG_RSTAR
316 DO np=1,npmax
317 Rstararr(i,j,k,np) = 0. _d 0
318 ENDDO
319 #endif
320 COJ
321 #ifdef ALLOW_DIAZ
322 #ifdef DAR_DIAG_NFIXP
323 DO np=1,npmax
324 NfixParr(i,j,k,np) = 0. _d 0
325 ENDDO
326 #endif
327 #endif
328 #endif
329 enddo
330 ENDDO
331 ENDDO
332 c
333 c bio-chemical time loop
334 c--------------------------------------------------
335 DO it=1,nsubtime
336 c -------------------------------------------------
337 tot_Nfix=0. _d 0
338 COJ cannot use dfloat because of adjoint
339 COJ division will be double precision anyway because of dTtracerLev
340 newtime=myTime-dTtracerLev(1)+
341 & float(it)*dTtracerLev(1)/float(nsubtime)
342 c print*,'it ',it,newtime,nsubtime,myTime
343 runtim=myTime-float(PTRACERS_Iter0)*dTtracerLev(1)
344
345 c determine iron partitioning - solve for free iron
346 c ---------------------------
347 call darwin_fe_chem(bi,bj,iMin,iMax,jMin,jMax,
348 & Ptr(1-OLx,1-OLy,1,bi,bj,iFeT), freefe,
349 & myIter, mythid)
350 c --------------------------
351 #ifdef ALLOW_CARBON
352 c air-sea flux and dilution of CO2
353 call dic_surfforcing(Ptr(1-OLx,1-OLy,1,bi,bj,iDIC),
354 & Ptr(1-OLx,1-OLy,1,bi,bj,iALK),
355 & Ptr(1-OLx,1-OLy,1,bi,bj,iPO4),
356 & Ptr(1-OLx,1-OLy,1,bi,bj,iSi),
357 & flxCO2,
358 & bi,bj,imin,imax,jmin,jmax,
359 & myIter,myTime,myThid)
360 c air-sea flux of O2
361 call dic_o2_surfforcing(Ptr(1-OLx,1-OLy,1,bi,bj,iO2),
362 & flxO2,
363 & bi,bj,imin,imax,jmin,jmax,
364 & myIter,myTime,myThid)
365 c dilusion of alkalinity
366 call dic_alk_surfforcing(Ptr(1-OLx,1-OLy,1,bi,bj,iALK),
367 & flxALK,
368 & bi,bj,imin,imax,jmin,jmax,
369 & myIter,myTime,myThid)
370 #endif
371
372
373 c find light in each grid cell
374 c ---------------------------
375 c determine incident light
376 #ifndef READ_PAR
377 #ifndef USE_QSW
378 DO j=1-OLy,sNy+OLy
379 sfac(j)=0. _d 0
380 ENDDO
381 call darwin_insol(newTime,sfac,bj)
382 #endif /* not USE_QSW */
383 #endif /* not READ_PAR */
384
385 #ifdef ALLOW_PAR_DAY
386 C find out which slot of PARday has previous day's average
387 dtsubtime = dTtracerLev(1)/float(nsubtime)
388 C running index of averaging period
389 C myTime has already been incremented in this iteration,
390 C go back half a substep to avoid roundoff problems
391 iperiod = FLOOR((newtime-0.5 _d 0*dtsubtime)
392 & /darwin_PARavPeriod)
393 C 0 -> 1, 1->2, 2->0, ...
394 PARiprev = MOD(iperiod, 2) + 1
395
396 #ifdef ALLOW_DIAGNOSTICS
397 C always fill; this will be the same during PARavPeriod, but this
398 C way it won't blow up for weird diagnostics periods.
399 C we fill before updating, so the diag is the one used in this time
400 C step
401 CALL DIAGNOSTICS_FILL(
402 & PARday(1-Olx,1-Oly,1,bi,bj,PARiprev),'PARday ',
403 & 0,Nr,2,bi,bj,myThid )
404 #endif
405 #endif /* ALLOW_PAR_DAY */
406
407 #ifdef DAR_RADTRANS
408 #ifndef DAR_RADTRANS_USE_MODEL_CALENDAR
409 #ifdef ALLOW_CAL
410 C get current date and time of day: iyr/imon/iday+isec
411 CALL CAL_GETDATE( myIter, newtime, mydate, mythid )
412 CALL CAL_CONVDATE( mydate,iyr,imon,iday,isec,lp,wd,mythid )
413 #else
414 STOP 'need cal package or DAR_RADTRANS_USE_MODEL_CALENDAR'
415 #endif
416 #endif
417 #endif
418
419 C.................................................................
420 C.................................................................
421
422
423 C ========================== i,j loops =================================
424 DO j=1,sNy
425 DO i=1,sNx
426
427 c ------------ these are convenient ------------------------------------
428 DO k=1,Nr
429 part_k(k) = max(Ptr(i,j,k,bi,bj,iPOP),0. _d 0)
430 #ifdef ALLOW_CDOM
431 cdom_k(k) = max(Ptr(i,j,k,bi,bj,iCDOM),0. _d 0)
432 #endif
433 DO np = 1,npmax
434 Phy_k(np,k) = max(Ptr(i,j,k,bi,bj,iPhy+np-1),0. _d 0)
435 #ifdef GEIDER
436 #ifdef DYNAMIC_CHL
437 phychl_k(np,k) = max(Ptr(i,j,k,bi,bj,iChl+np-1),0. _d 0)
438 #else
439 phychl_k(np,k) = max(Chl_phy(i,j,k,bi,bj,np), 0. _d 0)
440 #endif
441 #endif
442 ENDDO
443 ENDDO
444
445 c ------------ GET CDOM_k FOR WAVEBANDS_3D and RADTRANS ----------------
446 #ifdef WAVEBANDS
447 #if defined(DAR_CALC_ACDOM) || defined(DAR_RADTRANS)
448 #ifdef ALLOW_CDOM
449 call MONOD_ACDOM(cdom_k,
450 O acdom_k,
451 I myThid)
452 #else
453 call MONOD_ACDOM(phychl_k,aphy_chl,aw,
454 O acdom_k,
455 I myThid)
456 #endif
457 #else
458 DO k=1,Nr
459 DO ilam = 1,tlam
460 acdom_k(k,ilam) = acdom(ilam)
461 ENDDO
462 ENDDO
463 #endif /* DAR_CALC_ACDOM or DAR_RADTRANS */
464 #endif /* WAVEBANDS */
465
466 c ------------ GET INCIDENT NON-SPECTRAL LIGHT -------------------------
467 #if !(defined(WAVEBANDS) && defined(OASIM))
468 #ifdef READ_PAR
469
470 lite = sur_par(i,j,bi,bj)
471
472 #else /* not READ_PAR */
473 #ifdef USE_QSW
474
475 #ifdef ALLOW_LONGSTEP
476 Qswlocal=LS_Qsw(i,j,bi,bj)
477 #else
478 Qswlocal=Qsw(i,j,bi,bj)
479 #endif
480 lite = -parfrac*Qswlocal*parconv*maskC(i,j,1,bi,bj)
481
482 #else /* not USE_QSW */
483
484 lite = sfac(j)*maskC(i,j,1,bi,bj)/86400*1 _d 6
485
486 #endif /* not USE_QSW */
487 #endif /* not READ_PAR */
488
489 c take ice coverage into account
490 c unless already done in seaice package
491 #if !(defined (ALLOW_SEAICE) && defined (USE_QSW))
492 lite = lite*(1. _d 0-fice(i,j,bi,bj))
493 #endif
494 #endif /* not(WAVEBANDS and OASIM) */
495
496 c ------------ LIGHT ATTENUATION: --------------------------------------
497 #ifndef WAVEBANDS
498 c ------------ SINGLE-BAND ATTENUATION ---------------------------------
499 atten=0. _d 0
500 do k=1,Nr
501 if (HFacC(i,j,k,bi,bj).gt.0. _d 0) then
502 sumpyup = sumpy
503 sumpy = 0. _d 0
504 do np=1,npmax
505 #ifdef GEIDER
506 sumpy = sumpy + phychl_k(np,k)
507 #else
508 sumpy = sumpy + Phy_k(np,k)
509 #endif
510 enddo
511 atten= atten + (k0 + kc*sumpy)*5. _d -1*drF(k)
512 if (k.gt.1)then
513 atten = atten + (k0+kc*sumpyup)*5. _d -1*drF(k-1)
514 endif
515 PAR(i,j,k) = lite*exp(-atten)
516 endif
517 enddo
518
519 #else /* WAVEBANDS */
520 #ifndef DAR_RADTRANS
521 c ------------ WAVEBANDS W/O RADTRANS ----------------------------------
522 do ilam = 1,tlam
523 #ifdef OASIM
524 c add direct and diffuse, convert to uEin/m2/s/nm
525 PARwup(ilam) = WtouEins(ilam)*(oasim_ed(i,j,ilam,bi,bj)+
526 & oasim_es(i,j,ilam,bi,bj))
527 c and take ice fraction into account
528 c PARwup(ilam) = PARwup(ilam)*(1 _d 0 - fice(i,j,bi,bj))
529 #else
530 c sf is per nm; convert to per waveband
531 PARwup(ilam) = wb_width(ilam)*sf(ilam)*lite
532 #endif
533 enddo
534
535 do k=1,Nr
536 if (HFacC(i,j,k,bi,bj).gt.0. _d 0) then
537 do ilam = 1,tlam
538 sumpy = 0.
539 do np = 1,npmax
540 c get total attenuation (absorption) by phyto at each wavelength
541 sumpy = sumpy + (phychl_k(np,k)*aphy_chl(np,ilam))
542 enddo
543 c for diagnostic
544 a_k(k,ilam) = aw(ilam) + sumpy + acdom_k(k,ilam)
545 atten = a_k(k,ilam)*drF(k)
546 PARwdn(ilam) = PARwup(ilam)*exp(-atten)
547 enddo
548
549 c find for the midpoint of the gridcell (gridcell mean)
550 do ilam = 1,tlam
551 C PARw_k(ilam,k)=exp((log(PARwup(ilam))+log(PARwdn(ilam)))*0.5)
552 PARw_k(ilam,k)=sqrt(PARwup(ilam)*PARwdn(ilam))
553 enddo
554
555 c cycle
556 do ilam=1,tlam
557 PARwup(ilam) = PARwdn(ilam)
558 enddo
559 else
560 do ilam=1,tlam
561 PARw_k(ilam,k) = 0. _d 0
562 enddo
563 endif
564
565 c sum wavebands for total PAR at the mid point of the gridcell (PARl)
566 PAR(i,j,k) = 0.
567 do ilam = 1,tlam
568 PAR(i,j,k) = PAR(i,j,k) + PARw_k(ilam,k)
569 enddo
570 enddo
571
572 #else /* DAR_RADTRANS */
573 c ------------ FULL RADIATIVE TRANSFER CODE ----------------------------
574 do ilam = 1,tlam
575 Edwsf(ilam) = oasim_ed(i,j,ilam,bi,bj)
576 Eswsf(ilam) = oasim_es(i,j,ilam,bi,bj)
577 enddo
578
579 #ifdef DAR_RADTRANS_USE_MODEL_CALENDAR
580 C simplified solar zenith angle for 360-day year and daily averaged light
581 C cos(solz) is average over daylight period
582 call darwin_solz360(newtime, YC(i,j,bi,bj),
583 O solz)
584
585 #else /* not DAR_RADTRANS_USE_MODEL_CALENDAR */
586 C use calendar date for full solar zenith angle computation
587 C oj: average light effective at noon?
588 solz = 0.0 _d 0
589 isec = 12*3600
590 call radtrans_sfcsolz(rad,iyr,imon,iday,isec,
591 I XC(i,j,bi,bj),YC(i,j,bi,bj),
592 O solz)
593 #endif /* not DAR_RADTRANS_USE_MODEL_CALENDAR */
594
595 c have Ed,Es below surface - no need for this adjustment on Ed Es for surface affects
596 c do ilam=1,tlam
597 c rod(ilam) = 0.0 _d 0
598 c ros(ilam) = 0.0 _d 0
599 c enddo
600
601 c compute 1/cos(zenith) for direct light below surface
602 call radtrans_sfcrmud(rad,solz,
603 O rmud)
604
605 C compute absorption/scattering coefficients for radtrans
606 DO k=1,Nr
607 dz_k(k) = drF(k)*HFacC(i,j,k,bi,bj)
608 DO ilam = 1,tlam
609 c absorption by phyto
610 actot = 0.0
611 bctot = 0.0
612 bbctot = 0.0
613 DO np = 1,npmax
614 actot = actot + phychl_k(np,k)*aphy_chl(np,ilam)
615 bctot = bctot + phychl_k(np,k)*bphy_chl(np,ilam)
616 bbctot = bbctot + phychl_k(np,k)*bbphy_chl(np,ilam)
617 ENDDO
618 c particulate
619 apart_k(k,ilam) = part_k(k)*apart_P(ilam)
620 bpart_k(k,ilam) = part_k(k)*bpart_P(ilam)
621 bbpart_k(k,ilam) = part_k(k)*bbpart_P(ilam)
622 c add water and CDOM
623 a_k(k,ilam) = aw(ilam)+acdom_k(k,ilam)+actot+apart_k(k,ilam)
624 bt_k(k,ilam) = bw(ilam) + bctot + bpart_k(k,ilam)
625 bb_k(k,ilam) = darwin_bbw*bw(ilam)+bbctot+bbpart_k(k,ilam)
626 bb_k(k,ilam) = MAX(darwin_bbmin, bb_k(k,ilam))
627 ENDDO
628 ENDDO
629
630 #ifdef DAR_RADTRANS_ITERATIVE
631 call MONOD_RADTRANS_ITER(
632 I dz_k,rmud,Edwsf,Eswsf,a_k,bt_k,bb_k,
633 I darwin_radtrans_kmax,darwin_radtrans_niter,
634 O Edz,Esz,Euz,Eutop,
635 O tirrq,tirrwq,
636 I myThid)
637 #else
638 c dzlocal ?????
639 call MONOD_RADTRANS(
640 I drF,rmud,Edwsf,Eswsf,a_k,bt_k,bb_k,
641 O Edz,Esz,Euz,Eutop,
642 O tirrq,tirrwq,
643 I myThid)
644 #endif
645 c
646 c uses chl from prev timestep (as wavebands does)
647 c keep like this in case need to consider upwelling irradiance as affecting the grid box above
648 c will pass to plankton: PARw only, but will be for this timestep for RT and prev timestep for WAVBANDS
649 c
650 c now copy
651 DO k=1,Nr
652 PAR(i,j,k) = tirrq(k)
653 DO ilam = 1,tlam
654 PARw_k(ilam,k) = tirrwq(ilam,k)
655 ENDDO
656 ENDDO
657 #endif /* DAR_RADTRANS */
658
659 c oj: ???
660 c so PARw and PARwup from WAVEBANDS_1D are from previous timestep (attenuation done in plankton)
661 c but PARw and PARwup from WAVEBANDS_3D and RADTRANS are for the current timestep
662
663 #endif /* WAVEBANDS */
664
665 C ============================ k loop ==================================
666 c for each layer ...
667 do k= 1, NR
668 if (HFacC(i,j,k,bi,bj).gt.0. _d 0) then
669
670 c make sure we only deal with positive definite numbers
671 c brute force...
672 po4l = max(Ptr(i,j,k,bi,bj,iPO4 ),0. _d 0)
673 no3l = max(Ptr(i,j,k,bi,bj,iNO3 ),0. _d 0)
674 fetl = max(Ptr(i,j,k,bi,bj,iFeT ),0. _d 0)
675 sil = max(Ptr(i,j,k,bi,bj,iSi ),0. _d 0)
676 dopl = max(Ptr(i,j,k,bi,bj,iDOP ),0. _d 0)
677 donl = max(Ptr(i,j,k,bi,bj,iDON ),0. _d 0)
678 dofel = max(Ptr(i,j,k,bi,bj,iDOFe ),0. _d 0)
679 DO nz = 1,nzmax
680 ZooP(nz) = max(Ptr(i,j,k,bi,bj,iZooP (nz)),0. _d 0)
681 ZooN(nz) = max(Ptr(i,j,k,bi,bj,iZooN (nz)),0. _d 0)
682 ZooFe(nz) = max(Ptr(i,j,k,bi,bj,iZooFe(nz)),0. _d 0)
683 ZooSi(nz) = max(Ptr(i,j,k,bi,bj,iZooSi(nz)),0. _d 0)
684 ENDDO
685 popl = max(Ptr(i,j,k,bi,bj,iPOP ),0. _d 0)
686 ponl = max(Ptr(i,j,k,bi,bj,iPON ),0. _d 0)
687 pofel = max(Ptr(i,j,k,bi,bj,iPOFe ),0. _d 0)
688 psil = max(Ptr(i,j,k,bi,bj,iPOSi ),0. _d 0)
689 NH4l = max(Ptr(i,j,k,bi,bj,iNH4 ),0. _d 0)
690 NO2l = max(Ptr(i,j,k,bi,bj,iNO2 ),0. _d 0)
691 #ifdef ALLOW_CDOM
692 cdoml = max(Ptr(i,j,k,bi,bj,iCDOM ),0. _d 0)
693 #endif
694 #ifdef ALLOW_CARBON
695 dicl = max(Ptr(i,j,k,bi,bj,iDIC ),0. _d 0)
696 docl = max(Ptr(i,j,k,bi,bj,iDOC ),0. _d 0)
697 pocl = max(Ptr(i,j,k,bi,bj,iPOC ),0. _d 0)
698 picl = max(Ptr(i,j,k,bi,bj,iPIC ),0. _d 0)
699 alkl = max(Ptr(i,j,k,bi,bj,iALK ),0. _d 0)
700 o2l = max(Ptr(i,j,k,bi,bj,iO2 ),0. _d 0)
701 DO nz = 1,nzmax
702 ZooCl(nz) = max(Ptr(i,j,k,bi,bj,iZooC (nz)),0. _d 0)
703 ENDDO
704 #endif
705
706 totphyC = 0. _d 0
707 DO np=1,npmax
708 totphyC = totphyC + R_PC(np)*Ptr(i,j,k,bi,bj,iPhy+np-1)
709 ENDDO
710
711 DO np = 1,npmax
712 Phy(np) = Phy_k(np,k)
713 #ifdef GEIDER
714 phychl(np) = phychl_k(np,k)
715 #endif
716 ENDDO
717
718 #ifdef DAR_DIAG_DIVER
719 Diver1(i,j,k)=0. _d 0
720 Diver2(i,j,k)=0. _d 0
721 Diver3(i,j,k)=0. _d 0
722 Diver4(i,j,k)=0. _d 0
723 totphy=0. _d 0
724 do np=1,npmax
725 totphy=totphy + Phy(np)
726 tmpphy(np)=Phy(np)
727 enddo
728 if (totphy.gt.diver_thresh0) then
729 do np=1,npmax
730 c simple threshhold
731 if (Phy(np).gt.diver_thresh1) then
732 Diver1(i,j,k)=Diver1(i,j,k)+1. _d 0
733 endif
734 c proportion of total biomass
735 if (Phy(np)/totphy.gt.diver_thresh2) then
736 Diver2(i,j,k)=Diver2(i,j,k)+1. _d 0
737 endif
738 enddo
739 c majority of biomass by finding rank order
740 biotot=0. _d 0
741 do np2=1,npmax
742 phymax=0. _d 0
743 do np=1,npmax
744 if (tmpphy(np).gt.phymax) then
745 phymax=tmpphy(np)
746 npsave=np
747 endif
748 enddo
749 if (biotot.lt.totphy*diver_thresh3) then
750 Diver3(i,j,k)=Diver3(i,j,k)+1. _d 0
751 endif
752 biotot=biotot+tmpphy(npsave)
753 tmpphy(npsave)=0. _d 0
754 if (np2.eq.1) then
755 maxphy=phymax
756 endif
757 enddo
758 c ratio of maximum species
759 do np=1,npmax
760 if (Phy(np).gt.diver_thresh4*maxphy) then
761 Diver4(i,j,k)=Diver4(i,j,k)+1. _d 0
762 endif
763 enddo
764 c totphy > thresh0
765 endif
766 c Shannon and Simpson indices
767 Shannon(i,j,k) = 0. _d 0
768 c note: minimal valid value is 1, but we set to zero below threshold
769 Simpson(i,j,k) = 0. _d 0
770 if (totphy.gt.shannon_thresh) then
771 do np=1,npmax
772 if (Phy(np) .gt. 0. _d 0) then
773 tmpphy(np) = Phy(np)/totphy
774 Shannon(i,j,k)=Shannon(i,j,k)+tmpphy(np)*LOG(tmpphy(np))
775 Simpson(i,j,k)=Simpson(i,j,k)+tmpphy(np)*tmpphy(np)
776 endif
777 enddo
778 Shannon(i,j,k) = -Shannon(i,j,k)
779 Simpson(i,j,k) = 1./Simpson(i,j,k)
780 endif
781 #endif
782
783 c..........................................................
784 c find local light
785 c..........................................................
786
787 PARl = PAR(i,j,k)
788 c..........................................................
789
790 c for explicit sinking of particulate matter and phytoplankton
791 if (k.eq.1) then
792 popupl =0. _d 0
793 ponupl =0. _d 0
794 pofeupl = 0. _d 0
795 psiupl = 0. _d 0
796 do np=1,npmax
797 Phyup(np)=0. _d 0
798 #ifdef DYNAMIC_CHL
799 chlup(np)=0. _d 0
800 #endif
801 enddo
802 #ifdef ALLOW_CARBON
803 pocupl = 0. _d 0
804 picupl = 0. _d 0
805 #endif
806 endif
807
808 #ifdef ALLOW_LONGSTEP
809 Tlocal = LS_theta(i,j,k,bi,bj)
810 Slocal = LS_salt(i,j,k,bi,bj)
811 #else
812 Tlocal = theta(i,j,k,bi,bj)
813 Slocal = salt(i,j,k,bi,bj)
814 #endif
815
816 c choice where to get pCO2 from
817 c taking from igsm dic run - fed through Tflux array
818 c pCO2local=surfaceForcingT(i,j,bi,bj)
819 c or from darwin carbon module
820 #ifdef ALLOW_CARBON
821 pCO2local=pCO2(i,j,bi,bj)
822 #else
823 pCO2local=280. _d -6
824 #endif
825
826 freefu = max(freefe(i,j,k),0. _d 0)
827 if (k.eq.1) then
828 inputFel = inputFe(i,j,bi,bj)
829 else
830 inputFel = 0. _d 0
831 endif
832
833 dzlocal = drF(k)*HFacC(i,j,k,bi,bj)
834 c set bottom=1.0 if the layer below is not ocean
835 ktmp=min(nR,k+1)
836 if(hFacC(i,j,ktmp,bi,bj).eq.0. _d 0.or.k.eq.Nr) then
837 bottom = 1.0 _d 0
838 else
839 bottom = 0.0 _d 0
840 endif
841
842 c set tendencies to 0
843 do np=1,npmax
844 dphy(np)=0. _d 0
845 enddo
846 do nz=1,nzmax
847 dzoop(nz)=0. _d 0
848 dzoon(nz)=0. _d 0
849 dzoofe(nz)=0. _d 0
850 dzoosi(nz)=0. _d 0
851 enddo
852 dPO4l=0. _d 0
853 dNO3l=0. _d 0
854 dFeTl=0. _d 0
855 dSil=0. _d 0
856 dDOPl=0. _d 0
857 dDONl=0. _d 0
858 dDOFel=0. _d 0
859 dPOPl=0. _d 0
860 dPONl=0. _d 0
861 dPOFel=0. _d 0
862 dPSil=0. _d 0
863 dNH4l=0. _d 0
864 dNO2l=0. _d 0
865 #ifdef DYNAMIC_CHL
866 do np=1,npmax
867 dphychl(np)=0. _d 0
868 enddo
869 #endif
870 #ifdef ALLOW_CDOM
871 dcdoml=0. _d 0
872 #endif
873 #ifdef ALLOW_CARBON
874 ddicl=0. _d 0
875 ddocl=0. _d 0
876 dpocl=0. _d 0
877 dpicl=0. _d 0
878 dalkl=0. _d 0
879 do2l=0. _d 0
880 do nz=1,nzmax
881 dzoocl(nz)=0. _d 0
882 enddo
883 #endif
884 c set other arguments to zero
885 PP=0. _d 0
886 Nfix=0. _d 0
887 denit=0. _d 0
888 do np=1,npmax
889 Rstarl(np)=0. _d 0
890 RNstarl(np)=0. _d 0
891 #ifdef DAR_DIAG_GROW
892 Growl(np)=0. _d 0
893 Growsql(np)=0. _d 0
894 #endif
895 #ifdef ALLOW_DIAZ
896 #ifdef DAR_DIAG_NFIXP
897 NfixPl(np)=0. _d 0
898 #endif
899 #endif
900 enddo
901
902
903 debug=0
904 c if (i.eq.20.and.j.eq.20.and.k.eq.1) debug=8
905 c if (i.eq.10.and.j.eq.10.and.k.eq.1) debug=100
906 c if (i.eq.1.and.j.eq.10.and.k.eq.1) debug=10
907 c if (i.eq.1.and.j.eq.1.and.k.eq.10) debug=14
908
909 if (debug.eq.7) print*,'PO4, DOP, POP, ZooP',
910 & PO4l, DOPl, POPl, zooP
911 if (debug.eq.7) print*,'NO3, NO2, NH4, DON, PON, ZooN',
912 & NO3l,NO2l,NH4l, DONl, PONl, ZooN
913 if (debug.eq.7) print*,'FeT, DOFe, POFe, Zoofe',
914 & FeTl, DOFel, POFel, zooFe
915 if (debug.eq.7) print*,'Si, Psi, zooSi',
916 & Sil, PSil, zooSi
917 if (debug.eq.7) print*,'Total Phy', sumpy, PARl, lite
918 if (debug.eq.7) print*,'Phy', Phy
919
920 if (debug.eq.8) print*,'k, PARl, inputFel, dzlocal',
921 & PARl, inputFel, dzlocal
922
923 c if (NO3l.eq.0. _d 0.or.NO2l.eq.0. _d 0
924 c & .or.NH4l.eq.0. _d 0) then
925 c print*,'QQ N zeros',i,j,k,NO3l,NO2l,NH4l
926 c endif
927
928
929 c ANNA pass extra variables if WAVEBANDS
930 CALL MONOD_PLANKTON(
931 U Phy,
932 I zooP, zooN, zooFe, zooSi,
933 O PP, Chl, Nfix, denit,
934 I PO4l, NO3l, FeTl, Sil,
935 I NO2l, NH4l,
936 I DOPl, DONl, DOFel,
937 I POPl, PONl, POFel, PSil,
938 I phyup, popupl, ponupl,
939 I pofeupl, psiupl,
940 I PARl,
941 I Tlocal, Slocal,
942 I pCO2local,
943 I freefu, inputFel,
944 I bottom, dzlocal,
945 O Rstarl, RNstarl,
946 #ifdef DAR_DIAG_GROW
947 O Growl, Growsql,
948 #endif
949 #ifdef ALLOW_DIAZ
950 #ifdef DAR_DIAG_NFIXP
951 O NfixPl,
952 #endif
953 #endif
954 O dphy, dzooP, dzooN, dzooFe,
955 O dzooSi,
956 O dPO4l, dNO3l, dFeTl, dSil,
957 O dNH4l, dNO2l,
958 O dDOPl, dDONl, dDOFel,
959 O dPOPl, dPONl, dPOFel, dPSil,
960 #ifdef ALLOW_CARBON
961 I dicl, docl, pocl, picl,
962 I alkl, o2l, zoocl,
963 I pocupl, picupl,
964 O ddicl, ddocl, dpocl, dpicl,
965 O dalkl, do2l, dzoocl,
966 #endif
967 #ifdef GEIDER
968 O phychl,
969 #ifdef DYNAMIC_CHL
970 I dphychl,
971 I chlup,
972 #endif
973 #ifdef ALLOW_CDOM
974 O dcdoml,
975 I cdoml,
976 #endif
977 #ifdef WAVEBANDS
978 I PARw_k(1,k),
979 #endif
980 #endif
981 #ifdef ALLOW_PAR_DAY
982 I PARday(i,j,k,bi,bj,PARiprev),
983 #endif
984 #ifdef DAR_DIAG_CHL
985 O ChlGeiderlocal, ChlDoneylocal,
986 O ChlCloernlocal,
987 #endif
988 I debug,
989 I runtim,
990 I MyThid)
991
992 c
993 c if (i.eq.1.and.k.eq.1.and.j.eq.5) then
994 c print*,i,j,k
995 c print*,'NO3,No2,NH4', NO3l, NO2l, NH4l
996 c print*,'dNO3 etc',dNO3l,dNH4l, dNO2l
997 c print*,'PO4',PO4l,dPO4l
998 c endif
999 c
1000 #ifdef IRON_SED_SOURCE
1001 c only above minimum depth (continental shelf)
1002 if (rF(k).gt.-depthfesed) then
1003 c only if bottom layer
1004 if (bottom.eq.1.0 _d 0) then
1005 #ifdef IRON_SED_SOURCE_VARIABLE
1006 c calculate sink of POP into bottom layer
1007 tmp=(wp_sink*POPupl)/(dzlocal)
1008 c convert to dPOCl
1009 dFetl=dFetl+fesedflux_pcm*(tmp*106. _d 0)
1010 #else
1011 dFetl=dFetl+fesedflux/
1012 & (drF(k)*hFacC(i,j,k,bi,bj))
1013 #endif
1014 endif
1015 endif
1016 #endif
1017
1018
1019 popupl = POPl
1020 ponupl = PONl
1021 pofeupl = POFel
1022 psiupl = PSil
1023 do np=1,npmax
1024 Phyup(np) = Phy(np)
1025 #ifdef DYNAMIC_CHL
1026 chlup(np) = phychl(np)
1027 #endif
1028 enddo
1029
1030
1031 c
1032 #ifdef ALLOW_CARBON
1033 pocupl = POCl
1034 picupl = PICl
1035 c include surface forcing
1036 if (k.eq.1) then
1037 ddicl = ddicl + flxCO2(i,j)
1038 dalkl = dalkl + flxALK(i,j)
1039 do2l = do2l + flxO2(i,j)
1040 endif
1041 #endif
1042 c
1043 #ifdef CONS_SUPP
1044 c only works for two layer model
1045 if (k.eq.2) then
1046 dpo4l=0. _d 0
1047 dno3l=0. _d 0
1048 dfetl=0. _d 0
1049 dsil=0. _d 0
1050 endif
1051 #endif
1052 #ifdef RELAX_NUTS
1053 #ifdef DENIT_RELAX
1054 if (rF(k).lt.-depthdenit) then
1055 if (darwin_relaxscale.gt.0. _d 0) then
1056 IF ( darwin_NO3_RelaxFile .NE. ' ' ) THEN
1057 c Fanny's formulation
1058 tmp=(Ptr(i,j,k,bi,bj,iNO3 )-no3_obs(i,j,k,bi,bj))
1059 if (tmp.gt.0. _d 0) then
1060 dno3l=dno3l-(tmp/
1061 & darwin_relaxscale)
1062 denit=tmp/
1063 & darwin_relaxscale
1064 else
1065 denit=0. _d 0
1066 endif
1067 c --- end fanny's formulation
1068 ENDIF
1069 c steph's alternative
1070 c tmp=(Ptr(i,j,k,bi,bj,iNO3 )-
1071 c & 16. _d 0 * Ptr(i,j,k,bi,bj,iPO4 ))
1072 c if (tmp.gt.0. _d 0) then
1073 c dno3l=dno3l-(tmp/
1074 c & darwin_relaxscale)
1075 c denit=tmp/
1076 c & darwin_relaxscale
1077 c else
1078 c denit=0. _d 0
1079 c endif
1080 c ---- end steph's alternative
1081 endif
1082 endif
1083 #else
1084 if (darwin_relaxscale.gt.0. _d 0) then
1085 IF ( darwin_PO4_RelaxFile .NE. ' ' ) THEN
1086 tmp=(Ptr(i,j,k,bi,bj,iPO4 )-po4_obs(i,j,k,bi,bj))
1087 if (tmp.lt.0. _d 0) then
1088 dpo4l=dpo4l-(tmp/
1089 & darwin_relaxscale)
1090 endif
1091 ENDIF
1092 IF ( darwin_NO3_RelaxFile .NE. ' ' ) THEN
1093 tmp=(Ptr(i,j,k,bi,bj,iNO3 )-no3_obs(i,j,k,bi,bj))
1094 if (tmp.lt.0. _d 0) then
1095 dno3l=dno3l-(tmp/
1096 & darwin_relaxscale)
1097 endif
1098 ENDIF
1099 IF ( darwin_Fet_RelaxFile .NE. ' ' ) THEN
1100 tmp=(Ptr(i,j,k,bi,bj,iFeT )-fet_obs(i,j,k,bi,bj))
1101 if (tmp.lt.0. _d 0) then
1102 dfetl=dfetl-(tmp/
1103 & darwin_relaxscale)
1104 endif
1105 ENDIF
1106 IF ( darwin_Si_RelaxFile .NE. ' ' ) THEN
1107 tmp=( Ptr(i,j,k,bi,bj,iSi )-si_obs(i,j,k,bi,bj))
1108 if (tmp.lt.0. _d 0) then
1109 dsil=dsil-(tmp/
1110 & darwin_relaxscale)
1111 endif
1112 ENDIF
1113 endif
1114 #endif
1115 #endif
1116 #ifdef FLUX_NUTS
1117 dpo4l=dpo4l+po4_flx(i,j,k,bi,bj)
1118 dno3l=dno3l+no3_flx(i,j,k,bi,bj)
1119 dfetl=dfetl+fet_flx(i,j,k,bi,bj)
1120 dsil=dsil+si_flx(i,j,k,bi,bj)
1121 #endif
1122 c
1123 c now update main tracer arrays
1124 dtplankton = PTRACERS_dTLev(k)/float(nsubtime)
1125 Ptr(i,j,k,bi,bj,iPO4 ) = Ptr(i,j,k,bi,bj,iPO4) +
1126 & dtplankton*dpo4l
1127 Ptr(i,j,k,bi,bj,iNO3 ) = Ptr(i,j,k,bi,bj,iNO3) +
1128 & dtplankton*dno3l
1129 Ptr(i,j,k,bi,bj,iFeT ) = Ptr(i,j,k,bi,bj,iFeT) +
1130 & dtplankton*dfetl
1131 Ptr(i,j,k,bi,bj,iSi ) = Ptr(i,j,k,bi,bj,iSi ) +
1132 & dtplankton*dsil
1133 Ptr(i,j,k,bi,bj,iDOP ) = Ptr(i,j,k,bi,bj,iDOP) +
1134 & dtplankton*ddopl
1135 Ptr(i,j,k,bi,bj,iDON ) = Ptr(i,j,k,bi,bj,iDON) +
1136 & dtplankton*ddonl
1137 Ptr(i,j,k,bi,bj,iDOFe) = Ptr(i,j,k,bi,bj,iDOFe) +
1138 & dtplankton*ddofel
1139 Ptr(i,j,k,bi,bj,iPOP ) = Ptr(i,j,k,bi,bj,iPOP ) +
1140 & dtplankton*dpopl
1141 Ptr(i,j,k,bi,bj,iPON ) = Ptr(i,j,k,bi,bj,iPON ) +
1142 & dtplankton*dponl
1143 Ptr(i,j,k,bi,bj,iPOFe) = Ptr(i,j,k,bi,bj,iPOFe) +
1144 & dtplankton*dpofel
1145 Ptr(i,j,k,bi,bj,iPOSi) = Ptr(i,j,k,bi,bj,iPOSi) +
1146 & dtplankton*dpsil
1147 Ptr(i,j,k,bi,bj,iNH4 ) = Ptr(i,j,k,bi,bj,iNH4 ) +
1148 & dtplankton*dnh4l
1149 Ptr(i,j,k,bi,bj,iNO2 ) = Ptr(i,j,k,bi,bj,iNO2 ) +
1150 & dtplankton*dno2l
1151 DO nz = 1,nzmax
1152 Ptr(i,j,k,bi,bj,iZooP (nz)) = Ptr(i,j,k,bi,bj,iZooP (nz)) +
1153 & dtplankton*dzoop (nz)
1154 Ptr(i,j,k,bi,bj,iZooN (nz)) = Ptr(i,j,k,bi,bj,iZooN (nz)) +
1155 & dtplankton*dzoon (nz)
1156 Ptr(i,j,k,bi,bj,iZooFe(nz)) = Ptr(i,j,k,bi,bj,iZooFe(nz)) +
1157 & dtplankton*dzoofe(nz)
1158 Ptr(i,j,k,bi,bj,iZooSi(nz)) = Ptr(i,j,k,bi,bj,iZooSi(nz)) +
1159 & dtplankton*dzoosi(nz)
1160 ENDDO
1161 DO np = 1,npmax
1162 Ptr(i,j,k,bi,bj,iPhy+np-1) = Ptr(i,j,k,bi,bj,iPhy+np-1) +
1163 & dtplankton*dPhy(np)
1164 #ifdef GEIDER
1165 #ifdef DYNAMIC_CHL
1166 if (np.eq.1) Chl=0. _d 0
1167 Ptr(i,j,k,bi,bj,iChl+np-1) = Ptr(i,j,k,bi,bj,iChl+np-1) +
1168 & dtplankton*dphychl(np)
1169 c chltmp=Ptr(i,j,k,bi,bj,iChl+np-1)
1170 c phytmp=Ptr(i,j,k,bi,bj,iPhy+np-1)
1171 c Ptr(i,j,k,bi,bj,iChl+np-1)=
1172 c & max(chltmp,phytmp*R_PC(np)*chl2cmin(np))
1173 c if (np.eq.1.and.i.eq.1.and.j.eq.1.and.k.eq.1)
1174 c & print*,chltmp,phytmp,phytmp*R_PC(np)*chl2cmin(np),
1175 c & phytmp*R_PC(np)*chl2cmax(np)
1176 c in darwin_plankton this is stored for previous timestep. Reset here.
1177 Chl=Chl+Ptr(i,j,k,bi,bj,iChl+np-1)
1178 #else
1179 Chl_phy(i,j,k,bi,bj,np)=phychl(np)
1180 #endif
1181 #endif
1182 ENDDO
1183 #ifdef ALLOW_CDOM
1184 Ptr(i,j,k,bi,bj,iCDOM ) = Ptr(i,j,k,bi,bj,iCDOM ) +
1185 & dtplankton*dcdoml
1186 #endif
1187 #ifdef ALLOW_CARBON
1188 Ptr(i,j,k,bi,bj,iDIC ) = Ptr(i,j,k,bi,bj,iDIC ) +
1189 & dtplankton*ddicl
1190 Ptr(i,j,k,bi,bj,iDOC ) = Ptr(i,j,k,bi,bj,iDOC ) +
1191 & dtplankton*ddocl
1192 Ptr(i,j,k,bi,bj,iPOC ) = Ptr(i,j,k,bi,bj,iPOC ) +
1193 & dtplankton*dpocl
1194 Ptr(i,j,k,bi,bj,iPIC ) = Ptr(i,j,k,bi,bj,iPIC ) +
1195 & dtplankton*dpicl
1196 Ptr(i,j,k,bi,bj,iALK ) = Ptr(i,j,k,bi,bj,iALK ) +
1197 & dtplankton*dalkl
1198 Ptr(i,j,k,bi,bj,iO2 ) = Ptr(i,j,k,bi,bj,iO2 ) +
1199 & dtplankton*do2l
1200 DO nz = 1,nzmax
1201 Ptr(i,j,k,bi,bj,iZooC (nz)) = Ptr(i,j,k,bi,bj,iZooC (nz)) +
1202 & dtplankton*dzoocl (nz)
1203 ENDDO
1204 #endif
1205 c
1206 #ifdef ALLOW_MUTANTS
1207 cQQQQTEST
1208 if (debug.eq.11) then
1209 if (k.lt.8) then
1210 do np=1,60
1211 if(mod(np,4).eq. 1. _d 0)then
1212 np2=np+1
1213 np4=np+3
1214
1215 Coj: couldn't test this part after change Phynp -> Ptr(...,iPhy+np-1)
1216 Coj: used to be many copies of this:
1217 C if (dPhy(2).gt.dPhy(4).and.dPhy(4).gt.0. _d 0) then
1218 C print*,'QQQ dphy2 > dphy4',i,j,k,Phy2(i,j,k),
1219 C & Phy4(i,j,k), dPhy(2), dPhy(4)
1220 C endif
1221 C if (Phy2(i,j,k).gt.Phy4(i,j,k).and.
1222 C & Phy4(i,j,k).gt.0. _d 0) then
1223 C print*,'QQ phy02 > phy04',i,j,k,Phy2(i,j,k),
1224 C & Phy4(i,j,k), dPhy(2), dPhy(4)
1225 C endif
1226
1227 if (dPhy(np2).gt.dPhy(np4).and.dPhy(np4).gt.0. _d 0) then
1228 print*,'QQQ dphy',np2,' > dphy',np4,i,j,k,Phy2(i,j,k),
1229 & Ptr(i,j,k,bi,bj,iPhy+np4-1), dPhy(2), dPhy(4)
1230 endif
1231 if (Ptr(i,j,k,bi,bj,iphy+np2-1).gt.Ptr(i,j,k,bi,bj,iPhy+np4-1)
1232 & .and. Ptr(i,j,k,bi,bj,iPhy+np4-1).gt.0. _d 0) then
1233 print*,'QQ phy',np2,' > ',np4,i,j,k,
1234 & Ptr(i,j,k,bi,bj,iPhy+np2-1),
1235 & Ptr(i,j,k,bi,bj,iPhy+np4-1), dPhy(2), dPhy(4)
1236 endif
1237
1238 endif
1239 enddo ! np
1240 endif ! k
1241 endif
1242 #endif
1243
1244 #ifdef ALLOW_DIAGNOSTICS
1245 COJ for diagnostics
1246 PParr(i,j,k) = PP
1247 Nfixarr(i,j,k) = Nfix
1248 c ANNA_TAVE
1249 #ifdef WAVES_DIAG_PCHL
1250 DO np = 1,npmax
1251 Pchlarr(i,j,k,np) = phychl(np)
1252 ENDDO
1253 #endif
1254 c ANNA end TAVE
1255 #ifdef DAR_DIAG_RSTAR
1256 DO np = 1,npmax
1257 Rstararr(i,j,k,np) = Rstarl(np)
1258 ENDDO
1259 #endif
1260 #ifdef ALLOW_DIAZ
1261 #ifdef DAR_DIAG_NFIXP
1262 DO np = 1,npmax
1263 NfixParr(i,j,k,np) = NfixPl(np)
1264 ENDDO
1265 #endif
1266 #endif
1267 #ifdef DAR_DIAG_CHL
1268 GeiderChlarr(i,j,k) = ChlGeiderlocal
1269 DoneyChlarr(i,j,k) = ChlDoneylocal
1270 CloernChlarr(i,j,k) = ChlCloernlocal
1271 IF (totphyC .NE. 0. _d 0) THEN
1272 GeiderChl2Carr(i,j,k) = ChlGeiderlocal/totphyC
1273 DoneyChl2Carr(i,j,k) = ChlDoneylocal/totphyC
1274 CloernChl2Carr(i,j,k) = ChlCloernlocal/totphyC
1275 ELSE
1276 GeiderChl2Carr(i,j,k) = 0. _d 0
1277 DoneyChl2Carr(i,j,k) = 0. _d 0
1278 CloernChl2Carr(i,j,k) = 0. _d 0
1279 ENDIF
1280 #endif
1281 COJ
1282 #endif /* ALLOW_DIAGNOSTICS */
1283
1284 c total fixation (NOTE - STILL NEEDS GLOB SUM)
1285 tot_Nfix=tot_Nfix+
1286 & Nfix*rA(i,j,bi,bj)*rF(k)*hFacC(i,j,k,bi,bj)
1287
1288 #ifdef ALLOW_TIMEAVE
1289 c save averages
1290 c Phygrow1ave(i,j,k,bi,bj)=Phygrow1ave(i,j,k,bi,bj)+
1291 c & mu1*py1*deltaTclock
1292 c & /float(nsubtime)
1293 c Phygrow2ave(i,j,k,bi,bj)=Phygrow2ave(i,j,k,bi,bj)+
1294 c & mu2*py2*deltaTclock
1295 c & /float(nsubtime)
1296 c Zoograzave(i,j,k,bi,bj)=Zoograzave(i,j,k,bi,bj)+
1297 c & (gampn1*graz1*zo +gampn2*graz2*zo)*
1298 c & deltaTclock/float(nsubtime)
1299 #ifdef GEIDER
1300 Chlave(i,j,k,bi,bj)=Chlave(i,j,k,bi,bj)+
1301 & Chl*dtplankton
1302 #endif
1303 PARave(i,j,k,bi,bj)=PARave(i,j,k,bi,bj)+
1304 & PARl*dtplankton
1305 PPave(i,j,k,bi,bj)=PPave(i,j,k,bi,bj)+
1306 & PP*dtplankton
1307 Nfixave(i,j,k,bi,bj)=Nfixave(i,j,k,bi,bj)+
1308 & Nfix*dtplankton
1309 Denitave(i,j,k,bi,bj)=Denitave(i,j,k,bi,bj)+
1310 & denit*dtplankton
1311 #ifdef WAVES_DIAG_PCHL
1312 do np=1,npmax
1313 Pchlave(i,j,k,bi,bj,np)=Pchlave(i,j,k,bi,bj,np)+
1314 & phychl(np)*dtplankton
1315 enddo
1316 #endif
1317 #ifdef DAR_DIAG_ACDOM
1318 c print*,'acdom',k,acdom_k(k,darwin_diag_acdom_ilam)
1319 aCDOMave(i,j,k,bi,bj)=aCDOMave(i,j,k,bi,bj)+
1320 & acdom_k(k,darwin_diag_acdom_ilam)*dtplankton
1321 #endif
1322 #ifdef DAR_DIAG_IRR
1323 do ilam = 1,tlam
1324 if (k.EQ.1) then
1325 Edave(i,j,k,bi,bj,ilam)=Edave(i,j,k,bi,bj,ilam)+
1326 & Edwsf(ilam)*dtplankton
1327 Esave(i,j,k,bi,bj,ilam)=Esave(i,j,k,bi,bj,ilam)+
1328 & Eswsf(ilam)*dtplankton
1329 Coj no Eu at surface (yet)
1330 else
1331 Edave(i,j,k,bi,bj,ilam)=Edave(i,j,k,bi,bj,ilam)+
1332 & Edz(ilam,k-1)*dtplankton
1333 Esave(i,j,k,bi,bj,ilam)=Esave(i,j,k,bi,bj,ilam)+
1334 & Esz(ilam,k-1)*dtplankton
1335 Euave(i,j,k,bi,bj,ilam)=Euave(i,j,k,bi,bj,ilam)+
1336 & Euz(ilam,k-1)*dtplankton
1337 endif
1338 Eutave(i,j,k,bi,bj,ilam)=Eutave(i,j,k,bi,bj,ilam)+
1339 & Eutop(ilam,k)*dtplankton
1340 enddo
1341 #endif
1342 #ifdef DAR_DIAG_ABSORP
1343 do ilam = 1,tlam
1344 aave(i,j,k,bi,bj,ilam)=aave(i,j,k,bi,bj,ilam)+
1345 & a_k(k,ilam)*dtplankton
1346 enddo
1347 #endif
1348 #ifdef DAR_DIAG_SCATTER
1349 do ilam = 1,tlam
1350 btave(i,j,k,bi,bj,ilam)=btave(i,j,k,bi,bj,ilam)+
1351 & bt_k(k,ilam)*dtplankton
1352 bbave(i,j,k,bi,bj,ilam)=bbave(i,j,k,bi,bj,ilam)+
1353 & bb_k(k,ilam)*dtplankton
1354 enddo
1355 #endif
1356 #ifdef DAR_DIAG_PART_SCATTER
1357 do ilam = 1,tlam
1358 apartave(i,j,k,bi,bj,ilam)=apartave(i,j,k,bi,bj,ilam)+
1359 & apart_k(k,ilam)*dtplankton
1360 btpartave(i,j,k,bi,bj,ilam)=btpartave(i,j,k,bi,bj,ilam)+
1361 & bpart_k(k,ilam)*dtplankton
1362 bbpartave(i,j,k,bi,bj,ilam)=bbpartave(i,j,k,bi,bj,ilam)+
1363 & bbpart_k(k,ilam)*dtplankton
1364 enddo
1365 #endif
1366 #ifdef DAR_DIAG_RSTAR
1367 do np=1,npmax
1368 Rstarave(i,j,k,bi,bj,np)=Rstarave(i,j,k,bi,bj,np)+
1369 & Rstarl(np)*dtplankton
1370 RNstarave(i,j,k,bi,bj,np)=RNstarave(i,j,k,bi,bj,np)+
1371 & RNstarl(np)*dtplankton
1372 enddo
1373 #endif
1374 #ifdef DAR_DIAG_DIVER
1375 Diver1ave(i,j,k,bi,bj)=Diver1ave(i,j,k,bi,bj)+
1376 & Diver1(i,j,k)*dtplankton
1377 Diver2ave(i,j,k,bi,bj)=Diver2ave(i,j,k,bi,bj)+
1378 & Diver2(i,j,k)*dtplankton
1379 Diver3ave(i,j,k,bi,bj)=Diver3ave(i,j,k,bi,bj)+
1380 & Diver3(i,j,k)*dtplankton
1381 Diver4ave(i,j,k,bi,bj)=Diver4ave(i,j,k,bi,bj)+
1382 & Diver4(i,j,k)*dtplankton
1383 #endif
1384 #ifdef DAR_DIAG_GROW
1385 do np=1,npmax
1386 Growave(i,j,k,bi,bj,np)=Growave(i,j,k,bi,bj,np)+
1387 & Growl(np)*dtplankton
1388 Growsqave(i,j,k,bi,bj,np)=Growsqave(i,j,k,bi,bj,np)+
1389 & Growsql(np)*dtplankton
1390 enddo
1391 #endif
1392
1393 #ifdef ALLOW_DIAZ
1394 #ifdef DAR_DIAG_NFIXP
1395 do np=1,npmax
1396 NfixPave(i,j,k,bi,bj,np)=NfixPave(i,j,k,bi,bj,np)+
1397 & NfixPl(np)*dtplankton
1398 enddo
1399 #endif
1400 #endif
1401 #endif
1402
1403 #ifdef ALLOW_CARBON
1404 if (k.eq.1) then
1405 SURave(i,j,bi,bj) =SURave(i,j,bi,bj)+
1406 & flxCO2(i,j)*dtplankton
1407 SURCave(i,j,bi,bj) =SURCave(i,j,bi,bj)+
1408 & FluxCO2(i,j,bi,bj)*dtplankton
1409 SUROave(i,j,bi,bj) =SUROave(i,j,bi,bj)+
1410 & flxO2(i,j)*dtplankton
1411 pCO2ave(i,j,bi,bj) =pCO2ave(i,j,bi,bj)+
1412 & pCO2(i,j,bi,bj)*dtplankton
1413 pHave(i,j,bi,bj) =pHave(i,j,bi,bj)+
1414 & pH(i,j,bi,bj)*dtplankton
1415 endif
1416 #endif
1417 endif
1418 c end if hFac>0
1419
1420 enddo ! k
1421 c end layer loop
1422 c
1423
1424 ENDDO ! i
1425 ENDDO ! j
1426
1427 #ifdef ALLOW_PAR_DAY
1428 C 1 <-> 2
1429 PARiaccum = 3 - PARiprev
1430
1431 DO k=1,nR
1432 DO j=1,sNy
1433 DO i=1,sNx
1434 PARday(i,j,k,bi,bj,PARiaccum) =
1435 & PARday(i,j,k,bi,bj,PARiaccum) + PAR(i,j,k)
1436 ENDDO
1437 ENDDO
1438 ENDDO
1439
1440 phase = 0. _d 0
1441 itistime = DIFF_PHASE_MULTIPLE( phase, darwin_PARavPeriod,
1442 & newtime, dtsubtime)
1443
1444 IF ( itistime ) THEN
1445 C compute average
1446 nav = darwin_PARnav
1447 IF (newtime - baseTime .LT. darwin_PARavPeriod) THEN
1448 C incomplete period at beginning of run
1449 nav = NINT((newtime-baseTime)/dtsubtime)
1450 ENDIF
1451 DO k=1,nR
1452 DO j=1,sNy
1453 DO i=1,sNx
1454 PARday(i,j,k,bi,bj,PARiaccum) =
1455 & PARday(i,j,k,bi,bj,PARiaccum) / nav
1456 ENDDO
1457 ENDDO
1458 ENDDO
1459 C reset the other slot for averaging
1460 DO k=1,nR
1461 DO j=1,sNy
1462 DO i=1,sNx
1463 PARday(i,j,k,bi,bj,PARiprev) = 0. _d 0
1464 ENDDO
1465 ENDDO
1466 ENDDO
1467 ENDIF
1468 C itistime
1469 #endif
1470
1471 COJ fill diagnostics
1472 #ifdef ALLOW_DIAGNOSTICS
1473 IF ( useDiagnostics ) THEN
1474 diagname = ' '
1475 WRITE(diagname,'(A8)') 'PAR '
1476 CALL DIAGNOSTICS_FILL( PAR(1-Olx,1-Oly,1), diagname,
1477 & 0,Nr,2,bi,bj,myThid )
1478 WRITE(diagname,'(A8)') 'PP '
1479 CALL DIAGNOSTICS_FILL( PParr(1-Olx,1-Oly,1), diagname,
1480 & 0,Nr,2,bi,bj,myThid )
1481 WRITE(diagname,'(A8)') 'Nfix '
1482 CALL DIAGNOSTICS_FILL( Nfixarr(1-Olx,1-Oly,1), diagname,
1483 & 0,Nr,2,bi,bj,myThid )
1484 c ANNA_TAVE
1485 #ifdef WAVES_DIAG_PCHL
1486 DO np=1,MIN(99,npmax)
1487 WRITE(diagname,'(A5,I2.2,A1)') 'Pchl',np,' '
1488 CALL DIAGNOSTICS_FILL( Pchlarr(1-Olx,1-Oly,1,np), diagname,
1489 & 0,Nr,2,bi,bj,myThid )
1490 ENDDO
1491 #endif
1492 c ANNA end TAVE
1493 #ifdef DAR_DIAG_RSTAR
1494 DO np=1,MIN(99,npmax)
1495 WRITE(diagname,'(A5,I2.2,A1)') 'Rstar',np,' '
1496 CALL DIAGNOSTICS_FILL( Rstararr(1-Olx,1-Oly,1,np), diagname,
1497 & 0,Nr,2,bi,bj,myThid )
1498 ENDDO
1499 #endif
1500 #ifdef DAR_DIAG_DIVER
1501 WRITE(diagname,'(A8)') 'Diver1 '
1502 CALL DIAGNOSTICS_FILL( Diver1(1-Olx,1-Oly,1), diagname,
1503 & 0,Nr,2,bi,bj,myThid )
1504 WRITE(diagname,'(A8)') 'Diver2 '
1505 CALL DIAGNOSTICS_FILL( Diver2(1-Olx,1-Oly,1), diagname,
1506 & 0,Nr,2,bi,bj,myThid )
1507 WRITE(diagname,'(A8)') 'Diver3 '
1508 CALL DIAGNOSTICS_FILL( Diver3(1-Olx,1-Oly,1), diagname,
1509 & 0,Nr,2,bi,bj,myThid )
1510 WRITE(diagname,'(A8)') 'Diver4 '
1511 CALL DIAGNOSTICS_FILL( Diver4(1-Olx,1-Oly,1), diagname,
1512 & 0,Nr,2,bi,bj,myThid )
1513 WRITE(diagname,'(A8)') 'Shannon '
1514 CALL DIAGNOSTICS_FILL( Shannon(1-Olx,1-Oly,1), diagname,
1515 & 0,Nr,2,bi,bj,myThid )
1516 WRITE(diagname,'(A8)') 'Simpson '
1517 CALL DIAGNOSTICS_FILL( Simpson(1-Olx,1-Oly,1), diagname,
1518 & 0,Nr,2,bi,bj,myThid )
1519 #endif
1520 #ifdef ALLOW_DIAZ
1521 #ifdef DAR_DIAG_NFIXP
1522 DO np=1,MIN(99,npmax)
1523 WRITE(diagname,'(A5,I2.2,A1)') 'NfixP',np,' '
1524 CALL DIAGNOSTICS_FILL( NfixParr(1-Olx,1-Oly,1,np), diagname,
1525 & 0,Nr,2,bi,bj,myThid )
1526 ENDDO
1527 #endif
1528 #endif
1529 #ifdef DAR_DIAG_CHL
1530 CALL DIAGNOSTICS_FILL( GeiderChlarr(1-Olx,1-Oly,1), 'ChlGeide',
1531 & 0,Nr,2,bi,bj,myThid )
1532 CALL DIAGNOSTICS_FILL( GeiderChl2Carr(1-Olx,1-Oly,1),'Chl2CGei',
1533 & 0,Nr,2,bi,bj,myThid )
1534 CALL DIAGNOSTICS_FILL( DoneyChlarr(1-Olx,1-Oly,1), 'ChlDoney',
1535 & 0,Nr,2,bi,bj,myThid )
1536 CALL DIAGNOSTICS_FILL( DoneyChl2Carr(1-Olx,1-Oly,1), 'Chl2CDon',
1537 & 0,Nr,2,bi,bj,myThid )
1538 CALL DIAGNOSTICS_FILL( CloernChlarr(1-Olx,1-Oly,1), 'ChlCloer',
1539 & 0,Nr,2,bi,bj,myThid )
1540 CALL DIAGNOSTICS_FILL( CloernChl2Carr(1-Olx,1-Oly,1),'Chl2CClo',
1541 & 0,Nr,2,bi,bj,myThid )
1542 #endif
1543 #ifdef ALLOW_CARBON
1544 CALL DIAGNOSTICS_FILL( flxCO2(1-Olx,1-Oly), 'DICTFLX ',
1545 & 0,1,2,bi,bj,myThid )
1546 CALL DIAGNOSTICS_FILL( FluxCO2(1-Olx,1-Oly,bi,bj), 'DICCFLX ',
1547 & 0,1,2,bi,bj,myThid )
1548 CALL DIAGNOSTICS_FILL( flxO2(1-Olx,1-Oly), 'DICOFLX ',
1549 & 0,1,2,bi,bj,myThid )
1550 CALL DIAGNOSTICS_FILL( pCO2(1-Olx,1-Oly,bi,bj), 'DICPCO2 ',
1551 & 0,1,2,bi,bj,myThid )
1552 CALL DIAGNOSTICS_FILL( pH(1-Olx,1-Oly,bi,bj), 'DICPHAV ',
1553 & 0,1,2,bi,bj,myThid )
1554 #endif /* ALLOW_CARBON */
1555 ENDIF
1556 #endif /* ALLOW_DIAGNOSTICS */
1557 COJ
1558
1559 c determine iron partitioning - solve for free iron
1560 call darwin_fe_chem(bi,bj,iMin,iMax,jMin,jMax,
1561 & Ptr(1-OLx,1-OLy,1,bi,bj,iFeT), freefe,
1562 & myIter, mythid)
1563 c
1564 #ifdef ALLOW_TIMEAVE
1565 c save averages
1566 do k=1,nR
1567 dar_timeave(bi,bj,k)=dar_timeave(bi,bj,k)
1568 & +dtplankton
1569 #ifdef ALLOW_CARBON
1570 dic_timeave(bi,bj,k)=dic_timeave(bi,bj,k)
1571 & +dtplankton
1572 #endif
1573 enddo
1574 #endif
1575 c
1576 c -----------------------------------------------------
1577 ENDDO ! it
1578 c -----------------------------------------------------
1579 c end of bio-chemical time loop
1580 c
1581 RETURN
1582 END
1583 #endif /*MONOD*/
1584 #endif /*ALLOW_PTRACERS*/
1585
1586 C============================================================================

  ViewVC Help
Powered by ViewVC 1.1.22