1 |
C $Header: /u/gcmpack/MITgcm_contrib/darwin2/pkg/monod/monod_forcing.F,v 1.11 2012/08/23 21:49:33 jahn Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "CPP_OPTIONS.h" |
5 |
#include "PTRACERS_OPTIONS.h" |
6 |
#include "DARWIN_OPTIONS.h" |
7 |
|
8 |
#ifdef ALLOW_PTRACERS |
9 |
#ifdef ALLOW_MONOD |
10 |
|
11 |
c============================================================= |
12 |
c subroutine MONOD_forcing |
13 |
c step forward bio-chemical tracers in time |
14 |
C============================================================== |
15 |
SUBROUTINE MONOD_FORCING( |
16 |
U Ptr, |
17 |
I bi,bj,imin,imax,jmin,jmax, |
18 |
I myTime,myIter,myThid) |
19 |
#include "SIZE.h" |
20 |
#include "EEPARAMS.h" |
21 |
#include "PARAMS.h" |
22 |
#include "GRID.h" |
23 |
#include "DYNVARS.h" |
24 |
c for Qsw and/or surfaceForcingT |
25 |
c choice which field to take pCO2 from for pCO2limit |
26 |
c this assumes we use Ttendency from offline |
27 |
#include "FFIELDS.h" |
28 |
#ifdef ALLOW_LONGSTEP |
29 |
#include "LONGSTEP.h" |
30 |
#endif |
31 |
#include "PTRACERS_SIZE.h" |
32 |
#include "PTRACERS_PARAMS.h" |
33 |
#include "GCHEM.h" |
34 |
#include "MONOD_SIZE.h" |
35 |
#include "MONOD.h" |
36 |
#include "DARWIN_IO.h" |
37 |
#include "DARWIN_FLUX.h" |
38 |
#include "MONOD_FIELDS.h" |
39 |
|
40 |
c ANNA include wavebands_params.h |
41 |
#ifdef WAVEBANDS |
42 |
#include "SPECTRAL_SIZE.h" |
43 |
#include "SPECTRAL.h" |
44 |
#include "WAVEBANDS_PARAMS.h" |
45 |
#endif |
46 |
|
47 |
|
48 |
C === Global variables === |
49 |
c tracers |
50 |
_RL Ptr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy,nDarwin) |
51 |
INTEGER bi,bj,imin,imax,jmin,jmax |
52 |
INTEGER myIter |
53 |
_RL myTime |
54 |
INTEGER myThid |
55 |
|
56 |
C !FUNCTIONS: |
57 |
C == Functions == |
58 |
#ifdef ALLOW_PAR_DAY |
59 |
LOGICAL DIFF_PHASE_MULTIPLE |
60 |
EXTERNAL DIFF_PHASE_MULTIPLE |
61 |
#endif |
62 |
|
63 |
C============== Local variables ============================================ |
64 |
c plankton arrays |
65 |
_RL ZooP(nzmax) |
66 |
_RL ZooN(nzmax) |
67 |
_RL ZooFe(nzmax) |
68 |
_RL ZooSi(nzmax) |
69 |
_RL Phy(npmax) |
70 |
_RL Phy_k(npmax,Nr) |
71 |
_RL Phyup(npmax) |
72 |
_RL part_k(Nr) |
73 |
#ifdef ALLOW_CDOM |
74 |
_RL cdom_k(Nr) |
75 |
#endif |
76 |
c iron partitioning |
77 |
_RL freefe(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
78 |
c some working variables |
79 |
_RL sumpy |
80 |
_RL sumpyup |
81 |
c light variables |
82 |
_RL PAR(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
83 |
_RL sfac(1-OLy:sNy+OLy) |
84 |
_RL atten,lite |
85 |
_RL newtime ! for sub-timestepping |
86 |
_RL runtim ! time from tracer initialization |
87 |
|
88 |
|
89 |
c ANNA define variables for wavebands |
90 |
#ifdef WAVEBANDS |
91 |
integer ilam |
92 |
_RL PARw_k(tlam,Nr) |
93 |
_RL PARwup(tlam) |
94 |
_RL acdom_k(Nr,tlam) |
95 |
#ifdef DAR_RADTRANS |
96 |
integer iday,iyr,imon,isec,lp,wd,mydate(4) |
97 |
_RL Edwsf(tlam),Eswsf(tlam) |
98 |
_RL Edz(tlam,Nr),Esz(tlam,Nr),Euz(tlam,Nr) |
99 |
_RL Estop(tlam,Nr),Eutop(tlam,Nr) |
100 |
_RL tirrq(nr) |
101 |
_RL tirrwq(tlam,nr) |
102 |
_RL amp1(tlam,nr), amp2(tlam,nr) |
103 |
_RL solz |
104 |
_RL rmud |
105 |
_RL actot,bctot,bbctot |
106 |
_RL apart_k(Nr,tlam),bpart_k(Nr,tlam),bbpart_k(Nr,tlam) |
107 |
_RL bt_k(Nr,tlam), bb_k(Nr,tlam) |
108 |
_RL discEs, discEu |
109 |
INTEGER idiscEs,jdiscEs,kdiscEs,ldiscEs |
110 |
INTEGER idiscEu,jdiscEu,kdiscEu,ldiscEu |
111 |
#else |
112 |
_RL PARwdn(tlam) |
113 |
#endif |
114 |
C always need for diagnostics |
115 |
_RL a_k(Nr,tlam) |
116 |
#endif /* WAVEBANDS */ |
117 |
|
118 |
|
119 |
#ifdef DAR_DIAG_DIVER |
120 |
_RL Diver1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
121 |
_RL Diver2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
122 |
_RL Diver3(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
123 |
_RL Diver4(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
124 |
_RL Shannon(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
125 |
_RL Simpson(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
126 |
|
127 |
_RL tmpphy(npmax) |
128 |
_RL totphy, biotot, maxphy, phymax |
129 |
#endif |
130 |
|
131 |
#ifdef GEIDER |
132 |
_RL phychl(npmax) |
133 |
_RL phychl_k(npmax,Nr) |
134 |
#ifdef DYNAMIC_CHL |
135 |
_RL dphychl(npmax) |
136 |
_RL chlup(npmax) |
137 |
#endif |
138 |
#endif |
139 |
#ifdef ALLOW_CDOM |
140 |
_RL cdoml |
141 |
_RL dcdoml |
142 |
#endif |
143 |
|
144 |
#ifdef ALLOW_DIAGNOSTICS |
145 |
COJ for diagnostics |
146 |
_RL PParr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
147 |
_RL Nfixarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
148 |
c ANNA_TAVE |
149 |
#ifdef WAVES_DIAG_PCHL |
150 |
_RL Pchlarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,npmax) |
151 |
#endif |
152 |
c ANNA end TAVE |
153 |
#ifdef DAR_DIAG_RSTAR |
154 |
_RL Rstararr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,npmax) |
155 |
#endif |
156 |
#ifdef ALLOW_DIAZ |
157 |
#ifdef DAR_DIAG_NFIXP |
158 |
_RL NfixParr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,npmax) |
159 |
#endif |
160 |
#endif |
161 |
#endif |
162 |
|
163 |
|
164 |
_RL totphyC |
165 |
#ifdef ALLOW_PAR_DAY |
166 |
LOGICAL itistime |
167 |
INTEGER PARiprev, PARiaccum, iperiod, nav |
168 |
_RL phase |
169 |
_RL dtsubtime |
170 |
#endif |
171 |
#ifdef DAR_DIAG_CHL |
172 |
_RL ChlGeiderlocal, ChlDoneylocal, ChlCloernlocal |
173 |
#ifdef ALLOW_DIAGNOSTICS |
174 |
_RL GeiderChlarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
175 |
_RL GeiderChl2Carr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
176 |
_RL DoneyChlarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
177 |
_RL DoneyChl2Carr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
178 |
_RL CloernChlarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
179 |
_RL CloernChl2Carr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
180 |
#endif |
181 |
#endif |
182 |
c |
183 |
_RL freefu |
184 |
_RL inputFel |
185 |
|
186 |
c some local variables |
187 |
_RL PO4l |
188 |
_RL NO3l |
189 |
_RL FeTl |
190 |
_RL Sil |
191 |
_RL DOPl |
192 |
_RL DONl |
193 |
_RL DOFel |
194 |
_RL POPl |
195 |
_RL PONl |
196 |
_RL POFel |
197 |
_RL PSil |
198 |
_RL POPupl |
199 |
_RL PONupl |
200 |
_RL POFeupl |
201 |
_RL PSiupl |
202 |
_RL Tlocal |
203 |
_RL Slocal |
204 |
_RL pCO2local |
205 |
_RL Qswlocal |
206 |
_RL NH4l |
207 |
_RL NO2l |
208 |
_RL PARl |
209 |
_RL dzlocal |
210 |
_RL dz_k(Nr) |
211 |
_RL dtplankton |
212 |
_RL bottom |
213 |
_RL PP |
214 |
_RL Nfix |
215 |
_RL denit |
216 |
_RL Chl |
217 |
_RL Rstarl(npmax) |
218 |
_RL RNstarl(npmax) |
219 |
#ifdef DAR_DIAG_GROW |
220 |
_RL Growl(npmax) |
221 |
_RL Growsql(npmax) |
222 |
#endif |
223 |
#ifdef ALLOW_DIAZ |
224 |
#ifdef DAR_DIAG_NFIXP |
225 |
_RL NfixPl(npmax) |
226 |
#endif |
227 |
#endif |
228 |
|
229 |
c local tendencies |
230 |
_RL dphy(npmax) |
231 |
_RL dzoop(nzmax) |
232 |
_RL dzoon(nzmax) |
233 |
_RL dzoofe(nzmax) |
234 |
_RL dzoosi(nzmax) |
235 |
_RL dPO4l |
236 |
_RL dNO3l |
237 |
_RL dFeTl |
238 |
_RL dSil |
239 |
_RL dDOPl |
240 |
_RL dDONl |
241 |
_RL dDOFel |
242 |
_RL dPOPl |
243 |
_RL dPONl |
244 |
_RL dPOFel |
245 |
_RL dPSil |
246 |
_RL dNH4l |
247 |
_RL dNO2l |
248 |
|
249 |
#ifdef ALLOW_CARBON |
250 |
_RL dicl |
251 |
_RL docl |
252 |
_RL pocl |
253 |
_RL picl |
254 |
_RL alkl |
255 |
_RL o2l |
256 |
_RL ZooCl(nzmax) |
257 |
_RL pocupl |
258 |
_RL picupl |
259 |
c tendencies |
260 |
_RL ddicl |
261 |
_RL ddocl |
262 |
_RL dpocl |
263 |
_RL dpicl |
264 |
_RL dalkl |
265 |
_RL do2l |
266 |
_RL dZooCl(nzmax) |
267 |
c air-sea fluxes |
268 |
_RL flxCO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
269 |
_RL flxALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
270 |
_RL flxO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
271 |
#endif |
272 |
|
273 |
_RL tot_Nfix |
274 |
|
275 |
_RL tmp |
276 |
|
277 |
_RL phytmp, chltmp |
278 |
|
279 |
INTEGER i,j,k,it, ktmp |
280 |
INTEGER np, nz, np2, npsave |
281 |
INTEGER debug |
282 |
CHARACTER*8 diagname |
283 |
|
284 |
c |
285 |
c |
286 |
c |
287 |
DO j=1-OLy,sNy+OLy |
288 |
DO i=1-OLx,sNx+OLx |
289 |
do k=1,Nr |
290 |
freefe(i,j,k)=0. _d 0 |
291 |
PAR(i,j,k) = 0. _d 0 |
292 |
#ifdef DAR_DIAG_DIVER |
293 |
Diver1(i,j,k)=0. _d 0 |
294 |
Diver2(i,j,k)=0. _d 0 |
295 |
Diver3(i,j,k)=0. _d 0 |
296 |
Diver4(i,j,k)=0. _d 0 |
297 |
Shannon(i,j,k)=0. _d 0 |
298 |
Simpson(i,j,k)=1. _d 0 |
299 |
#endif |
300 |
|
301 |
#ifdef ALLOW_DIAGNOSTICS |
302 |
COJ for diagnostics |
303 |
PParr(i,j,k) = 0. _d 0 |
304 |
Nfixarr(i,j,k) = 0. _d 0 |
305 |
#ifdef DAR_DIAG_CHL |
306 |
GeiderChlarr(i,j,k) = 0. _d 0 |
307 |
GeiderChl2Carr(i,j,k) = 0. _d 0 |
308 |
DoneyChlarr(i,j,k) = 0. _d 0 |
309 |
DoneyChl2Carr(i,j,k) = 0. _d 0 |
310 |
CloernChlarr(i,j,k) = 0. _d 0 |
311 |
CloernChl2Carr(i,j,k) = 0. _d 0 |
312 |
#endif |
313 |
c ANNA_TAVE |
314 |
#ifdef WAVES_DIAG_PCHL |
315 |
DO np=1,npmax |
316 |
Pchlarr(i,j,k,np) = 0. _d 0 |
317 |
ENDDO |
318 |
#endif |
319 |
c ANNA end TAVE |
320 |
#ifdef DAR_DIAG_RSTAR |
321 |
DO np=1,npmax |
322 |
Rstararr(i,j,k,np) = 0. _d 0 |
323 |
ENDDO |
324 |
#endif |
325 |
COJ |
326 |
#ifdef ALLOW_DIAZ |
327 |
#ifdef DAR_DIAG_NFIXP |
328 |
DO np=1,npmax |
329 |
NfixParr(i,j,k,np) = 0. _d 0 |
330 |
ENDDO |
331 |
#endif |
332 |
#endif |
333 |
#endif |
334 |
enddo |
335 |
ENDDO |
336 |
ENDDO |
337 |
|
338 |
#ifdef DAR_RADTRANS |
339 |
idiscEs = 0 |
340 |
jdiscEs = 0 |
341 |
kdiscEs = 0 |
342 |
ldiscEs = 0 |
343 |
idiscEu = 0 |
344 |
jdiscEu = 0 |
345 |
kdiscEu = 0 |
346 |
ldiscEu = 0 |
347 |
discEs = 0. |
348 |
discEu = 0. |
349 |
#endif |
350 |
c |
351 |
c bio-chemical time loop |
352 |
c-------------------------------------------------- |
353 |
DO it=1,nsubtime |
354 |
c ------------------------------------------------- |
355 |
tot_Nfix=0. _d 0 |
356 |
COJ cannot use dfloat because of adjoint |
357 |
COJ division will be double precision anyway because of dTtracerLev |
358 |
newtime=myTime-dTtracerLev(1)+ |
359 |
& float(it)*dTtracerLev(1)/float(nsubtime) |
360 |
c print*,'it ',it,newtime,nsubtime,myTime |
361 |
runtim=myTime-float(PTRACERS_Iter0)*dTtracerLev(1) |
362 |
|
363 |
c determine iron partitioning - solve for free iron |
364 |
c --------------------------- |
365 |
call darwin_fe_chem(bi,bj,iMin,iMax,jMin,jMax, |
366 |
& Ptr(1-OLx,1-OLy,1,bi,bj,iFeT), freefe, |
367 |
& myIter, mythid) |
368 |
c -------------------------- |
369 |
#ifdef ALLOW_CARBON |
370 |
c air-sea flux and dilution of CO2 |
371 |
call dic_surfforcing(Ptr(1-OLx,1-OLy,1,bi,bj,iDIC), |
372 |
& Ptr(1-OLx,1-OLy,1,bi,bj,iALK), |
373 |
& Ptr(1-OLx,1-OLy,1,bi,bj,iPO4), |
374 |
& Ptr(1-OLx,1-OLy,1,bi,bj,iSi), |
375 |
& flxCO2, |
376 |
& bi,bj,imin,imax,jmin,jmax, |
377 |
& myIter,myTime,myThid) |
378 |
c air-sea flux of O2 |
379 |
call dic_o2_surfforcing(Ptr(1-OLx,1-OLy,1,bi,bj,iO2), |
380 |
& flxO2, |
381 |
& bi,bj,imin,imax,jmin,jmax, |
382 |
& myIter,myTime,myThid) |
383 |
c dilusion of alkalinity |
384 |
call dic_alk_surfforcing(Ptr(1-OLx,1-OLy,1,bi,bj,iALK), |
385 |
& flxALK, |
386 |
& bi,bj,imin,imax,jmin,jmax, |
387 |
& myIter,myTime,myThid) |
388 |
#endif |
389 |
|
390 |
|
391 |
c find light in each grid cell |
392 |
c --------------------------- |
393 |
c determine incident light |
394 |
#ifndef READ_PAR |
395 |
#ifndef USE_QSW |
396 |
DO j=1-OLy,sNy+OLy |
397 |
sfac(j)=0. _d 0 |
398 |
ENDDO |
399 |
call darwin_insol(newTime,sfac,bj) |
400 |
#endif /* not USE_QSW */ |
401 |
#endif /* not READ_PAR */ |
402 |
|
403 |
#ifdef ALLOW_PAR_DAY |
404 |
C find out which slot of PARday has previous day's average |
405 |
dtsubtime = dTtracerLev(1)/float(nsubtime) |
406 |
C running index of averaging period |
407 |
C myTime has already been incremented in this iteration, |
408 |
C go back half a substep to avoid roundoff problems |
409 |
iperiod = FLOOR((newtime-0.5 _d 0*dtsubtime) |
410 |
& /darwin_PARavPeriod) |
411 |
C 0 -> 1, 1->2, 2->0, ... |
412 |
PARiprev = MOD(iperiod, 2) + 1 |
413 |
|
414 |
#ifdef ALLOW_DIAGNOSTICS |
415 |
C always fill; this will be the same during PARavPeriod, but this |
416 |
C way it won't blow up for weird diagnostics periods. |
417 |
C we fill before updating, so the diag is the one used in this time |
418 |
C step |
419 |
CALL DIAGNOSTICS_FILL( |
420 |
& PARday(1-Olx,1-Oly,1,bi,bj,PARiprev),'PARday ', |
421 |
& 0,Nr,2,bi,bj,myThid ) |
422 |
#endif |
423 |
#endif /* ALLOW_PAR_DAY */ |
424 |
|
425 |
#ifdef DAR_RADTRANS |
426 |
#ifndef DAR_RADTRANS_USE_MODEL_CALENDAR |
427 |
#ifdef ALLOW_CAL |
428 |
C get current date and time of day: iyr/imon/iday+isec |
429 |
CALL CAL_GETDATE( myIter, newtime, mydate, mythid ) |
430 |
CALL CAL_CONVDATE( mydate,iyr,imon,iday,isec,lp,wd,mythid ) |
431 |
#else |
432 |
STOP 'need cal package or DAR_RADTRANS_USE_MODEL_CALENDAR' |
433 |
#endif |
434 |
#endif |
435 |
#endif |
436 |
|
437 |
C................................................................. |
438 |
C................................................................. |
439 |
|
440 |
|
441 |
C ========================== i,j loops ================================= |
442 |
DO j=1,sNy |
443 |
DO i=1,sNx |
444 |
|
445 |
c ------------ these are convenient ------------------------------------ |
446 |
DO k=1,Nr |
447 |
part_k(k) = max(Ptr(i,j,k,bi,bj,iPOP),0. _d 0) |
448 |
#ifdef ALLOW_CDOM |
449 |
cdom_k(k) = max(Ptr(i,j,k,bi,bj,iCDOM),0. _d 0) |
450 |
#endif |
451 |
DO np = 1,npmax |
452 |
Phy_k(np,k) = max(Ptr(i,j,k,bi,bj,iPhy+np-1),0. _d 0) |
453 |
#ifdef GEIDER |
454 |
#ifdef DYNAMIC_CHL |
455 |
phychl_k(np,k) = max(Ptr(i,j,k,bi,bj,iChl+np-1),0. _d 0) |
456 |
#else |
457 |
phychl_k(np,k) = max(Chl_phy(i,j,k,bi,bj,np), 0. _d 0) |
458 |
#endif |
459 |
#endif |
460 |
ENDDO |
461 |
ENDDO |
462 |
|
463 |
c ------------ GET CDOM_k FOR WAVEBANDS_3D and RADTRANS ---------------- |
464 |
#ifdef WAVEBANDS |
465 |
#if defined(DAR_CALC_ACDOM) || defined(DAR_RADTRANS) |
466 |
#ifdef ALLOW_CDOM |
467 |
call MONOD_ACDOM(cdom_k, |
468 |
O acdom_k, |
469 |
I myThid) |
470 |
#else |
471 |
call MONOD_ACDOM(phychl_k,aphy_chl,aw, |
472 |
O acdom_k, |
473 |
I myThid) |
474 |
#endif |
475 |
#else |
476 |
DO k=1,Nr |
477 |
DO ilam = 1,tlam |
478 |
acdom_k(k,ilam) = acdom(ilam) |
479 |
ENDDO |
480 |
ENDDO |
481 |
#endif /* DAR_CALC_ACDOM or DAR_RADTRANS */ |
482 |
#endif /* WAVEBANDS */ |
483 |
|
484 |
c ------------ GET INCIDENT NON-SPECTRAL LIGHT ------------------------- |
485 |
#if !(defined(WAVEBANDS) && defined(OASIM)) |
486 |
#ifdef READ_PAR |
487 |
|
488 |
lite = sur_par(i,j,bi,bj) |
489 |
|
490 |
#else /* not READ_PAR */ |
491 |
#ifdef USE_QSW |
492 |
|
493 |
#ifdef ALLOW_LONGSTEP |
494 |
Qswlocal=LS_Qsw(i,j,bi,bj) |
495 |
#else |
496 |
Qswlocal=Qsw(i,j,bi,bj) |
497 |
#endif |
498 |
lite = -parfrac*Qswlocal*parconv*maskC(i,j,1,bi,bj) |
499 |
|
500 |
#else /* not USE_QSW */ |
501 |
|
502 |
lite = sfac(j)*maskC(i,j,1,bi,bj)/86400*1 _d 6 |
503 |
|
504 |
#endif /* not USE_QSW */ |
505 |
#endif /* not READ_PAR */ |
506 |
|
507 |
c take ice coverage into account |
508 |
c unless already done in seaice package |
509 |
#if !(defined (ALLOW_SEAICE) && defined (USE_QSW)) |
510 |
lite = lite*(1. _d 0-fice(i,j,bi,bj)) |
511 |
#endif |
512 |
#endif /* not(WAVEBANDS and OASIM) */ |
513 |
|
514 |
c ------------ LIGHT ATTENUATION: -------------------------------------- |
515 |
#ifndef WAVEBANDS |
516 |
c ------------ SINGLE-BAND ATTENUATION --------------------------------- |
517 |
atten=0. _d 0 |
518 |
do k=1,Nr |
519 |
if (HFacC(i,j,k,bi,bj).gt.0. _d 0) then |
520 |
sumpyup = sumpy |
521 |
sumpy = 0. _d 0 |
522 |
do np=1,npmax |
523 |
#ifdef GEIDER |
524 |
sumpy = sumpy + phychl_k(np,k) |
525 |
#else |
526 |
sumpy = sumpy + Phy_k(np,k) |
527 |
#endif |
528 |
enddo |
529 |
atten= atten + (k0 + kc*sumpy)*5. _d -1*drF(k) |
530 |
if (k.gt.1)then |
531 |
atten = atten + (k0+kc*sumpyup)*5. _d -1*drF(k-1) |
532 |
endif |
533 |
PAR(i,j,k) = lite*exp(-atten) |
534 |
endif |
535 |
enddo |
536 |
|
537 |
#else /* WAVEBANDS */ |
538 |
#ifndef DAR_RADTRANS |
539 |
c ------------ WAVEBANDS W/O RADTRANS ---------------------------------- |
540 |
do ilam = 1,tlam |
541 |
#ifdef OASIM |
542 |
c add direct and diffuse, convert to uEin/m2/s/nm |
543 |
PARwup(ilam) = WtouEins(ilam)*(oasim_ed(i,j,ilam,bi,bj)+ |
544 |
& oasim_es(i,j,ilam,bi,bj)) |
545 |
c and take ice fraction into account |
546 |
c PARwup(ilam) = PARwup(ilam)*(1 _d 0 - fice(i,j,bi,bj)) |
547 |
#else |
548 |
c sf is per nm; convert to per waveband |
549 |
PARwup(ilam) = wb_width(ilam)*sf(ilam)*lite |
550 |
#endif |
551 |
enddo |
552 |
|
553 |
do k=1,Nr |
554 |
if (HFacC(i,j,k,bi,bj).gt.0. _d 0) then |
555 |
do ilam = 1,tlam |
556 |
sumpy = 0. |
557 |
do np = 1,npmax |
558 |
c get total attenuation (absorption) by phyto at each wavelength |
559 |
sumpy = sumpy + (phychl_k(np,k)*aphy_chl(np,ilam)) |
560 |
enddo |
561 |
c for diagnostic |
562 |
a_k(k,ilam) = aw(ilam) + sumpy + acdom_k(k,ilam) |
563 |
atten = a_k(k,ilam)*drF(k) |
564 |
PARwdn(ilam) = PARwup(ilam)*exp(-atten) |
565 |
enddo |
566 |
|
567 |
c find for the midpoint of the gridcell (gridcell mean) |
568 |
do ilam = 1,tlam |
569 |
C PARw_k(ilam,k)=exp((log(PARwup(ilam))+log(PARwdn(ilam)))*0.5) |
570 |
PARw_k(ilam,k)=sqrt(PARwup(ilam)*PARwdn(ilam)) |
571 |
enddo |
572 |
|
573 |
c cycle |
574 |
do ilam=1,tlam |
575 |
PARwup(ilam) = PARwdn(ilam) |
576 |
enddo |
577 |
else |
578 |
do ilam=1,tlam |
579 |
PARw_k(ilam,k) = 0. _d 0 |
580 |
enddo |
581 |
endif |
582 |
|
583 |
c sum wavebands for total PAR at the mid point of the gridcell (PARl) |
584 |
PAR(i,j,k) = 0. |
585 |
do ilam = 1,tlam |
586 |
PAR(i,j,k) = PAR(i,j,k) + PARw_k(ilam,k) |
587 |
enddo |
588 |
enddo |
589 |
|
590 |
#else /* DAR_RADTRANS */ |
591 |
c ------------ FULL RADIATIVE TRANSFER CODE ---------------------------- |
592 |
do ilam = 1,tlam |
593 |
Edwsf(ilam) = oasim_ed(i,j,ilam,bi,bj) |
594 |
Eswsf(ilam) = oasim_es(i,j,ilam,bi,bj) |
595 |
enddo |
596 |
|
597 |
#ifdef DAR_RADTRANS_USE_MODEL_CALENDAR |
598 |
C simplified solar zenith angle for 360-day year and daily averaged light |
599 |
C cos(solz) is average over daylight period |
600 |
call darwin_solz360(newtime, YC(i,j,bi,bj), |
601 |
O solz) |
602 |
|
603 |
#else /* not DAR_RADTRANS_USE_MODEL_CALENDAR */ |
604 |
C use calendar date for full solar zenith angle computation |
605 |
C oj: average light effective at noon? |
606 |
solz = 0.0 _d 0 |
607 |
isec = 12*3600 |
608 |
call radtrans_sfcsolz(rad,iyr,imon,iday,isec, |
609 |
I XC(i,j,bi,bj),YC(i,j,bi,bj), |
610 |
O solz) |
611 |
#endif /* not DAR_RADTRANS_USE_MODEL_CALENDAR */ |
612 |
|
613 |
c have Ed,Es below surface - no need for this adjustment on Ed Es for surface affects |
614 |
c do ilam=1,tlam |
615 |
c rod(ilam) = 0.0 _d 0 |
616 |
c ros(ilam) = 0.0 _d 0 |
617 |
c enddo |
618 |
|
619 |
c compute 1/cos(zenith) for direct light below surface |
620 |
call radtrans_sfcrmud(rad,solz, |
621 |
O rmud) |
622 |
|
623 |
C compute absorption/scattering coefficients for radtrans |
624 |
DO k=1,Nr |
625 |
dz_k(k) = drF(k)*HFacC(i,j,k,bi,bj) |
626 |
DO ilam = 1,tlam |
627 |
c absorption by phyto |
628 |
actot = 0.0 |
629 |
bctot = 0.0 |
630 |
bbctot = 0.0 |
631 |
DO np = 1,npmax |
632 |
actot = actot + phychl_k(np,k)*aphy_chl(np,ilam) |
633 |
bctot = bctot + phychl_k(np,k)*bphy_chl(np,ilam) |
634 |
bbctot = bbctot + phychl_k(np,k)*bbphy_chl(np,ilam) |
635 |
ENDDO |
636 |
c particulate |
637 |
apart_k(k,ilam) = part_k(k)*apart_P(ilam) |
638 |
bpart_k(k,ilam) = part_k(k)*bpart_P(ilam) |
639 |
bbpart_k(k,ilam) = part_k(k)*bbpart_P(ilam) |
640 |
c add water and CDOM |
641 |
a_k(k,ilam) = aw(ilam)+acdom_k(k,ilam)+actot+apart_k(k,ilam) |
642 |
bt_k(k,ilam) = bw(ilam) + bctot + bpart_k(k,ilam) |
643 |
bb_k(k,ilam) = darwin_bbw*bw(ilam)+bbctot+bbpart_k(k,ilam) |
644 |
bb_k(k,ilam) = MAX(darwin_bbmin, bb_k(k,ilam)) |
645 |
c initialize output variables |
646 |
Edz(ilam,k) = 0.0 |
647 |
Esz(ilam,k) = 0.0 |
648 |
Euz(ilam,k) = 0.0 |
649 |
Estop(ilam,k) = 0.0 |
650 |
Eutop(ilam,k) = 0.0 |
651 |
amp1(ilam,k) = 0.0 |
652 |
amp2(ilam,k) = 0.0 |
653 |
ENDDO |
654 |
ENDDO |
655 |
|
656 |
IF (darwin_radtrans_niter.GE.0) THEN |
657 |
call MONOD_RADTRANS_ITER( |
658 |
I dz_k,rmud,Edwsf,Eswsf,a_k,bt_k,bb_k, |
659 |
I darwin_radtrans_kmax,darwin_radtrans_niter, |
660 |
O Edz,Esz,Euz,Eutop, |
661 |
O tirrq,tirrwq, |
662 |
O amp1,amp2, |
663 |
I myThid) |
664 |
ELSEIF (darwin_radtrans_niter.EQ.-1) THEN |
665 |
c dzlocal ????? |
666 |
call MONOD_RADTRANS( |
667 |
I drF,rmud,Edwsf,Eswsf,a_k,bt_k,bb_k, |
668 |
O Edz,Esz,Euz,Eutop, |
669 |
O tirrq,tirrwq, |
670 |
I myThid) |
671 |
ELSE |
672 |
call MONOD_RADTRANS_DIRECT( |
673 |
I dz_k,rmud,Edwsf,Eswsf,a_k,bt_k,bb_k, |
674 |
I darwin_radtrans_kmax, |
675 |
O Edz,Esz,Euz,Estop,Eutop, |
676 |
O tirrq,tirrwq, |
677 |
O amp1,amp2, |
678 |
I myThid) |
679 |
#ifdef DAR_CHECK_IRR_CONT |
680 |
IF( dz_k(1) .GT. 0.0 )THEN |
681 |
DO ilam = 1,tlam |
682 |
IF(Eswsf(ilam).GE.darwin_radmodThresh .OR. |
683 |
& Edwsf(ilam).GE.darwin_radmodThresh ) THEN |
684 |
IF(ABS(Estop(ilam,1)-Eswsf(ilam)) .GT. discEs )THEN |
685 |
discEs = ABS(Estop(ilam,1)-Eswsf(ilam)) |
686 |
idiscEs = i |
687 |
jdiscEs = j |
688 |
kdiscEs = 1 |
689 |
ldiscEs = ilam |
690 |
ENDIF |
691 |
DO k=1,darwin_radtrans_kmax-1 |
692 |
IF(ABS(Estop(ilam,k+1)-Esz(ilam,k)) .GT. discEs)THEN |
693 |
discEs = ABS(Estop(ilam,k+1)-Esz(ilam,k)) |
694 |
idiscEs = i |
695 |
jdiscEs = j |
696 |
kdiscEs = k+1 |
697 |
ldiscEs = ilam |
698 |
ENDIF |
699 |
IF(ABS(Eutop(ilam,k+1)-Euz(ilam,k)) .GT. discEu)THEN |
700 |
discEu = ABS(Eutop(ilam,k+1)-Euz(ilam,k)) |
701 |
idiscEu = i |
702 |
jdiscEu = j |
703 |
kdiscEu = k+1 |
704 |
ldiscEu = ilam |
705 |
ENDIF |
706 |
ENDDO |
707 |
ENDIF |
708 |
ENDDO |
709 |
ENDIF |
710 |
#endif |
711 |
ENDIF |
712 |
c |
713 |
c uses chl from prev timestep (as wavebands does) |
714 |
c keep like this in case need to consider upwelling irradiance as affecting the grid box above |
715 |
c will pass to plankton: PARw only, but will be for this timestep for RT and prev timestep for WAVBANDS |
716 |
c |
717 |
c now copy |
718 |
DO k=1,Nr |
719 |
PAR(i,j,k) = tirrq(k) |
720 |
DO ilam = 1,tlam |
721 |
PARw_k(ilam,k) = tirrwq(ilam,k) |
722 |
ENDDO |
723 |
ENDDO |
724 |
#endif /* DAR_RADTRANS */ |
725 |
|
726 |
c oj: ??? |
727 |
c so PARw and PARwup from WAVEBANDS_1D are from previous timestep (attenuation done in plankton) |
728 |
c but PARw and PARwup from WAVEBANDS_3D and RADTRANS are for the current timestep |
729 |
|
730 |
#endif /* WAVEBANDS */ |
731 |
|
732 |
C ============================ k loop ================================== |
733 |
c for each layer ... |
734 |
do k= 1, NR |
735 |
if (HFacC(i,j,k,bi,bj).gt.0. _d 0) then |
736 |
|
737 |
c make sure we only deal with positive definite numbers |
738 |
c brute force... |
739 |
po4l = max(Ptr(i,j,k,bi,bj,iPO4 ),0. _d 0) |
740 |
no3l = max(Ptr(i,j,k,bi,bj,iNO3 ),0. _d 0) |
741 |
fetl = max(Ptr(i,j,k,bi,bj,iFeT ),0. _d 0) |
742 |
sil = max(Ptr(i,j,k,bi,bj,iSi ),0. _d 0) |
743 |
dopl = max(Ptr(i,j,k,bi,bj,iDOP ),0. _d 0) |
744 |
donl = max(Ptr(i,j,k,bi,bj,iDON ),0. _d 0) |
745 |
dofel = max(Ptr(i,j,k,bi,bj,iDOFe ),0. _d 0) |
746 |
DO nz = 1,nzmax |
747 |
ZooP(nz) = max(Ptr(i,j,k,bi,bj,iZooP (nz)),0. _d 0) |
748 |
ZooN(nz) = max(Ptr(i,j,k,bi,bj,iZooN (nz)),0. _d 0) |
749 |
ZooFe(nz) = max(Ptr(i,j,k,bi,bj,iZooFe(nz)),0. _d 0) |
750 |
ZooSi(nz) = max(Ptr(i,j,k,bi,bj,iZooSi(nz)),0. _d 0) |
751 |
ENDDO |
752 |
popl = max(Ptr(i,j,k,bi,bj,iPOP ),0. _d 0) |
753 |
ponl = max(Ptr(i,j,k,bi,bj,iPON ),0. _d 0) |
754 |
pofel = max(Ptr(i,j,k,bi,bj,iPOFe ),0. _d 0) |
755 |
psil = max(Ptr(i,j,k,bi,bj,iPOSi ),0. _d 0) |
756 |
NH4l = max(Ptr(i,j,k,bi,bj,iNH4 ),0. _d 0) |
757 |
NO2l = max(Ptr(i,j,k,bi,bj,iNO2 ),0. _d 0) |
758 |
#ifdef ALLOW_CDOM |
759 |
cdoml = max(Ptr(i,j,k,bi,bj,iCDOM ),0. _d 0) |
760 |
#endif |
761 |
#ifdef ALLOW_CARBON |
762 |
dicl = max(Ptr(i,j,k,bi,bj,iDIC ),0. _d 0) |
763 |
docl = max(Ptr(i,j,k,bi,bj,iDOC ),0. _d 0) |
764 |
pocl = max(Ptr(i,j,k,bi,bj,iPOC ),0. _d 0) |
765 |
picl = max(Ptr(i,j,k,bi,bj,iPIC ),0. _d 0) |
766 |
alkl = max(Ptr(i,j,k,bi,bj,iALK ),0. _d 0) |
767 |
o2l = max(Ptr(i,j,k,bi,bj,iO2 ),0. _d 0) |
768 |
DO nz = 1,nzmax |
769 |
ZooCl(nz) = max(Ptr(i,j,k,bi,bj,iZooC (nz)),0. _d 0) |
770 |
ENDDO |
771 |
#endif |
772 |
|
773 |
totphyC = 0. _d 0 |
774 |
DO np=1,npmax |
775 |
totphyC = totphyC + R_PC(np)*Ptr(i,j,k,bi,bj,iPhy+np-1) |
776 |
ENDDO |
777 |
|
778 |
DO np = 1,npmax |
779 |
Phy(np) = Phy_k(np,k) |
780 |
#ifdef GEIDER |
781 |
phychl(np) = phychl_k(np,k) |
782 |
#endif |
783 |
ENDDO |
784 |
|
785 |
#ifdef DAR_DIAG_DIVER |
786 |
Diver1(i,j,k)=0. _d 0 |
787 |
Diver2(i,j,k)=0. _d 0 |
788 |
Diver3(i,j,k)=0. _d 0 |
789 |
Diver4(i,j,k)=0. _d 0 |
790 |
totphy=0. _d 0 |
791 |
do np=1,npmax |
792 |
totphy=totphy + Phy(np) |
793 |
tmpphy(np)=Phy(np) |
794 |
enddo |
795 |
if (totphy.gt.diver_thresh0) then |
796 |
do np=1,npmax |
797 |
c simple threshhold |
798 |
if (Phy(np).gt.diver_thresh1) then |
799 |
Diver1(i,j,k)=Diver1(i,j,k)+1. _d 0 |
800 |
endif |
801 |
c proportion of total biomass |
802 |
if (Phy(np)/totphy.gt.diver_thresh2) then |
803 |
Diver2(i,j,k)=Diver2(i,j,k)+1. _d 0 |
804 |
endif |
805 |
enddo |
806 |
c majority of biomass by finding rank order |
807 |
biotot=0. _d 0 |
808 |
do np2=1,npmax |
809 |
phymax=0. _d 0 |
810 |
do np=1,npmax |
811 |
if (tmpphy(np).gt.phymax) then |
812 |
phymax=tmpphy(np) |
813 |
npsave=np |
814 |
endif |
815 |
enddo |
816 |
if (biotot.lt.totphy*diver_thresh3) then |
817 |
Diver3(i,j,k)=Diver3(i,j,k)+1. _d 0 |
818 |
endif |
819 |
biotot=biotot+tmpphy(npsave) |
820 |
tmpphy(npsave)=0. _d 0 |
821 |
if (np2.eq.1) then |
822 |
maxphy=phymax |
823 |
endif |
824 |
enddo |
825 |
c ratio of maximum species |
826 |
do np=1,npmax |
827 |
if (Phy(np).gt.diver_thresh4*maxphy) then |
828 |
Diver4(i,j,k)=Diver4(i,j,k)+1. _d 0 |
829 |
endif |
830 |
enddo |
831 |
c totphy > thresh0 |
832 |
endif |
833 |
c Shannon and Simpson indices |
834 |
Shannon(i,j,k) = 0. _d 0 |
835 |
c note: minimal valid value is 1, but we set to zero below threshold |
836 |
Simpson(i,j,k) = 0. _d 0 |
837 |
if (totphy.gt.shannon_thresh) then |
838 |
do np=1,npmax |
839 |
if (Phy(np) .gt. 0. _d 0) then |
840 |
tmpphy(np) = Phy(np)/totphy |
841 |
Shannon(i,j,k)=Shannon(i,j,k)+tmpphy(np)*LOG(tmpphy(np)) |
842 |
Simpson(i,j,k)=Simpson(i,j,k)+tmpphy(np)*tmpphy(np) |
843 |
endif |
844 |
enddo |
845 |
Shannon(i,j,k) = -Shannon(i,j,k) |
846 |
Simpson(i,j,k) = 1./Simpson(i,j,k) |
847 |
endif |
848 |
#endif |
849 |
|
850 |
c.......................................................... |
851 |
c find local light |
852 |
c.......................................................... |
853 |
|
854 |
PARl = PAR(i,j,k) |
855 |
c.......................................................... |
856 |
|
857 |
c for explicit sinking of particulate matter and phytoplankton |
858 |
if (k.eq.1) then |
859 |
popupl =0. _d 0 |
860 |
ponupl =0. _d 0 |
861 |
pofeupl = 0. _d 0 |
862 |
psiupl = 0. _d 0 |
863 |
do np=1,npmax |
864 |
Phyup(np)=0. _d 0 |
865 |
#ifdef DYNAMIC_CHL |
866 |
chlup(np)=0. _d 0 |
867 |
#endif |
868 |
enddo |
869 |
#ifdef ALLOW_CARBON |
870 |
pocupl = 0. _d 0 |
871 |
picupl = 0. _d 0 |
872 |
#endif |
873 |
endif |
874 |
|
875 |
#ifdef ALLOW_LONGSTEP |
876 |
Tlocal = LS_theta(i,j,k,bi,bj) |
877 |
Slocal = LS_salt(i,j,k,bi,bj) |
878 |
#else |
879 |
Tlocal = theta(i,j,k,bi,bj) |
880 |
Slocal = salt(i,j,k,bi,bj) |
881 |
#endif |
882 |
|
883 |
c choice where to get pCO2 from |
884 |
c taking from igsm dic run - fed through Tflux array |
885 |
c pCO2local=surfaceForcingT(i,j,bi,bj) |
886 |
c or from darwin carbon module |
887 |
#ifdef ALLOW_CARBON |
888 |
pCO2local=pCO2(i,j,bi,bj) |
889 |
#else |
890 |
pCO2local=280. _d -6 |
891 |
#endif |
892 |
|
893 |
freefu = max(freefe(i,j,k),0. _d 0) |
894 |
if (k.eq.1) then |
895 |
inputFel = inputFe(i,j,bi,bj) |
896 |
else |
897 |
inputFel = 0. _d 0 |
898 |
endif |
899 |
|
900 |
dzlocal = drF(k)*HFacC(i,j,k,bi,bj) |
901 |
c set bottom=1.0 if the layer below is not ocean |
902 |
ktmp=min(nR,k+1) |
903 |
if(hFacC(i,j,ktmp,bi,bj).eq.0. _d 0.or.k.eq.Nr) then |
904 |
bottom = 1.0 _d 0 |
905 |
else |
906 |
bottom = 0.0 _d 0 |
907 |
endif |
908 |
|
909 |
c set tendencies to 0 |
910 |
do np=1,npmax |
911 |
dphy(np)=0. _d 0 |
912 |
enddo |
913 |
do nz=1,nzmax |
914 |
dzoop(nz)=0. _d 0 |
915 |
dzoon(nz)=0. _d 0 |
916 |
dzoofe(nz)=0. _d 0 |
917 |
dzoosi(nz)=0. _d 0 |
918 |
enddo |
919 |
dPO4l=0. _d 0 |
920 |
dNO3l=0. _d 0 |
921 |
dFeTl=0. _d 0 |
922 |
dSil=0. _d 0 |
923 |
dDOPl=0. _d 0 |
924 |
dDONl=0. _d 0 |
925 |
dDOFel=0. _d 0 |
926 |
dPOPl=0. _d 0 |
927 |
dPONl=0. _d 0 |
928 |
dPOFel=0. _d 0 |
929 |
dPSil=0. _d 0 |
930 |
dNH4l=0. _d 0 |
931 |
dNO2l=0. _d 0 |
932 |
#ifdef DYNAMIC_CHL |
933 |
do np=1,npmax |
934 |
dphychl(np)=0. _d 0 |
935 |
enddo |
936 |
#endif |
937 |
#ifdef ALLOW_CDOM |
938 |
dcdoml=0. _d 0 |
939 |
#endif |
940 |
#ifdef ALLOW_CARBON |
941 |
ddicl=0. _d 0 |
942 |
ddocl=0. _d 0 |
943 |
dpocl=0. _d 0 |
944 |
dpicl=0. _d 0 |
945 |
dalkl=0. _d 0 |
946 |
do2l=0. _d 0 |
947 |
do nz=1,nzmax |
948 |
dzoocl(nz)=0. _d 0 |
949 |
enddo |
950 |
#endif |
951 |
c set other arguments to zero |
952 |
PP=0. _d 0 |
953 |
Nfix=0. _d 0 |
954 |
denit=0. _d 0 |
955 |
do np=1,npmax |
956 |
Rstarl(np)=0. _d 0 |
957 |
RNstarl(np)=0. _d 0 |
958 |
#ifdef DAR_DIAG_GROW |
959 |
Growl(np)=0. _d 0 |
960 |
Growsql(np)=0. _d 0 |
961 |
#endif |
962 |
#ifdef ALLOW_DIAZ |
963 |
#ifdef DAR_DIAG_NFIXP |
964 |
NfixPl(np)=0. _d 0 |
965 |
#endif |
966 |
#endif |
967 |
enddo |
968 |
|
969 |
|
970 |
debug=0 |
971 |
c if (i.eq.20.and.j.eq.20.and.k.eq.1) debug=8 |
972 |
c if (i.eq.10.and.j.eq.10.and.k.eq.1) debug=100 |
973 |
c if (i.eq.1.and.j.eq.10.and.k.eq.1) debug=10 |
974 |
c if (i.eq.1.and.j.eq.1.and.k.eq.10) debug=14 |
975 |
|
976 |
if (debug.eq.7) print*,'PO4, DOP, POP, ZooP', |
977 |
& PO4l, DOPl, POPl, zooP |
978 |
if (debug.eq.7) print*,'NO3, NO2, NH4, DON, PON, ZooN', |
979 |
& NO3l,NO2l,NH4l, DONl, PONl, ZooN |
980 |
if (debug.eq.7) print*,'FeT, DOFe, POFe, Zoofe', |
981 |
& FeTl, DOFel, POFel, zooFe |
982 |
if (debug.eq.7) print*,'Si, Psi, zooSi', |
983 |
& Sil, PSil, zooSi |
984 |
if (debug.eq.7) print*,'Total Phy', sumpy, PARl, lite |
985 |
if (debug.eq.7) print*,'Phy', Phy |
986 |
|
987 |
if (debug.eq.8) print*,'k, PARl, inputFel, dzlocal', |
988 |
& PARl, inputFel, dzlocal |
989 |
|
990 |
c if (NO3l.eq.0. _d 0.or.NO2l.eq.0. _d 0 |
991 |
c & .or.NH4l.eq.0. _d 0) then |
992 |
c print*,'QQ N zeros',i,j,k,NO3l,NO2l,NH4l |
993 |
c endif |
994 |
|
995 |
|
996 |
c ANNA pass extra variables if WAVEBANDS |
997 |
CALL MONOD_PLANKTON( |
998 |
U Phy, |
999 |
I zooP, zooN, zooFe, zooSi, |
1000 |
O PP, Chl, Nfix, denit, |
1001 |
I PO4l, NO3l, FeTl, Sil, |
1002 |
I NO2l, NH4l, |
1003 |
I DOPl, DONl, DOFel, |
1004 |
I POPl, PONl, POFel, PSil, |
1005 |
I phyup, popupl, ponupl, |
1006 |
I pofeupl, psiupl, |
1007 |
I PARl, |
1008 |
I Tlocal, Slocal, |
1009 |
I pCO2local, |
1010 |
I freefu, inputFel, |
1011 |
I bottom, dzlocal, |
1012 |
O Rstarl, RNstarl, |
1013 |
#ifdef DAR_DIAG_GROW |
1014 |
O Growl, Growsql, |
1015 |
#endif |
1016 |
#ifdef ALLOW_DIAZ |
1017 |
#ifdef DAR_DIAG_NFIXP |
1018 |
O NfixPl, |
1019 |
#endif |
1020 |
#endif |
1021 |
O dphy, dzooP, dzooN, dzooFe, |
1022 |
O dzooSi, |
1023 |
O dPO4l, dNO3l, dFeTl, dSil, |
1024 |
O dNH4l, dNO2l, |
1025 |
O dDOPl, dDONl, dDOFel, |
1026 |
O dPOPl, dPONl, dPOFel, dPSil, |
1027 |
#ifdef ALLOW_CARBON |
1028 |
I dicl, docl, pocl, picl, |
1029 |
I alkl, o2l, zoocl, |
1030 |
I pocupl, picupl, |
1031 |
O ddicl, ddocl, dpocl, dpicl, |
1032 |
O dalkl, do2l, dzoocl, |
1033 |
#endif |
1034 |
#ifdef GEIDER |
1035 |
O phychl, |
1036 |
#ifdef DYNAMIC_CHL |
1037 |
I dphychl, |
1038 |
I chlup, |
1039 |
#endif |
1040 |
#ifdef ALLOW_CDOM |
1041 |
O dcdoml, |
1042 |
I cdoml, |
1043 |
#endif |
1044 |
#ifdef WAVEBANDS |
1045 |
I PARw_k(1,k), |
1046 |
#endif |
1047 |
#endif |
1048 |
#ifdef ALLOW_PAR_DAY |
1049 |
I PARday(i,j,k,bi,bj,PARiprev), |
1050 |
#endif |
1051 |
#ifdef DAR_DIAG_CHL |
1052 |
O ChlGeiderlocal, ChlDoneylocal, |
1053 |
O ChlCloernlocal, |
1054 |
#endif |
1055 |
I debug, |
1056 |
I runtim, |
1057 |
I MyThid) |
1058 |
|
1059 |
c |
1060 |
c if (i.eq.1.and.k.eq.1.and.j.eq.5) then |
1061 |
c print*,i,j,k |
1062 |
c print*,'NO3,No2,NH4', NO3l, NO2l, NH4l |
1063 |
c print*,'dNO3 etc',dNO3l,dNH4l, dNO2l |
1064 |
c print*,'PO4',PO4l,dPO4l |
1065 |
c endif |
1066 |
c |
1067 |
#ifdef IRON_SED_SOURCE |
1068 |
c only above minimum depth (continental shelf) |
1069 |
if (rF(k).gt.-depthfesed) then |
1070 |
c only if bottom layer |
1071 |
if (bottom.eq.1.0 _d 0) then |
1072 |
#ifdef IRON_SED_SOURCE_VARIABLE |
1073 |
c calculate sink of POP into bottom layer |
1074 |
tmp=(wp_sink*POPupl)/(dzlocal) |
1075 |
c convert to dPOCl |
1076 |
dFetl=dFetl+fesedflux_pcm*(tmp*106. _d 0) |
1077 |
#else |
1078 |
dFetl=dFetl+fesedflux/ |
1079 |
& (drF(k)*hFacC(i,j,k,bi,bj)) |
1080 |
#endif |
1081 |
endif |
1082 |
endif |
1083 |
#endif |
1084 |
|
1085 |
|
1086 |
popupl = POPl |
1087 |
ponupl = PONl |
1088 |
pofeupl = POFel |
1089 |
psiupl = PSil |
1090 |
do np=1,npmax |
1091 |
Phyup(np) = Phy(np) |
1092 |
#ifdef DYNAMIC_CHL |
1093 |
chlup(np) = phychl(np) |
1094 |
#endif |
1095 |
enddo |
1096 |
|
1097 |
|
1098 |
c |
1099 |
#ifdef ALLOW_CARBON |
1100 |
pocupl = POCl |
1101 |
picupl = PICl |
1102 |
c include surface forcing |
1103 |
if (k.eq.1) then |
1104 |
ddicl = ddicl + flxCO2(i,j) |
1105 |
dalkl = dalkl + flxALK(i,j) |
1106 |
do2l = do2l + flxO2(i,j) |
1107 |
endif |
1108 |
#endif |
1109 |
c |
1110 |
#ifdef CONS_SUPP |
1111 |
c only works for two layer model |
1112 |
if (k.eq.2) then |
1113 |
dpo4l=0. _d 0 |
1114 |
dno3l=0. _d 0 |
1115 |
dfetl=0. _d 0 |
1116 |
dsil=0. _d 0 |
1117 |
endif |
1118 |
#endif |
1119 |
#ifdef RELAX_NUTS |
1120 |
#ifdef DENIT_RELAX |
1121 |
if (rF(k).lt.-depthdenit) then |
1122 |
if (darwin_relaxscale.gt.0. _d 0) then |
1123 |
IF ( darwin_NO3_RelaxFile .NE. ' ' ) THEN |
1124 |
c Fanny's formulation |
1125 |
tmp=(Ptr(i,j,k,bi,bj,iNO3 )-no3_obs(i,j,k,bi,bj)) |
1126 |
if (tmp.gt.0. _d 0) then |
1127 |
dno3l=dno3l-(tmp/ |
1128 |
& darwin_relaxscale) |
1129 |
denit=tmp/ |
1130 |
& darwin_relaxscale |
1131 |
else |
1132 |
denit=0. _d 0 |
1133 |
endif |
1134 |
c --- end fanny's formulation |
1135 |
ENDIF |
1136 |
c steph's alternative |
1137 |
c tmp=(Ptr(i,j,k,bi,bj,iNO3 )- |
1138 |
c & 16. _d 0 * Ptr(i,j,k,bi,bj,iPO4 )) |
1139 |
c if (tmp.gt.0. _d 0) then |
1140 |
c dno3l=dno3l-(tmp/ |
1141 |
c & darwin_relaxscale) |
1142 |
c denit=tmp/ |
1143 |
c & darwin_relaxscale |
1144 |
c else |
1145 |
c denit=0. _d 0 |
1146 |
c endif |
1147 |
c ---- end steph's alternative |
1148 |
endif |
1149 |
endif |
1150 |
#else |
1151 |
if (darwin_relaxscale.gt.0. _d 0) then |
1152 |
IF ( darwin_PO4_RelaxFile .NE. ' ' ) THEN |
1153 |
tmp=(Ptr(i,j,k,bi,bj,iPO4 )-po4_obs(i,j,k,bi,bj)) |
1154 |
if (tmp.lt.0. _d 0) then |
1155 |
dpo4l=dpo4l-(tmp/ |
1156 |
& darwin_relaxscale) |
1157 |
endif |
1158 |
ENDIF |
1159 |
IF ( darwin_NO3_RelaxFile .NE. ' ' ) THEN |
1160 |
tmp=(Ptr(i,j,k,bi,bj,iNO3 )-no3_obs(i,j,k,bi,bj)) |
1161 |
if (tmp.lt.0. _d 0) then |
1162 |
dno3l=dno3l-(tmp/ |
1163 |
& darwin_relaxscale) |
1164 |
endif |
1165 |
ENDIF |
1166 |
IF ( darwin_Fet_RelaxFile .NE. ' ' ) THEN |
1167 |
tmp=(Ptr(i,j,k,bi,bj,iFeT )-fet_obs(i,j,k,bi,bj)) |
1168 |
if (tmp.lt.0. _d 0) then |
1169 |
dfetl=dfetl-(tmp/ |
1170 |
& darwin_relaxscale) |
1171 |
endif |
1172 |
ENDIF |
1173 |
IF ( darwin_Si_RelaxFile .NE. ' ' ) THEN |
1174 |
tmp=( Ptr(i,j,k,bi,bj,iSi )-si_obs(i,j,k,bi,bj)) |
1175 |
if (tmp.lt.0. _d 0) then |
1176 |
dsil=dsil-(tmp/ |
1177 |
& darwin_relaxscale) |
1178 |
endif |
1179 |
ENDIF |
1180 |
endif |
1181 |
#endif |
1182 |
#endif |
1183 |
#ifdef FLUX_NUTS |
1184 |
dpo4l=dpo4l+po4_flx(i,j,k,bi,bj) |
1185 |
dno3l=dno3l+no3_flx(i,j,k,bi,bj) |
1186 |
dfetl=dfetl+fet_flx(i,j,k,bi,bj) |
1187 |
dsil=dsil+si_flx(i,j,k,bi,bj) |
1188 |
#endif |
1189 |
c |
1190 |
c now update main tracer arrays |
1191 |
dtplankton = PTRACERS_dTLev(k)/float(nsubtime) |
1192 |
Ptr(i,j,k,bi,bj,iPO4 ) = Ptr(i,j,k,bi,bj,iPO4) + |
1193 |
& dtplankton*dpo4l |
1194 |
Ptr(i,j,k,bi,bj,iNO3 ) = Ptr(i,j,k,bi,bj,iNO3) + |
1195 |
& dtplankton*dno3l |
1196 |
Ptr(i,j,k,bi,bj,iFeT ) = Ptr(i,j,k,bi,bj,iFeT) + |
1197 |
& dtplankton*dfetl |
1198 |
Ptr(i,j,k,bi,bj,iSi ) = Ptr(i,j,k,bi,bj,iSi ) + |
1199 |
& dtplankton*dsil |
1200 |
Ptr(i,j,k,bi,bj,iDOP ) = Ptr(i,j,k,bi,bj,iDOP) + |
1201 |
& dtplankton*ddopl |
1202 |
Ptr(i,j,k,bi,bj,iDON ) = Ptr(i,j,k,bi,bj,iDON) + |
1203 |
& dtplankton*ddonl |
1204 |
Ptr(i,j,k,bi,bj,iDOFe) = Ptr(i,j,k,bi,bj,iDOFe) + |
1205 |
& dtplankton*ddofel |
1206 |
Ptr(i,j,k,bi,bj,iPOP ) = Ptr(i,j,k,bi,bj,iPOP ) + |
1207 |
& dtplankton*dpopl |
1208 |
Ptr(i,j,k,bi,bj,iPON ) = Ptr(i,j,k,bi,bj,iPON ) + |
1209 |
& dtplankton*dponl |
1210 |
Ptr(i,j,k,bi,bj,iPOFe) = Ptr(i,j,k,bi,bj,iPOFe) + |
1211 |
& dtplankton*dpofel |
1212 |
Ptr(i,j,k,bi,bj,iPOSi) = Ptr(i,j,k,bi,bj,iPOSi) + |
1213 |
& dtplankton*dpsil |
1214 |
Ptr(i,j,k,bi,bj,iNH4 ) = Ptr(i,j,k,bi,bj,iNH4 ) + |
1215 |
& dtplankton*dnh4l |
1216 |
Ptr(i,j,k,bi,bj,iNO2 ) = Ptr(i,j,k,bi,bj,iNO2 ) + |
1217 |
& dtplankton*dno2l |
1218 |
DO nz = 1,nzmax |
1219 |
Ptr(i,j,k,bi,bj,iZooP (nz)) = Ptr(i,j,k,bi,bj,iZooP (nz)) + |
1220 |
& dtplankton*dzoop (nz) |
1221 |
Ptr(i,j,k,bi,bj,iZooN (nz)) = Ptr(i,j,k,bi,bj,iZooN (nz)) + |
1222 |
& dtplankton*dzoon (nz) |
1223 |
Ptr(i,j,k,bi,bj,iZooFe(nz)) = Ptr(i,j,k,bi,bj,iZooFe(nz)) + |
1224 |
& dtplankton*dzoofe(nz) |
1225 |
Ptr(i,j,k,bi,bj,iZooSi(nz)) = Ptr(i,j,k,bi,bj,iZooSi(nz)) + |
1226 |
& dtplankton*dzoosi(nz) |
1227 |
ENDDO |
1228 |
DO np = 1,npmax |
1229 |
Ptr(i,j,k,bi,bj,iPhy+np-1) = Ptr(i,j,k,bi,bj,iPhy+np-1) + |
1230 |
& dtplankton*dPhy(np) |
1231 |
#ifdef GEIDER |
1232 |
#ifdef DYNAMIC_CHL |
1233 |
if (np.eq.1) Chl=0. _d 0 |
1234 |
Ptr(i,j,k,bi,bj,iChl+np-1) = Ptr(i,j,k,bi,bj,iChl+np-1) + |
1235 |
& dtplankton*dphychl(np) |
1236 |
c chltmp=Ptr(i,j,k,bi,bj,iChl+np-1) |
1237 |
c phytmp=Ptr(i,j,k,bi,bj,iPhy+np-1) |
1238 |
c Ptr(i,j,k,bi,bj,iChl+np-1)= |
1239 |
c & max(chltmp,phytmp*R_PC(np)*chl2cmin(np)) |
1240 |
c if (np.eq.1.and.i.eq.1.and.j.eq.1.and.k.eq.1) |
1241 |
c & print*,chltmp,phytmp,phytmp*R_PC(np)*chl2cmin(np), |
1242 |
c & phytmp*R_PC(np)*chl2cmax(np) |
1243 |
c in darwin_plankton this is stored for previous timestep. Reset here. |
1244 |
Chl=Chl+Ptr(i,j,k,bi,bj,iChl+np-1) |
1245 |
#else |
1246 |
Chl_phy(i,j,k,bi,bj,np)=phychl(np) |
1247 |
#endif |
1248 |
#endif |
1249 |
ENDDO |
1250 |
#ifdef ALLOW_CDOM |
1251 |
Ptr(i,j,k,bi,bj,iCDOM ) = Ptr(i,j,k,bi,bj,iCDOM ) + |
1252 |
& dtplankton*dcdoml |
1253 |
#endif |
1254 |
#ifdef ALLOW_CARBON |
1255 |
Ptr(i,j,k,bi,bj,iDIC ) = Ptr(i,j,k,bi,bj,iDIC ) + |
1256 |
& dtplankton*ddicl |
1257 |
Ptr(i,j,k,bi,bj,iDOC ) = Ptr(i,j,k,bi,bj,iDOC ) + |
1258 |
& dtplankton*ddocl |
1259 |
Ptr(i,j,k,bi,bj,iPOC ) = Ptr(i,j,k,bi,bj,iPOC ) + |
1260 |
& dtplankton*dpocl |
1261 |
Ptr(i,j,k,bi,bj,iPIC ) = Ptr(i,j,k,bi,bj,iPIC ) + |
1262 |
& dtplankton*dpicl |
1263 |
Ptr(i,j,k,bi,bj,iALK ) = Ptr(i,j,k,bi,bj,iALK ) + |
1264 |
& dtplankton*dalkl |
1265 |
Ptr(i,j,k,bi,bj,iO2 ) = Ptr(i,j,k,bi,bj,iO2 ) + |
1266 |
& dtplankton*do2l |
1267 |
DO nz = 1,nzmax |
1268 |
Ptr(i,j,k,bi,bj,iZooC (nz)) = Ptr(i,j,k,bi,bj,iZooC (nz)) + |
1269 |
& dtplankton*dzoocl (nz) |
1270 |
ENDDO |
1271 |
#endif |
1272 |
c |
1273 |
#ifdef ALLOW_MUTANTS |
1274 |
cQQQQTEST |
1275 |
if (debug.eq.11) then |
1276 |
if (k.lt.8) then |
1277 |
do np=1,60 |
1278 |
if(mod(np,4).eq. 1. _d 0)then |
1279 |
np2=np+1 |
1280 |
np4=np+3 |
1281 |
|
1282 |
Coj: couldn't test this part after change Phynp -> Ptr(...,iPhy+np-1) |
1283 |
Coj: used to be many copies of this: |
1284 |
C if (dPhy(2).gt.dPhy(4).and.dPhy(4).gt.0. _d 0) then |
1285 |
C print*,'QQQ dphy2 > dphy4',i,j,k,Phy2(i,j,k), |
1286 |
C & Phy4(i,j,k), dPhy(2), dPhy(4) |
1287 |
C endif |
1288 |
C if (Phy2(i,j,k).gt.Phy4(i,j,k).and. |
1289 |
C & Phy4(i,j,k).gt.0. _d 0) then |
1290 |
C print*,'QQ phy02 > phy04',i,j,k,Phy2(i,j,k), |
1291 |
C & Phy4(i,j,k), dPhy(2), dPhy(4) |
1292 |
C endif |
1293 |
|
1294 |
if (dPhy(np2).gt.dPhy(np4).and.dPhy(np4).gt.0. _d 0) then |
1295 |
print*,'QQQ dphy',np2,' > dphy',np4,i,j,k,Phy2(i,j,k), |
1296 |
& Ptr(i,j,k,bi,bj,iPhy+np4-1), dPhy(2), dPhy(4) |
1297 |
endif |
1298 |
if (Ptr(i,j,k,bi,bj,iphy+np2-1).gt.Ptr(i,j,k,bi,bj,iPhy+np4-1) |
1299 |
& .and. Ptr(i,j,k,bi,bj,iPhy+np4-1).gt.0. _d 0) then |
1300 |
print*,'QQ phy',np2,' > ',np4,i,j,k, |
1301 |
& Ptr(i,j,k,bi,bj,iPhy+np2-1), |
1302 |
& Ptr(i,j,k,bi,bj,iPhy+np4-1), dPhy(2), dPhy(4) |
1303 |
endif |
1304 |
|
1305 |
endif |
1306 |
enddo ! np |
1307 |
endif ! k |
1308 |
endif |
1309 |
#endif |
1310 |
|
1311 |
#ifdef ALLOW_DIAGNOSTICS |
1312 |
COJ for diagnostics |
1313 |
PParr(i,j,k) = PP |
1314 |
Nfixarr(i,j,k) = Nfix |
1315 |
c ANNA_TAVE |
1316 |
#ifdef WAVES_DIAG_PCHL |
1317 |
DO np = 1,npmax |
1318 |
Pchlarr(i,j,k,np) = phychl(np) |
1319 |
ENDDO |
1320 |
#endif |
1321 |
c ANNA end TAVE |
1322 |
#ifdef DAR_DIAG_RSTAR |
1323 |
DO np = 1,npmax |
1324 |
Rstararr(i,j,k,np) = Rstarl(np) |
1325 |
ENDDO |
1326 |
#endif |
1327 |
#ifdef ALLOW_DIAZ |
1328 |
#ifdef DAR_DIAG_NFIXP |
1329 |
DO np = 1,npmax |
1330 |
NfixParr(i,j,k,np) = NfixPl(np) |
1331 |
ENDDO |
1332 |
#endif |
1333 |
#endif |
1334 |
#ifdef DAR_DIAG_CHL |
1335 |
GeiderChlarr(i,j,k) = ChlGeiderlocal |
1336 |
DoneyChlarr(i,j,k) = ChlDoneylocal |
1337 |
CloernChlarr(i,j,k) = ChlCloernlocal |
1338 |
IF (totphyC .NE. 0. _d 0) THEN |
1339 |
GeiderChl2Carr(i,j,k) = ChlGeiderlocal/totphyC |
1340 |
DoneyChl2Carr(i,j,k) = ChlDoneylocal/totphyC |
1341 |
CloernChl2Carr(i,j,k) = ChlCloernlocal/totphyC |
1342 |
ELSE |
1343 |
GeiderChl2Carr(i,j,k) = 0. _d 0 |
1344 |
DoneyChl2Carr(i,j,k) = 0. _d 0 |
1345 |
CloernChl2Carr(i,j,k) = 0. _d 0 |
1346 |
ENDIF |
1347 |
#endif |
1348 |
COJ |
1349 |
#endif /* ALLOW_DIAGNOSTICS */ |
1350 |
|
1351 |
c total fixation (NOTE - STILL NEEDS GLOB SUM) |
1352 |
tot_Nfix=tot_Nfix+ |
1353 |
& Nfix*rA(i,j,bi,bj)*rF(k)*hFacC(i,j,k,bi,bj) |
1354 |
|
1355 |
#ifdef ALLOW_TIMEAVE |
1356 |
c save averages |
1357 |
c Phygrow1ave(i,j,k,bi,bj)=Phygrow1ave(i,j,k,bi,bj)+ |
1358 |
c & mu1*py1*deltaTclock |
1359 |
c & /float(nsubtime) |
1360 |
c Phygrow2ave(i,j,k,bi,bj)=Phygrow2ave(i,j,k,bi,bj)+ |
1361 |
c & mu2*py2*deltaTclock |
1362 |
c & /float(nsubtime) |
1363 |
c Zoograzave(i,j,k,bi,bj)=Zoograzave(i,j,k,bi,bj)+ |
1364 |
c & (gampn1*graz1*zo +gampn2*graz2*zo)* |
1365 |
c & deltaTclock/float(nsubtime) |
1366 |
#ifdef GEIDER |
1367 |
Chlave(i,j,k,bi,bj)=Chlave(i,j,k,bi,bj)+ |
1368 |
& Chl*dtplankton |
1369 |
#endif |
1370 |
PARave(i,j,k,bi,bj)=PARave(i,j,k,bi,bj)+ |
1371 |
& PARl*dtplankton |
1372 |
PPave(i,j,k,bi,bj)=PPave(i,j,k,bi,bj)+ |
1373 |
& PP*dtplankton |
1374 |
Nfixave(i,j,k,bi,bj)=Nfixave(i,j,k,bi,bj)+ |
1375 |
& Nfix*dtplankton |
1376 |
Denitave(i,j,k,bi,bj)=Denitave(i,j,k,bi,bj)+ |
1377 |
& denit*dtplankton |
1378 |
#ifdef WAVES_DIAG_PCHL |
1379 |
do np=1,npmax |
1380 |
Pchlave(i,j,k,bi,bj,np)=Pchlave(i,j,k,bi,bj,np)+ |
1381 |
& phychl(np)*dtplankton |
1382 |
enddo |
1383 |
#endif |
1384 |
#ifdef DAR_DIAG_ACDOM |
1385 |
c print*,'acdom',k,acdom_k(k,darwin_diag_acdom_ilam) |
1386 |
aCDOMave(i,j,k,bi,bj)=aCDOMave(i,j,k,bi,bj)+ |
1387 |
& acdom_k(k,darwin_diag_acdom_ilam)*dtplankton |
1388 |
#endif |
1389 |
#ifdef DAR_DIAG_IRR |
1390 |
do ilam = 1,tlam |
1391 |
if (k.EQ.1) then |
1392 |
Edave(i,j,k,bi,bj,ilam)=Edave(i,j,k,bi,bj,ilam)+ |
1393 |
& Edwsf(ilam)*dtplankton |
1394 |
Esave(i,j,k,bi,bj,ilam)=Esave(i,j,k,bi,bj,ilam)+ |
1395 |
& Eswsf(ilam)*dtplankton |
1396 |
Coj no Eu at surface (yet) |
1397 |
else |
1398 |
Edave(i,j,k,bi,bj,ilam)=Edave(i,j,k,bi,bj,ilam)+ |
1399 |
& Edz(ilam,k-1)*dtplankton |
1400 |
Esave(i,j,k,bi,bj,ilam)=Esave(i,j,k,bi,bj,ilam)+ |
1401 |
& Esz(ilam,k-1)*dtplankton |
1402 |
Euave(i,j,k,bi,bj,ilam)=Euave(i,j,k,bi,bj,ilam)+ |
1403 |
& Euz(ilam,k-1)*dtplankton |
1404 |
endif |
1405 |
Estave(i,j,k,bi,bj,ilam)=Estave(i,j,k,bi,bj,ilam)+ |
1406 |
& Estop(ilam,k)*dtplankton |
1407 |
Eutave(i,j,k,bi,bj,ilam)=Eutave(i,j,k,bi,bj,ilam)+ |
1408 |
& Eutop(ilam,k)*dtplankton |
1409 |
enddo |
1410 |
#endif |
1411 |
#ifdef DAR_DIAG_IRR_AMPS |
1412 |
do ilam = 1,tlam |
1413 |
amp1ave(i,j,k,bi,bj,ilam)=amp1ave(i,j,k,bi,bj,ilam)+ |
1414 |
& amp1(ilam,k)*dtplankton |
1415 |
amp2ave(i,j,k,bi,bj,ilam)=amp2ave(i,j,k,bi,bj,ilam)+ |
1416 |
& amp2(ilam,k)*dtplankton |
1417 |
enddo |
1418 |
#endif |
1419 |
#ifdef DAR_DIAG_ABSORP |
1420 |
do ilam = 1,tlam |
1421 |
aave(i,j,k,bi,bj,ilam)=aave(i,j,k,bi,bj,ilam)+ |
1422 |
& a_k(k,ilam)*dtplankton |
1423 |
enddo |
1424 |
#endif |
1425 |
#ifdef DAR_DIAG_SCATTER |
1426 |
do ilam = 1,tlam |
1427 |
btave(i,j,k,bi,bj,ilam)=btave(i,j,k,bi,bj,ilam)+ |
1428 |
& bt_k(k,ilam)*dtplankton |
1429 |
bbave(i,j,k,bi,bj,ilam)=bbave(i,j,k,bi,bj,ilam)+ |
1430 |
& bb_k(k,ilam)*dtplankton |
1431 |
enddo |
1432 |
#endif |
1433 |
#ifdef DAR_DIAG_PART_SCATTER |
1434 |
do ilam = 1,tlam |
1435 |
apartave(i,j,k,bi,bj,ilam)=apartave(i,j,k,bi,bj,ilam)+ |
1436 |
& apart_k(k,ilam)*dtplankton |
1437 |
btpartave(i,j,k,bi,bj,ilam)=btpartave(i,j,k,bi,bj,ilam)+ |
1438 |
& bpart_k(k,ilam)*dtplankton |
1439 |
bbpartave(i,j,k,bi,bj,ilam)=bbpartave(i,j,k,bi,bj,ilam)+ |
1440 |
& bbpart_k(k,ilam)*dtplankton |
1441 |
enddo |
1442 |
#endif |
1443 |
#ifdef DAR_RADTRANS |
1444 |
if (k.eq.1) then |
1445 |
rmudave(i,j,bi,bj)=rmudave(i,j,bi,bj)+ |
1446 |
& rmud*dtplankton |
1447 |
endif |
1448 |
#endif |
1449 |
#ifdef DAR_DIAG_RSTAR |
1450 |
do np=1,npmax |
1451 |
Rstarave(i,j,k,bi,bj,np)=Rstarave(i,j,k,bi,bj,np)+ |
1452 |
& Rstarl(np)*dtplankton |
1453 |
RNstarave(i,j,k,bi,bj,np)=RNstarave(i,j,k,bi,bj,np)+ |
1454 |
& RNstarl(np)*dtplankton |
1455 |
enddo |
1456 |
#endif |
1457 |
#ifdef DAR_DIAG_DIVER |
1458 |
Diver1ave(i,j,k,bi,bj)=Diver1ave(i,j,k,bi,bj)+ |
1459 |
& Diver1(i,j,k)*dtplankton |
1460 |
Diver2ave(i,j,k,bi,bj)=Diver2ave(i,j,k,bi,bj)+ |
1461 |
& Diver2(i,j,k)*dtplankton |
1462 |
Diver3ave(i,j,k,bi,bj)=Diver3ave(i,j,k,bi,bj)+ |
1463 |
& Diver3(i,j,k)*dtplankton |
1464 |
Diver4ave(i,j,k,bi,bj)=Diver4ave(i,j,k,bi,bj)+ |
1465 |
& Diver4(i,j,k)*dtplankton |
1466 |
#endif |
1467 |
#ifdef DAR_DIAG_GROW |
1468 |
do np=1,npmax |
1469 |
Growave(i,j,k,bi,bj,np)=Growave(i,j,k,bi,bj,np)+ |
1470 |
& Growl(np)*dtplankton |
1471 |
Growsqave(i,j,k,bi,bj,np)=Growsqave(i,j,k,bi,bj,np)+ |
1472 |
& Growsql(np)*dtplankton |
1473 |
enddo |
1474 |
#endif |
1475 |
|
1476 |
#ifdef ALLOW_DIAZ |
1477 |
#ifdef DAR_DIAG_NFIXP |
1478 |
do np=1,npmax |
1479 |
NfixPave(i,j,k,bi,bj,np)=NfixPave(i,j,k,bi,bj,np)+ |
1480 |
& NfixPl(np)*dtplankton |
1481 |
enddo |
1482 |
#endif |
1483 |
#endif |
1484 |
#endif |
1485 |
|
1486 |
#ifdef ALLOW_CARBON |
1487 |
if (k.eq.1) then |
1488 |
SURave(i,j,bi,bj) =SURave(i,j,bi,bj)+ |
1489 |
& flxCO2(i,j)*dtplankton |
1490 |
SURCave(i,j,bi,bj) =SURCave(i,j,bi,bj)+ |
1491 |
& FluxCO2(i,j,bi,bj)*dtplankton |
1492 |
SUROave(i,j,bi,bj) =SUROave(i,j,bi,bj)+ |
1493 |
& flxO2(i,j)*dtplankton |
1494 |
pCO2ave(i,j,bi,bj) =pCO2ave(i,j,bi,bj)+ |
1495 |
& pCO2(i,j,bi,bj)*dtplankton |
1496 |
pHave(i,j,bi,bj) =pHave(i,j,bi,bj)+ |
1497 |
& pH(i,j,bi,bj)*dtplankton |
1498 |
endif |
1499 |
#endif |
1500 |
endif |
1501 |
c end if hFac>0 |
1502 |
|
1503 |
enddo ! k |
1504 |
c end layer loop |
1505 |
c |
1506 |
|
1507 |
ENDDO ! i |
1508 |
ENDDO ! j |
1509 |
|
1510 |
#ifdef ALLOW_PAR_DAY |
1511 |
C 1 <-> 2 |
1512 |
PARiaccum = 3 - PARiprev |
1513 |
|
1514 |
DO k=1,nR |
1515 |
DO j=1,sNy |
1516 |
DO i=1,sNx |
1517 |
PARday(i,j,k,bi,bj,PARiaccum) = |
1518 |
& PARday(i,j,k,bi,bj,PARiaccum) + PAR(i,j,k) |
1519 |
ENDDO |
1520 |
ENDDO |
1521 |
ENDDO |
1522 |
|
1523 |
phase = 0. _d 0 |
1524 |
itistime = DIFF_PHASE_MULTIPLE( phase, darwin_PARavPeriod, |
1525 |
& newtime, dtsubtime) |
1526 |
|
1527 |
IF ( itistime ) THEN |
1528 |
C compute average |
1529 |
nav = darwin_PARnav |
1530 |
IF (newtime - baseTime .LT. darwin_PARavPeriod) THEN |
1531 |
C incomplete period at beginning of run |
1532 |
nav = NINT((newtime-baseTime)/dtsubtime) |
1533 |
ENDIF |
1534 |
DO k=1,nR |
1535 |
DO j=1,sNy |
1536 |
DO i=1,sNx |
1537 |
PARday(i,j,k,bi,bj,PARiaccum) = |
1538 |
& PARday(i,j,k,bi,bj,PARiaccum) / nav |
1539 |
ENDDO |
1540 |
ENDDO |
1541 |
ENDDO |
1542 |
C reset the other slot for averaging |
1543 |
DO k=1,nR |
1544 |
DO j=1,sNy |
1545 |
DO i=1,sNx |
1546 |
PARday(i,j,k,bi,bj,PARiprev) = 0. _d 0 |
1547 |
ENDDO |
1548 |
ENDDO |
1549 |
ENDDO |
1550 |
ENDIF |
1551 |
C itistime |
1552 |
#endif |
1553 |
|
1554 |
#ifdef DAR_CHECK_IRR_CONT |
1555 |
i = myXGlobalLo-1+(bi-1)*sNx+idiscEs |
1556 |
j = myYGlobalLo-1+(bj-1)*sNy+jdiscEs |
1557 |
write(6,'(I4.4,X,A,4(X,I4),1PE24.16)')myProcId,'max Es disc', |
1558 |
& i,j,kdiscEs,ldiscEs,discEs |
1559 |
i = myXGlobalLo-1+(bi-1)*sNx+idiscEu |
1560 |
j = myYGlobalLo-1+(bj-1)*sNy+jdiscEu |
1561 |
write(6,'(I4.4,X,A,4(X,I4),1PE24.16)')myProcId,'max Eu disc', |
1562 |
& i,j,kdiscEu,ldiscEu,discEu |
1563 |
#endif |
1564 |
|
1565 |
COJ fill diagnostics |
1566 |
#ifdef ALLOW_DIAGNOSTICS |
1567 |
IF ( useDiagnostics ) THEN |
1568 |
diagname = ' ' |
1569 |
WRITE(diagname,'(A8)') 'PAR ' |
1570 |
CALL DIAGNOSTICS_FILL( PAR(1-Olx,1-Oly,1), diagname, |
1571 |
& 0,Nr,2,bi,bj,myThid ) |
1572 |
WRITE(diagname,'(A8)') 'PP ' |
1573 |
CALL DIAGNOSTICS_FILL( PParr(1-Olx,1-Oly,1), diagname, |
1574 |
& 0,Nr,2,bi,bj,myThid ) |
1575 |
WRITE(diagname,'(A8)') 'Nfix ' |
1576 |
CALL DIAGNOSTICS_FILL( Nfixarr(1-Olx,1-Oly,1), diagname, |
1577 |
& 0,Nr,2,bi,bj,myThid ) |
1578 |
c ANNA_TAVE |
1579 |
#ifdef WAVES_DIAG_PCHL |
1580 |
DO np=1,MIN(99,npmax) |
1581 |
WRITE(diagname,'(A5,I2.2,A1)') 'Pchl',np,' ' |
1582 |
CALL DIAGNOSTICS_FILL( Pchlarr(1-Olx,1-Oly,1,np), diagname, |
1583 |
& 0,Nr,2,bi,bj,myThid ) |
1584 |
ENDDO |
1585 |
#endif |
1586 |
c ANNA end TAVE |
1587 |
#ifdef DAR_DIAG_RSTAR |
1588 |
DO np=1,MIN(99,npmax) |
1589 |
WRITE(diagname,'(A5,I2.2,A1)') 'Rstar',np,' ' |
1590 |
CALL DIAGNOSTICS_FILL( Rstararr(1-Olx,1-Oly,1,np), diagname, |
1591 |
& 0,Nr,2,bi,bj,myThid ) |
1592 |
ENDDO |
1593 |
#endif |
1594 |
#ifdef DAR_DIAG_DIVER |
1595 |
WRITE(diagname,'(A8)') 'Diver1 ' |
1596 |
CALL DIAGNOSTICS_FILL( Diver1(1-Olx,1-Oly,1), diagname, |
1597 |
& 0,Nr,2,bi,bj,myThid ) |
1598 |
WRITE(diagname,'(A8)') 'Diver2 ' |
1599 |
CALL DIAGNOSTICS_FILL( Diver2(1-Olx,1-Oly,1), diagname, |
1600 |
& 0,Nr,2,bi,bj,myThid ) |
1601 |
WRITE(diagname,'(A8)') 'Diver3 ' |
1602 |
CALL DIAGNOSTICS_FILL( Diver3(1-Olx,1-Oly,1), diagname, |
1603 |
& 0,Nr,2,bi,bj,myThid ) |
1604 |
WRITE(diagname,'(A8)') 'Diver4 ' |
1605 |
CALL DIAGNOSTICS_FILL( Diver4(1-Olx,1-Oly,1), diagname, |
1606 |
& 0,Nr,2,bi,bj,myThid ) |
1607 |
WRITE(diagname,'(A8)') 'Shannon ' |
1608 |
CALL DIAGNOSTICS_FILL( Shannon(1-Olx,1-Oly,1), diagname, |
1609 |
& 0,Nr,2,bi,bj,myThid ) |
1610 |
WRITE(diagname,'(A8)') 'Simpson ' |
1611 |
CALL DIAGNOSTICS_FILL( Simpson(1-Olx,1-Oly,1), diagname, |
1612 |
& 0,Nr,2,bi,bj,myThid ) |
1613 |
#endif |
1614 |
#ifdef ALLOW_DIAZ |
1615 |
#ifdef DAR_DIAG_NFIXP |
1616 |
DO np=1,MIN(99,npmax) |
1617 |
WRITE(diagname,'(A5,I2.2,A1)') 'NfixP',np,' ' |
1618 |
CALL DIAGNOSTICS_FILL( NfixParr(1-Olx,1-Oly,1,np), diagname, |
1619 |
& 0,Nr,2,bi,bj,myThid ) |
1620 |
ENDDO |
1621 |
#endif |
1622 |
#endif |
1623 |
#ifdef DAR_DIAG_CHL |
1624 |
CALL DIAGNOSTICS_FILL( GeiderChlarr(1-Olx,1-Oly,1), 'ChlGeide', |
1625 |
& 0,Nr,2,bi,bj,myThid ) |
1626 |
CALL DIAGNOSTICS_FILL( GeiderChl2Carr(1-Olx,1-Oly,1),'Chl2CGei', |
1627 |
& 0,Nr,2,bi,bj,myThid ) |
1628 |
CALL DIAGNOSTICS_FILL( DoneyChlarr(1-Olx,1-Oly,1), 'ChlDoney', |
1629 |
& 0,Nr,2,bi,bj,myThid ) |
1630 |
CALL DIAGNOSTICS_FILL( DoneyChl2Carr(1-Olx,1-Oly,1), 'Chl2CDon', |
1631 |
& 0,Nr,2,bi,bj,myThid ) |
1632 |
CALL DIAGNOSTICS_FILL( CloernChlarr(1-Olx,1-Oly,1), 'ChlCloer', |
1633 |
& 0,Nr,2,bi,bj,myThid ) |
1634 |
CALL DIAGNOSTICS_FILL( CloernChl2Carr(1-Olx,1-Oly,1),'Chl2CClo', |
1635 |
& 0,Nr,2,bi,bj,myThid ) |
1636 |
#endif |
1637 |
#ifdef ALLOW_CARBON |
1638 |
CALL DIAGNOSTICS_FILL( flxCO2(1-Olx,1-Oly), 'DICTFLX ', |
1639 |
& 0,1,2,bi,bj,myThid ) |
1640 |
CALL DIAGNOSTICS_FILL( FluxCO2(1-Olx,1-Oly,bi,bj), 'DICCFLX ', |
1641 |
& 0,1,2,bi,bj,myThid ) |
1642 |
CALL DIAGNOSTICS_FILL( flxO2(1-Olx,1-Oly), 'DICOFLX ', |
1643 |
& 0,1,2,bi,bj,myThid ) |
1644 |
CALL DIAGNOSTICS_FILL( pCO2(1-Olx,1-Oly,bi,bj), 'DICPCO2 ', |
1645 |
& 0,1,2,bi,bj,myThid ) |
1646 |
CALL DIAGNOSTICS_FILL( pH(1-Olx,1-Oly,bi,bj), 'DICPHAV ', |
1647 |
& 0,1,2,bi,bj,myThid ) |
1648 |
#endif /* ALLOW_CARBON */ |
1649 |
ENDIF |
1650 |
#endif /* ALLOW_DIAGNOSTICS */ |
1651 |
COJ |
1652 |
|
1653 |
c determine iron partitioning - solve for free iron |
1654 |
call darwin_fe_chem(bi,bj,iMin,iMax,jMin,jMax, |
1655 |
& Ptr(1-OLx,1-OLy,1,bi,bj,iFeT), freefe, |
1656 |
& myIter, mythid) |
1657 |
c |
1658 |
#ifdef ALLOW_TIMEAVE |
1659 |
c save averages |
1660 |
do k=1,nR |
1661 |
dar_timeave(bi,bj,k)=dar_timeave(bi,bj,k) |
1662 |
& +dtplankton |
1663 |
#ifdef ALLOW_CARBON |
1664 |
dic_timeave(bi,bj,k)=dic_timeave(bi,bj,k) |
1665 |
& +dtplankton |
1666 |
#endif |
1667 |
enddo |
1668 |
#endif |
1669 |
c |
1670 |
c ----------------------------------------------------- |
1671 |
ENDDO ! it |
1672 |
c ----------------------------------------------------- |
1673 |
c end of bio-chemical time loop |
1674 |
c |
1675 |
RETURN |
1676 |
END |
1677 |
#endif /*MONOD*/ |
1678 |
#endif /*ALLOW_PTRACERS*/ |
1679 |
|
1680 |
C============================================================================ |