/[MITgcm]/MITgcm_contrib/darwin2/pkg/monod/monod_forcing.F
ViewVC logotype

Annotation of /MITgcm_contrib/darwin2/pkg/monod/monod_forcing.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.14 - (hide annotations) (download)
Thu Oct 25 15:58:24 2012 UTC (12 years, 8 months ago) by jahn
Branch: MAIN
CVS Tags: ctrb_darwin2_ckpt64k_20130723, ctrb_darwin2_ckpt64h_20130528, ctrb_darwin2_ckpt64m_20130820, ctrb_darwin2_ckpt64f_20130405, ctrb_darwin2_ckpt64a_20121116, ctrb_darwin2_ckpt64n_20130826, ctrb_darwin2_ckpt64i_20130622, ctrb_darwin2_ckpt64e_20130305, ctrb_darwin2_ckpt64g_20130503, ctrb_darwin2_ckpt64l_20130806, ctrb_darwin2_ckpt64c_20130120, ctrb_darwin2_ckpt64j_20130704, ctrb_darwin2_ckpt64b_20121224, ctrb_darwin2_ckpt64d_20130219
Changes since 1.13: +3 -2 lines
fix units when using insol

1 jahn 1.14 C $Header: /u/gcmpack/MITgcm_contrib/darwin2/pkg/monod/monod_forcing.F,v 1.13 2012/10/23 16:39:32 stephd Exp $
2 jahn 1.2 C $Name: $
3 jahn 1.1
4     #include "CPP_OPTIONS.h"
5     #include "PTRACERS_OPTIONS.h"
6     #include "DARWIN_OPTIONS.h"
7    
8     #ifdef ALLOW_PTRACERS
9     #ifdef ALLOW_MONOD
10    
11     c=============================================================
12     c subroutine MONOD_forcing
13     c step forward bio-chemical tracers in time
14     C==============================================================
15     SUBROUTINE MONOD_FORCING(
16     U Ptr,
17     I bi,bj,imin,imax,jmin,jmax,
18     I myTime,myIter,myThid)
19     #include "SIZE.h"
20     #include "EEPARAMS.h"
21     #include "PARAMS.h"
22     #include "GRID.h"
23     #include "DYNVARS.h"
24 jahn 1.8 c for Qsw and/or surfaceForcingT
25     c choice which field to take pCO2 from for pCO2limit
26     c this assumes we use Ttendency from offline
27 jahn 1.1 #include "FFIELDS.h"
28     #ifdef ALLOW_LONGSTEP
29     #include "LONGSTEP.h"
30     #endif
31     #include "PTRACERS_SIZE.h"
32     #include "PTRACERS_PARAMS.h"
33     #include "GCHEM.h"
34     #include "MONOD_SIZE.h"
35     #include "MONOD.h"
36     #include "DARWIN_IO.h"
37     #include "DARWIN_FLUX.h"
38     #include "MONOD_FIELDS.h"
39    
40     c ANNA include wavebands_params.h
41     #ifdef WAVEBANDS
42     #include "SPECTRAL_SIZE.h"
43     #include "SPECTRAL.h"
44     #include "WAVEBANDS_PARAMS.h"
45     #endif
46    
47 stephd 1.7
48 jahn 1.1 C === Global variables ===
49     c tracers
50     _RL Ptr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy,nDarwin)
51     INTEGER bi,bj,imin,imax,jmin,jmax
52     INTEGER myIter
53     _RL myTime
54     INTEGER myThid
55    
56     C !FUNCTIONS:
57     C == Functions ==
58     #ifdef ALLOW_PAR_DAY
59     LOGICAL DIFF_PHASE_MULTIPLE
60     EXTERNAL DIFF_PHASE_MULTIPLE
61     #endif
62    
63     C============== Local variables ============================================
64     c plankton arrays
65     _RL ZooP(nzmax)
66     _RL ZooN(nzmax)
67     _RL ZooFe(nzmax)
68     _RL ZooSi(nzmax)
69     _RL Phy(npmax)
70     _RL Phy_k(npmax,Nr)
71     _RL Phyup(npmax)
72     _RL part_k(Nr)
73 stephd 1.6 #ifdef ALLOW_CDOM
74     _RL cdom_k(Nr)
75     #endif
76 jahn 1.1 c iron partitioning
77     _RL freefe(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
78     c some working variables
79     _RL sumpy
80     _RL sumpyup
81     c light variables
82     _RL PAR(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
83     _RL sfac(1-OLy:sNy+OLy)
84     _RL atten,lite
85     _RL newtime ! for sub-timestepping
86     _RL runtim ! time from tracer initialization
87    
88    
89     c ANNA define variables for wavebands
90     #ifdef WAVEBANDS
91     integer ilam
92     _RL PARw_k(tlam,Nr)
93     _RL PARwup(tlam)
94     _RL acdom_k(Nr,tlam)
95 stephd 1.13 _RL Ek_nll(npmax,tlam)
96     _RL EkoverE_nll(npmax,tlam)
97 jahn 1.1 #ifdef DAR_RADTRANS
98     integer iday,iyr,imon,isec,lp,wd,mydate(4)
99     _RL Edwsf(tlam),Eswsf(tlam)
100 jahn 1.10 _RL Edz(tlam,Nr),Esz(tlam,Nr),Euz(tlam,Nr)
101     _RL Estop(tlam,Nr),Eutop(tlam,Nr)
102 jahn 1.1 _RL tirrq(nr)
103     _RL tirrwq(tlam,nr)
104 jahn 1.10 _RL amp1(tlam,nr), amp2(tlam,nr)
105 jahn 1.1 _RL solz
106     _RL rmud
107     _RL actot,bctot,bbctot
108     _RL apart_k(Nr,tlam),bpart_k(Nr,tlam),bbpart_k(Nr,tlam)
109     _RL bt_k(Nr,tlam), bb_k(Nr,tlam)
110 jahn 1.11 _RL discEs, discEu
111 jahn 1.12 INTEGER idiscEs,jdiscEs,kdiscEs,ldiscEs
112     INTEGER idiscEu,jdiscEu,kdiscEu,ldiscEu
113 jahn 1.1 #else
114     _RL PARwdn(tlam)
115     #endif
116     C always need for diagnostics
117     _RL a_k(Nr,tlam)
118     #endif /* WAVEBANDS */
119    
120    
121     #ifdef DAR_DIAG_DIVER
122     _RL Diver1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
123     _RL Diver2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
124     _RL Diver3(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
125     _RL Diver4(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
126 jahn 1.5 _RL Shannon(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
127     _RL Simpson(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
128 jahn 1.1
129     _RL tmpphy(npmax)
130     _RL totphy, biotot, maxphy, phymax
131     #endif
132    
133     #ifdef GEIDER
134     _RL phychl(npmax)
135     _RL phychl_k(npmax,Nr)
136 stephd 1.13 _RL Ekl(npmax)
137     _RL EkoverEl(npmax)
138     _RL chl2cl(npmax)
139 jahn 1.1 #ifdef DYNAMIC_CHL
140     _RL dphychl(npmax)
141     _RL chlup(npmax)
142 stephd 1.13 _RL accliml(npmax)
143 jahn 1.1 #endif
144     #endif
145 stephd 1.6 #ifdef ALLOW_CDOM
146     _RL cdoml
147     _RL dcdoml
148     #endif
149 jahn 1.1
150     #ifdef ALLOW_DIAGNOSTICS
151     COJ for diagnostics
152     _RL PParr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
153     _RL Nfixarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
154     c ANNA_TAVE
155     #ifdef WAVES_DIAG_PCHL
156     _RL Pchlarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,npmax)
157     #endif
158     c ANNA end TAVE
159     #ifdef DAR_DIAG_RSTAR
160     _RL Rstararr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,npmax)
161     #endif
162     #ifdef ALLOW_DIAZ
163     #ifdef DAR_DIAG_NFIXP
164     _RL NfixParr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,npmax)
165     #endif
166     #endif
167     #endif
168    
169    
170     _RL totphyC
171     #ifdef ALLOW_PAR_DAY
172     LOGICAL itistime
173     INTEGER PARiprev, PARiaccum, iperiod, nav
174     _RL phase
175     _RL dtsubtime
176     #endif
177     #ifdef DAR_DIAG_CHL
178     _RL ChlGeiderlocal, ChlDoneylocal, ChlCloernlocal
179     #ifdef ALLOW_DIAGNOSTICS
180     _RL GeiderChlarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
181     _RL GeiderChl2Carr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
182     _RL DoneyChlarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
183     _RL DoneyChl2Carr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
184     _RL CloernChlarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
185     _RL CloernChl2Carr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
186     #endif
187     #endif
188     c
189     _RL freefu
190     _RL inputFel
191    
192     c some local variables
193     _RL PO4l
194     _RL NO3l
195     _RL FeTl
196     _RL Sil
197     _RL DOPl
198     _RL DONl
199     _RL DOFel
200     _RL POPl
201     _RL PONl
202     _RL POFel
203     _RL PSil
204     _RL POPupl
205     _RL PONupl
206     _RL POFeupl
207     _RL PSiupl
208     _RL Tlocal
209     _RL Slocal
210 stephd 1.7 _RL pCO2local
211 jahn 1.1 _RL Qswlocal
212     _RL NH4l
213     _RL NO2l
214     _RL PARl
215     _RL dzlocal
216     _RL dz_k(Nr)
217     _RL dtplankton
218     _RL bottom
219     _RL PP
220     _RL Nfix
221     _RL denit
222     _RL Chl
223     _RL Rstarl(npmax)
224     _RL RNstarl(npmax)
225     #ifdef DAR_DIAG_GROW
226     _RL Growl(npmax)
227     _RL Growsql(npmax)
228     #endif
229     #ifdef ALLOW_DIAZ
230     #ifdef DAR_DIAG_NFIXP
231     _RL NfixPl(npmax)
232     #endif
233     #endif
234    
235     c local tendencies
236     _RL dphy(npmax)
237     _RL dzoop(nzmax)
238     _RL dzoon(nzmax)
239     _RL dzoofe(nzmax)
240     _RL dzoosi(nzmax)
241     _RL dPO4l
242     _RL dNO3l
243     _RL dFeTl
244     _RL dSil
245     _RL dDOPl
246     _RL dDONl
247     _RL dDOFel
248     _RL dPOPl
249     _RL dPONl
250     _RL dPOFel
251     _RL dPSil
252     _RL dNH4l
253     _RL dNO2l
254    
255     #ifdef ALLOW_CARBON
256     _RL dicl
257     _RL docl
258     _RL pocl
259     _RL picl
260     _RL alkl
261     _RL o2l
262     _RL ZooCl(nzmax)
263     _RL pocupl
264     _RL picupl
265     c tendencies
266     _RL ddicl
267     _RL ddocl
268     _RL dpocl
269     _RL dpicl
270     _RL dalkl
271     _RL do2l
272     _RL dZooCl(nzmax)
273     c air-sea fluxes
274 jahn 1.2 _RL flxCO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
275     _RL flxALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
276     _RL flxO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
277 jahn 1.1 #endif
278    
279     _RL tot_Nfix
280    
281     _RL tmp
282    
283     _RL phytmp, chltmp
284    
285     INTEGER i,j,k,it, ktmp
286     INTEGER np, nz, np2, npsave
287     INTEGER debug
288     CHARACTER*8 diagname
289    
290     c
291     c
292     c
293     DO j=1-OLy,sNy+OLy
294     DO i=1-OLx,sNx+OLx
295     do k=1,Nr
296     freefe(i,j,k)=0. _d 0
297     PAR(i,j,k) = 0. _d 0
298     #ifdef DAR_DIAG_DIVER
299     Diver1(i,j,k)=0. _d 0
300     Diver2(i,j,k)=0. _d 0
301     Diver3(i,j,k)=0. _d 0
302     Diver4(i,j,k)=0. _d 0
303 jahn 1.5 Shannon(i,j,k)=0. _d 0
304     Simpson(i,j,k)=1. _d 0
305 jahn 1.1 #endif
306    
307     #ifdef ALLOW_DIAGNOSTICS
308     COJ for diagnostics
309     PParr(i,j,k) = 0. _d 0
310     Nfixarr(i,j,k) = 0. _d 0
311 jahn 1.4 #ifdef DAR_DIAG_CHL
312     GeiderChlarr(i,j,k) = 0. _d 0
313     GeiderChl2Carr(i,j,k) = 0. _d 0
314     DoneyChlarr(i,j,k) = 0. _d 0
315     DoneyChl2Carr(i,j,k) = 0. _d 0
316     CloernChlarr(i,j,k) = 0. _d 0
317     CloernChl2Carr(i,j,k) = 0. _d 0
318     #endif
319 jahn 1.1 c ANNA_TAVE
320     #ifdef WAVES_DIAG_PCHL
321     DO np=1,npmax
322     Pchlarr(i,j,k,np) = 0. _d 0
323     ENDDO
324     #endif
325     c ANNA end TAVE
326     #ifdef DAR_DIAG_RSTAR
327     DO np=1,npmax
328     Rstararr(i,j,k,np) = 0. _d 0
329     ENDDO
330     #endif
331     COJ
332     #ifdef ALLOW_DIAZ
333     #ifdef DAR_DIAG_NFIXP
334     DO np=1,npmax
335     NfixParr(i,j,k,np) = 0. _d 0
336     ENDDO
337     #endif
338     #endif
339     #endif
340     enddo
341     ENDDO
342     ENDDO
343 jahn 1.11
344     #ifdef DAR_RADTRANS
345 jahn 1.12 idiscEs = 0
346     jdiscEs = 0
347     kdiscEs = 0
348     ldiscEs = 0
349     idiscEu = 0
350     jdiscEu = 0
351     kdiscEu = 0
352     ldiscEu = 0
353 jahn 1.11 discEs = 0.
354     discEu = 0.
355     #endif
356 jahn 1.1 c
357     c bio-chemical time loop
358     c--------------------------------------------------
359     DO it=1,nsubtime
360     c -------------------------------------------------
361     tot_Nfix=0. _d 0
362     COJ cannot use dfloat because of adjoint
363     COJ division will be double precision anyway because of dTtracerLev
364     newtime=myTime-dTtracerLev(1)+
365     & float(it)*dTtracerLev(1)/float(nsubtime)
366     c print*,'it ',it,newtime,nsubtime,myTime
367     runtim=myTime-float(PTRACERS_Iter0)*dTtracerLev(1)
368    
369     c determine iron partitioning - solve for free iron
370     c ---------------------------
371     call darwin_fe_chem(bi,bj,iMin,iMax,jMin,jMax,
372     & Ptr(1-OLx,1-OLy,1,bi,bj,iFeT), freefe,
373     & myIter, mythid)
374     c --------------------------
375     #ifdef ALLOW_CARBON
376     c air-sea flux and dilution of CO2
377     call dic_surfforcing(Ptr(1-OLx,1-OLy,1,bi,bj,iDIC),
378     & Ptr(1-OLx,1-OLy,1,bi,bj,iALK),
379     & Ptr(1-OLx,1-OLy,1,bi,bj,iPO4),
380     & Ptr(1-OLx,1-OLy,1,bi,bj,iSi),
381     & flxCO2,
382     & bi,bj,imin,imax,jmin,jmax,
383     & myIter,myTime,myThid)
384     c air-sea flux of O2
385     call dic_o2_surfforcing(Ptr(1-OLx,1-OLy,1,bi,bj,iO2),
386     & flxO2,
387     & bi,bj,imin,imax,jmin,jmax,
388     & myIter,myTime,myThid)
389     c dilusion of alkalinity
390     call dic_alk_surfforcing(Ptr(1-OLx,1-OLy,1,bi,bj,iALK),
391     & flxALK,
392     & bi,bj,imin,imax,jmin,jmax,
393     & myIter,myTime,myThid)
394     #endif
395    
396    
397     c find light in each grid cell
398     c ---------------------------
399     c determine incident light
400     #ifndef READ_PAR
401     #ifndef USE_QSW
402     DO j=1-OLy,sNy+OLy
403     sfac(j)=0. _d 0
404     ENDDO
405     call darwin_insol(newTime,sfac,bj)
406     #endif /* not USE_QSW */
407     #endif /* not READ_PAR */
408    
409     #ifdef ALLOW_PAR_DAY
410     C find out which slot of PARday has previous day's average
411     dtsubtime = dTtracerLev(1)/float(nsubtime)
412     C running index of averaging period
413     C myTime has already been incremented in this iteration,
414     C go back half a substep to avoid roundoff problems
415     iperiod = FLOOR((newtime-0.5 _d 0*dtsubtime)
416     & /darwin_PARavPeriod)
417     C 0 -> 1, 1->2, 2->0, ...
418     PARiprev = MOD(iperiod, 2) + 1
419    
420     #ifdef ALLOW_DIAGNOSTICS
421     C always fill; this will be the same during PARavPeriod, but this
422     C way it won't blow up for weird diagnostics periods.
423     C we fill before updating, so the diag is the one used in this time
424     C step
425     CALL DIAGNOSTICS_FILL(
426     & PARday(1-Olx,1-Oly,1,bi,bj,PARiprev),'PARday ',
427     & 0,Nr,2,bi,bj,myThid )
428     #endif
429     #endif /* ALLOW_PAR_DAY */
430    
431     #ifdef DAR_RADTRANS
432     #ifndef DAR_RADTRANS_USE_MODEL_CALENDAR
433     #ifdef ALLOW_CAL
434     C get current date and time of day: iyr/imon/iday+isec
435     CALL CAL_GETDATE( myIter, newtime, mydate, mythid )
436     CALL CAL_CONVDATE( mydate,iyr,imon,iday,isec,lp,wd,mythid )
437     #else
438     STOP 'need cal package or DAR_RADTRANS_USE_MODEL_CALENDAR'
439     #endif
440     #endif
441     #endif
442    
443     C.................................................................
444     C.................................................................
445    
446    
447     C ========================== i,j loops =================================
448     DO j=1,sNy
449     DO i=1,sNx
450    
451     c ------------ these are convenient ------------------------------------
452     DO k=1,Nr
453     part_k(k) = max(Ptr(i,j,k,bi,bj,iPOP),0. _d 0)
454 stephd 1.6 #ifdef ALLOW_CDOM
455     cdom_k(k) = max(Ptr(i,j,k,bi,bj,iCDOM),0. _d 0)
456     #endif
457 jahn 1.1 DO np = 1,npmax
458     Phy_k(np,k) = max(Ptr(i,j,k,bi,bj,iPhy+np-1),0. _d 0)
459     #ifdef GEIDER
460     #ifdef DYNAMIC_CHL
461     phychl_k(np,k) = max(Ptr(i,j,k,bi,bj,iChl+np-1),0. _d 0)
462     #else
463     phychl_k(np,k) = max(Chl_phy(i,j,k,bi,bj,np), 0. _d 0)
464     #endif
465     #endif
466     ENDDO
467     ENDDO
468    
469     c ------------ GET CDOM_k FOR WAVEBANDS_3D and RADTRANS ----------------
470     #ifdef WAVEBANDS
471     #if defined(DAR_CALC_ACDOM) || defined(DAR_RADTRANS)
472 stephd 1.6 #ifdef ALLOW_CDOM
473     call MONOD_ACDOM(cdom_k,
474     O acdom_k,
475     I myThid)
476     #else
477 jahn 1.1 call MONOD_ACDOM(phychl_k,aphy_chl,aw,
478     O acdom_k,
479     I myThid)
480 stephd 1.6 #endif
481 jahn 1.1 #else
482     DO k=1,Nr
483     DO ilam = 1,tlam
484     acdom_k(k,ilam) = acdom(ilam)
485     ENDDO
486     ENDDO
487     #endif /* DAR_CALC_ACDOM or DAR_RADTRANS */
488     #endif /* WAVEBANDS */
489    
490     c ------------ GET INCIDENT NON-SPECTRAL LIGHT -------------------------
491     #if !(defined(WAVEBANDS) && defined(OASIM))
492     #ifdef READ_PAR
493    
494     lite = sur_par(i,j,bi,bj)
495    
496     #else /* not READ_PAR */
497     #ifdef USE_QSW
498    
499     #ifdef ALLOW_LONGSTEP
500     Qswlocal=LS_Qsw(i,j,bi,bj)
501     #else
502     Qswlocal=Qsw(i,j,bi,bj)
503     #endif
504     lite = -parfrac*Qswlocal*parconv*maskC(i,j,1,bi,bj)
505    
506     #else /* not USE_QSW */
507    
508 jahn 1.14 C convert W/m2 to uEin/s/m2
509     lite = sfac(j)*parconv*maskC(i,j,1,bi,bj)
510 jahn 1.1
511     #endif /* not USE_QSW */
512     #endif /* not READ_PAR */
513    
514     c take ice coverage into account
515     c unless already done in seaice package
516     #if !(defined (ALLOW_SEAICE) && defined (USE_QSW))
517     lite = lite*(1. _d 0-fice(i,j,bi,bj))
518     #endif
519     #endif /* not(WAVEBANDS and OASIM) */
520    
521     c ------------ LIGHT ATTENUATION: --------------------------------------
522     #ifndef WAVEBANDS
523     c ------------ SINGLE-BAND ATTENUATION ---------------------------------
524     atten=0. _d 0
525     do k=1,Nr
526     if (HFacC(i,j,k,bi,bj).gt.0. _d 0) then
527     sumpyup = sumpy
528     sumpy = 0. _d 0
529     do np=1,npmax
530     #ifdef GEIDER
531     sumpy = sumpy + phychl_k(np,k)
532     #else
533     sumpy = sumpy + Phy_k(np,k)
534     #endif
535     enddo
536     atten= atten + (k0 + kc*sumpy)*5. _d -1*drF(k)
537     if (k.gt.1)then
538     atten = atten + (k0+kc*sumpyup)*5. _d -1*drF(k-1)
539     endif
540     PAR(i,j,k) = lite*exp(-atten)
541     endif
542     enddo
543    
544     #else /* WAVEBANDS */
545     #ifndef DAR_RADTRANS
546     c ------------ WAVEBANDS W/O RADTRANS ----------------------------------
547     do ilam = 1,tlam
548     #ifdef OASIM
549     c add direct and diffuse, convert to uEin/m2/s/nm
550     PARwup(ilam) = WtouEins(ilam)*(oasim_ed(i,j,ilam,bi,bj)+
551     & oasim_es(i,j,ilam,bi,bj))
552     c and take ice fraction into account
553     c PARwup(ilam) = PARwup(ilam)*(1 _d 0 - fice(i,j,bi,bj))
554     #else
555     c sf is per nm; convert to per waveband
556     PARwup(ilam) = wb_width(ilam)*sf(ilam)*lite
557     #endif
558     enddo
559    
560     do k=1,Nr
561     if (HFacC(i,j,k,bi,bj).gt.0. _d 0) then
562     do ilam = 1,tlam
563     sumpy = 0.
564     do np = 1,npmax
565     c get total attenuation (absorption) by phyto at each wavelength
566     sumpy = sumpy + (phychl_k(np,k)*aphy_chl(np,ilam))
567     enddo
568     c for diagnostic
569     a_k(k,ilam) = aw(ilam) + sumpy + acdom_k(k,ilam)
570     atten = a_k(k,ilam)*drF(k)
571     PARwdn(ilam) = PARwup(ilam)*exp(-atten)
572     enddo
573    
574     c find for the midpoint of the gridcell (gridcell mean)
575     do ilam = 1,tlam
576     C PARw_k(ilam,k)=exp((log(PARwup(ilam))+log(PARwdn(ilam)))*0.5)
577     PARw_k(ilam,k)=sqrt(PARwup(ilam)*PARwdn(ilam))
578     enddo
579    
580     c cycle
581     do ilam=1,tlam
582     PARwup(ilam) = PARwdn(ilam)
583     enddo
584     else
585     do ilam=1,tlam
586     PARw_k(ilam,k) = 0. _d 0
587     enddo
588     endif
589    
590     c sum wavebands for total PAR at the mid point of the gridcell (PARl)
591     PAR(i,j,k) = 0.
592     do ilam = 1,tlam
593     PAR(i,j,k) = PAR(i,j,k) + PARw_k(ilam,k)
594     enddo
595     enddo
596    
597     #else /* DAR_RADTRANS */
598     c ------------ FULL RADIATIVE TRANSFER CODE ----------------------------
599     do ilam = 1,tlam
600     Edwsf(ilam) = oasim_ed(i,j,ilam,bi,bj)
601     Eswsf(ilam) = oasim_es(i,j,ilam,bi,bj)
602     enddo
603    
604     #ifdef DAR_RADTRANS_USE_MODEL_CALENDAR
605     C simplified solar zenith angle for 360-day year and daily averaged light
606     C cos(solz) is average over daylight period
607     call darwin_solz360(newtime, YC(i,j,bi,bj),
608     O solz)
609    
610     #else /* not DAR_RADTRANS_USE_MODEL_CALENDAR */
611     C use calendar date for full solar zenith angle computation
612     C oj: average light effective at noon?
613     solz = 0.0 _d 0
614     isec = 12*3600
615     call radtrans_sfcsolz(rad,iyr,imon,iday,isec,
616     I XC(i,j,bi,bj),YC(i,j,bi,bj),
617     O solz)
618     #endif /* not DAR_RADTRANS_USE_MODEL_CALENDAR */
619    
620     c have Ed,Es below surface - no need for this adjustment on Ed Es for surface affects
621     c do ilam=1,tlam
622     c rod(ilam) = 0.0 _d 0
623     c ros(ilam) = 0.0 _d 0
624     c enddo
625    
626     c compute 1/cos(zenith) for direct light below surface
627     call radtrans_sfcrmud(rad,solz,
628     O rmud)
629    
630     C compute absorption/scattering coefficients for radtrans
631     DO k=1,Nr
632     dz_k(k) = drF(k)*HFacC(i,j,k,bi,bj)
633     DO ilam = 1,tlam
634     c absorption by phyto
635     actot = 0.0
636     bctot = 0.0
637     bbctot = 0.0
638     DO np = 1,npmax
639     actot = actot + phychl_k(np,k)*aphy_chl(np,ilam)
640     bctot = bctot + phychl_k(np,k)*bphy_chl(np,ilam)
641     bbctot = bbctot + phychl_k(np,k)*bbphy_chl(np,ilam)
642     ENDDO
643     c particulate
644     apart_k(k,ilam) = part_k(k)*apart_P(ilam)
645     bpart_k(k,ilam) = part_k(k)*bpart_P(ilam)
646     bbpart_k(k,ilam) = part_k(k)*bbpart_P(ilam)
647     c add water and CDOM
648     a_k(k,ilam) = aw(ilam)+acdom_k(k,ilam)+actot+apart_k(k,ilam)
649     bt_k(k,ilam) = bw(ilam) + bctot + bpart_k(k,ilam)
650     bb_k(k,ilam) = darwin_bbw*bw(ilam)+bbctot+bbpart_k(k,ilam)
651     bb_k(k,ilam) = MAX(darwin_bbmin, bb_k(k,ilam))
652 jahn 1.10 c initialize output variables
653     Edz(ilam,k) = 0.0
654     Esz(ilam,k) = 0.0
655     Euz(ilam,k) = 0.0
656     Estop(ilam,k) = 0.0
657     Eutop(ilam,k) = 0.0
658     amp1(ilam,k) = 0.0
659     amp2(ilam,k) = 0.0
660 jahn 1.1 ENDDO
661     ENDDO
662    
663 jahn 1.11 IF (darwin_radtrans_niter.GE.0) THEN
664     call MONOD_RADTRANS_ITER(
665 jahn 1.1 I dz_k,rmud,Edwsf,Eswsf,a_k,bt_k,bb_k,
666     I darwin_radtrans_kmax,darwin_radtrans_niter,
667     O Edz,Esz,Euz,Eutop,
668     O tirrq,tirrwq,
669 jahn 1.10 O amp1,amp2,
670 jahn 1.1 I myThid)
671 jahn 1.11 ELSEIF (darwin_radtrans_niter.EQ.-1) THEN
672 jahn 1.1 c dzlocal ?????
673 jahn 1.11 call MONOD_RADTRANS(
674 jahn 1.1 I drF,rmud,Edwsf,Eswsf,a_k,bt_k,bb_k,
675     O Edz,Esz,Euz,Eutop,
676     O tirrq,tirrwq,
677     I myThid)
678 jahn 1.11 ELSE
679     call MONOD_RADTRANS_DIRECT(
680     I dz_k,rmud,Edwsf,Eswsf,a_k,bt_k,bb_k,
681     I darwin_radtrans_kmax,
682     O Edz,Esz,Euz,Estop,Eutop,
683     O tirrq,tirrwq,
684     O amp1,amp2,
685     I myThid)
686     #ifdef DAR_CHECK_IRR_CONT
687 jahn 1.12 IF( dz_k(1) .GT. 0.0 )THEN
688 jahn 1.11 DO ilam = 1,tlam
689 jahn 1.12 IF(Eswsf(ilam).GE.darwin_radmodThresh .OR.
690     & Edwsf(ilam).GE.darwin_radmodThresh ) THEN
691     IF(ABS(Estop(ilam,1)-Eswsf(ilam)) .GT. discEs )THEN
692     discEs = ABS(Estop(ilam,1)-Eswsf(ilam))
693     idiscEs = i
694     jdiscEs = j
695     kdiscEs = 1
696     ldiscEs = ilam
697     ENDIF
698     DO k=1,darwin_radtrans_kmax-1
699     IF(ABS(Estop(ilam,k+1)-Esz(ilam,k)) .GT. discEs)THEN
700     discEs = ABS(Estop(ilam,k+1)-Esz(ilam,k))
701     idiscEs = i
702     jdiscEs = j
703     kdiscEs = k+1
704     ldiscEs = ilam
705     ENDIF
706     IF(ABS(Eutop(ilam,k+1)-Euz(ilam,k)) .GT. discEu)THEN
707     discEu = ABS(Eutop(ilam,k+1)-Euz(ilam,k))
708     idiscEu = i
709     jdiscEu = j
710     kdiscEu = k+1
711     ldiscEu = ilam
712     ENDIF
713 jahn 1.11 ENDDO
714 jahn 1.12 ENDIF
715 jahn 1.11 ENDDO
716 jahn 1.12 ENDIF
717     #endif
718 jahn 1.11 ENDIF
719 jahn 1.1 c
720     c uses chl from prev timestep (as wavebands does)
721     c keep like this in case need to consider upwelling irradiance as affecting the grid box above
722     c will pass to plankton: PARw only, but will be for this timestep for RT and prev timestep for WAVBANDS
723     c
724     c now copy
725     DO k=1,Nr
726     PAR(i,j,k) = tirrq(k)
727     DO ilam = 1,tlam
728     PARw_k(ilam,k) = tirrwq(ilam,k)
729     ENDDO
730     ENDDO
731     #endif /* DAR_RADTRANS */
732    
733     c oj: ???
734     c so PARw and PARwup from WAVEBANDS_1D are from previous timestep (attenuation done in plankton)
735     c but PARw and PARwup from WAVEBANDS_3D and RADTRANS are for the current timestep
736    
737     #endif /* WAVEBANDS */
738    
739     C ============================ k loop ==================================
740     c for each layer ...
741     do k= 1, NR
742     if (HFacC(i,j,k,bi,bj).gt.0. _d 0) then
743    
744     c make sure we only deal with positive definite numbers
745     c brute force...
746     po4l = max(Ptr(i,j,k,bi,bj,iPO4 ),0. _d 0)
747     no3l = max(Ptr(i,j,k,bi,bj,iNO3 ),0. _d 0)
748     fetl = max(Ptr(i,j,k,bi,bj,iFeT ),0. _d 0)
749     sil = max(Ptr(i,j,k,bi,bj,iSi ),0. _d 0)
750     dopl = max(Ptr(i,j,k,bi,bj,iDOP ),0. _d 0)
751     donl = max(Ptr(i,j,k,bi,bj,iDON ),0. _d 0)
752     dofel = max(Ptr(i,j,k,bi,bj,iDOFe ),0. _d 0)
753     DO nz = 1,nzmax
754     ZooP(nz) = max(Ptr(i,j,k,bi,bj,iZooP (nz)),0. _d 0)
755     ZooN(nz) = max(Ptr(i,j,k,bi,bj,iZooN (nz)),0. _d 0)
756     ZooFe(nz) = max(Ptr(i,j,k,bi,bj,iZooFe(nz)),0. _d 0)
757     ZooSi(nz) = max(Ptr(i,j,k,bi,bj,iZooSi(nz)),0. _d 0)
758     ENDDO
759     popl = max(Ptr(i,j,k,bi,bj,iPOP ),0. _d 0)
760     ponl = max(Ptr(i,j,k,bi,bj,iPON ),0. _d 0)
761     pofel = max(Ptr(i,j,k,bi,bj,iPOFe ),0. _d 0)
762     psil = max(Ptr(i,j,k,bi,bj,iPOSi ),0. _d 0)
763     NH4l = max(Ptr(i,j,k,bi,bj,iNH4 ),0. _d 0)
764     NO2l = max(Ptr(i,j,k,bi,bj,iNO2 ),0. _d 0)
765 stephd 1.6 #ifdef ALLOW_CDOM
766     cdoml = max(Ptr(i,j,k,bi,bj,iCDOM ),0. _d 0)
767     #endif
768 jahn 1.1 #ifdef ALLOW_CARBON
769     dicl = max(Ptr(i,j,k,bi,bj,iDIC ),0. _d 0)
770     docl = max(Ptr(i,j,k,bi,bj,iDOC ),0. _d 0)
771     pocl = max(Ptr(i,j,k,bi,bj,iPOC ),0. _d 0)
772     picl = max(Ptr(i,j,k,bi,bj,iPIC ),0. _d 0)
773     alkl = max(Ptr(i,j,k,bi,bj,iALK ),0. _d 0)
774     o2l = max(Ptr(i,j,k,bi,bj,iO2 ),0. _d 0)
775     DO nz = 1,nzmax
776     ZooCl(nz) = max(Ptr(i,j,k,bi,bj,iZooC (nz)),0. _d 0)
777     ENDDO
778     #endif
779    
780     totphyC = 0. _d 0
781     DO np=1,npmax
782     totphyC = totphyC + R_PC(np)*Ptr(i,j,k,bi,bj,iPhy+np-1)
783     ENDDO
784    
785     DO np = 1,npmax
786     Phy(np) = Phy_k(np,k)
787     #ifdef GEIDER
788     phychl(np) = phychl_k(np,k)
789     #endif
790     ENDDO
791    
792     #ifdef DAR_DIAG_DIVER
793     Diver1(i,j,k)=0. _d 0
794     Diver2(i,j,k)=0. _d 0
795     Diver3(i,j,k)=0. _d 0
796     Diver4(i,j,k)=0. _d 0
797     totphy=0. _d 0
798     do np=1,npmax
799     totphy=totphy + Phy(np)
800     tmpphy(np)=Phy(np)
801     enddo
802     if (totphy.gt.diver_thresh0) then
803     do np=1,npmax
804     c simple threshhold
805     if (Phy(np).gt.diver_thresh1) then
806     Diver1(i,j,k)=Diver1(i,j,k)+1. _d 0
807     endif
808     c proportion of total biomass
809     if (Phy(np)/totphy.gt.diver_thresh2) then
810     Diver2(i,j,k)=Diver2(i,j,k)+1. _d 0
811     endif
812     enddo
813     c majority of biomass by finding rank order
814     biotot=0. _d 0
815     do np2=1,npmax
816     phymax=0. _d 0
817     do np=1,npmax
818     if (tmpphy(np).gt.phymax) then
819     phymax=tmpphy(np)
820     npsave=np
821     endif
822     enddo
823     if (biotot.lt.totphy*diver_thresh3) then
824     Diver3(i,j,k)=Diver3(i,j,k)+1. _d 0
825     endif
826     biotot=biotot+tmpphy(npsave)
827     tmpphy(npsave)=0. _d 0
828     if (np2.eq.1) then
829     maxphy=phymax
830     endif
831     enddo
832     c ratio of maximum species
833     do np=1,npmax
834     if (Phy(np).gt.diver_thresh4*maxphy) then
835     Diver4(i,j,k)=Diver4(i,j,k)+1. _d 0
836     endif
837     enddo
838 jahn 1.5 c totphy > thresh0
839     endif
840     c Shannon and Simpson indices
841     Shannon(i,j,k) = 0. _d 0
842     c note: minimal valid value is 1, but we set to zero below threshold
843     Simpson(i,j,k) = 0. _d 0
844     if (totphy.gt.shannon_thresh) then
845     do np=1,npmax
846     if (Phy(np) .gt. 0. _d 0) then
847     tmpphy(np) = Phy(np)/totphy
848     Shannon(i,j,k)=Shannon(i,j,k)+tmpphy(np)*LOG(tmpphy(np))
849     Simpson(i,j,k)=Simpson(i,j,k)+tmpphy(np)*tmpphy(np)
850     endif
851     enddo
852     Shannon(i,j,k) = -Shannon(i,j,k)
853     Simpson(i,j,k) = 1./Simpson(i,j,k)
854 jahn 1.1 endif
855     #endif
856    
857     c..........................................................
858     c find local light
859     c..........................................................
860    
861     PARl = PAR(i,j,k)
862     c..........................................................
863    
864     c for explicit sinking of particulate matter and phytoplankton
865     if (k.eq.1) then
866     popupl =0. _d 0
867     ponupl =0. _d 0
868     pofeupl = 0. _d 0
869     psiupl = 0. _d 0
870     do np=1,npmax
871     Phyup(np)=0. _d 0
872     #ifdef DYNAMIC_CHL
873     chlup(np)=0. _d 0
874     #endif
875     enddo
876     #ifdef ALLOW_CARBON
877     pocupl = 0. _d 0
878     picupl = 0. _d 0
879     #endif
880     endif
881    
882     #ifdef ALLOW_LONGSTEP
883     Tlocal = LS_theta(i,j,k,bi,bj)
884     Slocal = LS_salt(i,j,k,bi,bj)
885     #else
886     Tlocal = theta(i,j,k,bi,bj)
887     Slocal = salt(i,j,k,bi,bj)
888     #endif
889    
890 stephd 1.7 c choice where to get pCO2 from
891     c taking from igsm dic run - fed through Tflux array
892     c pCO2local=surfaceForcingT(i,j,bi,bj)
893     c or from darwin carbon module
894     #ifdef ALLOW_CARBON
895     pCO2local=pCO2(i,j,bi,bj)
896     #else
897     pCO2local=280. _d -6
898     #endif
899    
900 jahn 1.1 freefu = max(freefe(i,j,k),0. _d 0)
901     if (k.eq.1) then
902     inputFel = inputFe(i,j,bi,bj)
903     else
904     inputFel = 0. _d 0
905     endif
906    
907     dzlocal = drF(k)*HFacC(i,j,k,bi,bj)
908     c set bottom=1.0 if the layer below is not ocean
909     ktmp=min(nR,k+1)
910     if(hFacC(i,j,ktmp,bi,bj).eq.0. _d 0.or.k.eq.Nr) then
911     bottom = 1.0 _d 0
912     else
913     bottom = 0.0 _d 0
914     endif
915    
916     c set tendencies to 0
917     do np=1,npmax
918     dphy(np)=0. _d 0
919     enddo
920     do nz=1,nzmax
921     dzoop(nz)=0. _d 0
922     dzoon(nz)=0. _d 0
923     dzoofe(nz)=0. _d 0
924     dzoosi(nz)=0. _d 0
925     enddo
926     dPO4l=0. _d 0
927     dNO3l=0. _d 0
928     dFeTl=0. _d 0
929     dSil=0. _d 0
930     dDOPl=0. _d 0
931     dDONl=0. _d 0
932     dDOFel=0. _d 0
933     dPOPl=0. _d 0
934     dPONl=0. _d 0
935     dPOFel=0. _d 0
936     dPSil=0. _d 0
937     dNH4l=0. _d 0
938     dNO2l=0. _d 0
939     #ifdef DYNAMIC_CHL
940     do np=1,npmax
941     dphychl(np)=0. _d 0
942     enddo
943     #endif
944 stephd 1.6 #ifdef ALLOW_CDOM
945     dcdoml=0. _d 0
946     #endif
947 jahn 1.1 #ifdef ALLOW_CARBON
948     ddicl=0. _d 0
949     ddocl=0. _d 0
950     dpocl=0. _d 0
951     dpicl=0. _d 0
952     dalkl=0. _d 0
953     do2l=0. _d 0
954     do nz=1,nzmax
955     dzoocl(nz)=0. _d 0
956     enddo
957     #endif
958     c set other arguments to zero
959     PP=0. _d 0
960     Nfix=0. _d 0
961     denit=0. _d 0
962     do np=1,npmax
963     Rstarl(np)=0. _d 0
964     RNstarl(np)=0. _d 0
965     #ifdef DAR_DIAG_GROW
966     Growl(np)=0. _d 0
967     Growsql(np)=0. _d 0
968     #endif
969     #ifdef ALLOW_DIAZ
970     #ifdef DAR_DIAG_NFIXP
971     NfixPl(np)=0. _d 0
972     #endif
973     #endif
974 stephd 1.13 #ifdef DAR_DIAG_PARW
975     chl2cl(np)=0. _d 0
976     #endif
977     #ifdef DAR_DIAG_EK
978     Ekl(np)=0. _d 0
979     EkoverEl(np)=0. _d 0
980     do ilam=1,tlam
981     Ek_nll(np,ilam)=0. _d 0
982     EkoverE_nll(np,ilam)=0. _d 0
983     enddo
984     #endif
985 jahn 1.1 enddo
986    
987    
988     debug=0
989     c if (i.eq.20.and.j.eq.20.and.k.eq.1) debug=8
990     c if (i.eq.10.and.j.eq.10.and.k.eq.1) debug=100
991     c if (i.eq.1.and.j.eq.10.and.k.eq.1) debug=10
992     c if (i.eq.1.and.j.eq.1.and.k.eq.10) debug=14
993    
994     if (debug.eq.7) print*,'PO4, DOP, POP, ZooP',
995     & PO4l, DOPl, POPl, zooP
996     if (debug.eq.7) print*,'NO3, NO2, NH4, DON, PON, ZooN',
997     & NO3l,NO2l,NH4l, DONl, PONl, ZooN
998     if (debug.eq.7) print*,'FeT, DOFe, POFe, Zoofe',
999     & FeTl, DOFel, POFel, zooFe
1000     if (debug.eq.7) print*,'Si, Psi, zooSi',
1001     & Sil, PSil, zooSi
1002     if (debug.eq.7) print*,'Total Phy', sumpy, PARl, lite
1003     if (debug.eq.7) print*,'Phy', Phy
1004    
1005     if (debug.eq.8) print*,'k, PARl, inputFel, dzlocal',
1006     & PARl, inputFel, dzlocal
1007    
1008     c if (NO3l.eq.0. _d 0.or.NO2l.eq.0. _d 0
1009     c & .or.NH4l.eq.0. _d 0) then
1010     c print*,'QQ N zeros',i,j,k,NO3l,NO2l,NH4l
1011     c endif
1012    
1013    
1014     c ANNA pass extra variables if WAVEBANDS
1015     CALL MONOD_PLANKTON(
1016     U Phy,
1017     I zooP, zooN, zooFe, zooSi,
1018     O PP, Chl, Nfix, denit,
1019     I PO4l, NO3l, FeTl, Sil,
1020     I NO2l, NH4l,
1021     I DOPl, DONl, DOFel,
1022     I POPl, PONl, POFel, PSil,
1023     I phyup, popupl, ponupl,
1024     I pofeupl, psiupl,
1025     I PARl,
1026     I Tlocal, Slocal,
1027 stephd 1.7 I pCO2local,
1028 jahn 1.1 I freefu, inputFel,
1029     I bottom, dzlocal,
1030     O Rstarl, RNstarl,
1031     #ifdef DAR_DIAG_GROW
1032     O Growl, Growsql,
1033     #endif
1034     #ifdef ALLOW_DIAZ
1035     #ifdef DAR_DIAG_NFIXP
1036     O NfixPl,
1037     #endif
1038     #endif
1039     O dphy, dzooP, dzooN, dzooFe,
1040     O dzooSi,
1041     O dPO4l, dNO3l, dFeTl, dSil,
1042     O dNH4l, dNO2l,
1043     O dDOPl, dDONl, dDOFel,
1044     O dPOPl, dPONl, dPOFel, dPSil,
1045     #ifdef ALLOW_CARBON
1046     I dicl, docl, pocl, picl,
1047     I alkl, o2l, zoocl,
1048     I pocupl, picupl,
1049     O ddicl, ddocl, dpocl, dpicl,
1050     O dalkl, do2l, dzoocl,
1051     #endif
1052     #ifdef GEIDER
1053     O phychl,
1054 stephd 1.13 #ifdef DAR_DIAG_EK
1055     I Ekl, EkoverEl,
1056     #endif
1057     #ifdef DAR_DIAG_PARW
1058     I chl2cl,
1059     #endif
1060 jahn 1.1 #ifdef DYNAMIC_CHL
1061     I dphychl,
1062     I chlup,
1063 stephd 1.13 #ifdef DAR_DIAG_EK
1064     O accliml,
1065     #endif
1066 jahn 1.1 #endif
1067 stephd 1.6 #ifdef ALLOW_CDOM
1068     O dcdoml,
1069     I cdoml,
1070     #endif
1071 jahn 1.1 #ifdef WAVEBANDS
1072     I PARw_k(1,k),
1073 stephd 1.13 #ifdef DAR_DIAG_EK
1074     I Ek_nll, EkoverE_nll,
1075     #endif
1076 jahn 1.1 #endif
1077     #endif
1078     #ifdef ALLOW_PAR_DAY
1079     I PARday(i,j,k,bi,bj,PARiprev),
1080     #endif
1081     #ifdef DAR_DIAG_CHL
1082     O ChlGeiderlocal, ChlDoneylocal,
1083     O ChlCloernlocal,
1084     #endif
1085     I debug,
1086     I runtim,
1087     I MyThid)
1088    
1089     c
1090     c if (i.eq.1.and.k.eq.1.and.j.eq.5) then
1091     c print*,i,j,k
1092     c print*,'NO3,No2,NH4', NO3l, NO2l, NH4l
1093     c print*,'dNO3 etc',dNO3l,dNH4l, dNO2l
1094     c print*,'PO4',PO4l,dPO4l
1095     c endif
1096     c
1097     #ifdef IRON_SED_SOURCE
1098     c only above minimum depth (continental shelf)
1099 jahn 1.3 if (rF(k).gt.-depthfesed) then
1100 jahn 1.1 c only if bottom layer
1101     if (bottom.eq.1.0 _d 0) then
1102     #ifdef IRON_SED_SOURCE_VARIABLE
1103     c calculate sink of POP into bottom layer
1104     tmp=(wp_sink*POPupl)/(dzlocal)
1105     c convert to dPOCl
1106     dFetl=dFetl+fesedflux_pcm*(tmp*106. _d 0)
1107     #else
1108     dFetl=dFetl+fesedflux/
1109     & (drF(k)*hFacC(i,j,k,bi,bj))
1110     #endif
1111     endif
1112     endif
1113     #endif
1114    
1115    
1116     popupl = POPl
1117     ponupl = PONl
1118     pofeupl = POFel
1119     psiupl = PSil
1120     do np=1,npmax
1121     Phyup(np) = Phy(np)
1122     #ifdef DYNAMIC_CHL
1123     chlup(np) = phychl(np)
1124     #endif
1125     enddo
1126    
1127    
1128     c
1129     #ifdef ALLOW_CARBON
1130     pocupl = POCl
1131     picupl = PICl
1132     c include surface forcing
1133     if (k.eq.1) then
1134 jahn 1.2 ddicl = ddicl + flxCO2(i,j)
1135     dalkl = dalkl + flxALK(i,j)
1136     do2l = do2l + flxO2(i,j)
1137 jahn 1.1 endif
1138     #endif
1139     c
1140     #ifdef CONS_SUPP
1141     c only works for two layer model
1142     if (k.eq.2) then
1143     dpo4l=0. _d 0
1144     dno3l=0. _d 0
1145     dfetl=0. _d 0
1146     dsil=0. _d 0
1147     endif
1148     #endif
1149     #ifdef RELAX_NUTS
1150     #ifdef DENIT_RELAX
1151     if (rF(k).lt.-depthdenit) then
1152     if (darwin_relaxscale.gt.0. _d 0) then
1153     IF ( darwin_NO3_RelaxFile .NE. ' ' ) THEN
1154     c Fanny's formulation
1155     tmp=(Ptr(i,j,k,bi,bj,iNO3 )-no3_obs(i,j,k,bi,bj))
1156     if (tmp.gt.0. _d 0) then
1157     dno3l=dno3l-(tmp/
1158     & darwin_relaxscale)
1159     denit=tmp/
1160     & darwin_relaxscale
1161     else
1162     denit=0. _d 0
1163     endif
1164     c --- end fanny's formulation
1165     ENDIF
1166     c steph's alternative
1167     c tmp=(Ptr(i,j,k,bi,bj,iNO3 )-
1168     c & 16. _d 0 * Ptr(i,j,k,bi,bj,iPO4 ))
1169     c if (tmp.gt.0. _d 0) then
1170     c dno3l=dno3l-(tmp/
1171     c & darwin_relaxscale)
1172     c denit=tmp/
1173     c & darwin_relaxscale
1174     c else
1175     c denit=0. _d 0
1176     c endif
1177     c ---- end steph's alternative
1178     endif
1179     endif
1180     #else
1181     if (darwin_relaxscale.gt.0. _d 0) then
1182     IF ( darwin_PO4_RelaxFile .NE. ' ' ) THEN
1183     tmp=(Ptr(i,j,k,bi,bj,iPO4 )-po4_obs(i,j,k,bi,bj))
1184     if (tmp.lt.0. _d 0) then
1185     dpo4l=dpo4l-(tmp/
1186     & darwin_relaxscale)
1187     endif
1188     ENDIF
1189     IF ( darwin_NO3_RelaxFile .NE. ' ' ) THEN
1190     tmp=(Ptr(i,j,k,bi,bj,iNO3 )-no3_obs(i,j,k,bi,bj))
1191     if (tmp.lt.0. _d 0) then
1192     dno3l=dno3l-(tmp/
1193     & darwin_relaxscale)
1194     endif
1195     ENDIF
1196     IF ( darwin_Fet_RelaxFile .NE. ' ' ) THEN
1197     tmp=(Ptr(i,j,k,bi,bj,iFeT )-fet_obs(i,j,k,bi,bj))
1198     if (tmp.lt.0. _d 0) then
1199     dfetl=dfetl-(tmp/
1200     & darwin_relaxscale)
1201     endif
1202     ENDIF
1203     IF ( darwin_Si_RelaxFile .NE. ' ' ) THEN
1204     tmp=( Ptr(i,j,k,bi,bj,iSi )-si_obs(i,j,k,bi,bj))
1205     if (tmp.lt.0. _d 0) then
1206     dsil=dsil-(tmp/
1207     & darwin_relaxscale)
1208     endif
1209     ENDIF
1210     endif
1211     #endif
1212     #endif
1213     #ifdef FLUX_NUTS
1214     dpo4l=dpo4l+po4_flx(i,j,k,bi,bj)
1215     dno3l=dno3l+no3_flx(i,j,k,bi,bj)
1216     dfetl=dfetl+fet_flx(i,j,k,bi,bj)
1217     dsil=dsil+si_flx(i,j,k,bi,bj)
1218     #endif
1219     c
1220     c now update main tracer arrays
1221     dtplankton = PTRACERS_dTLev(k)/float(nsubtime)
1222     Ptr(i,j,k,bi,bj,iPO4 ) = Ptr(i,j,k,bi,bj,iPO4) +
1223     & dtplankton*dpo4l
1224     Ptr(i,j,k,bi,bj,iNO3 ) = Ptr(i,j,k,bi,bj,iNO3) +
1225     & dtplankton*dno3l
1226     Ptr(i,j,k,bi,bj,iFeT ) = Ptr(i,j,k,bi,bj,iFeT) +
1227     & dtplankton*dfetl
1228     Ptr(i,j,k,bi,bj,iSi ) = Ptr(i,j,k,bi,bj,iSi ) +
1229     & dtplankton*dsil
1230     Ptr(i,j,k,bi,bj,iDOP ) = Ptr(i,j,k,bi,bj,iDOP) +
1231     & dtplankton*ddopl
1232     Ptr(i,j,k,bi,bj,iDON ) = Ptr(i,j,k,bi,bj,iDON) +
1233     & dtplankton*ddonl
1234     Ptr(i,j,k,bi,bj,iDOFe) = Ptr(i,j,k,bi,bj,iDOFe) +
1235     & dtplankton*ddofel
1236     Ptr(i,j,k,bi,bj,iPOP ) = Ptr(i,j,k,bi,bj,iPOP ) +
1237     & dtplankton*dpopl
1238     Ptr(i,j,k,bi,bj,iPON ) = Ptr(i,j,k,bi,bj,iPON ) +
1239     & dtplankton*dponl
1240     Ptr(i,j,k,bi,bj,iPOFe) = Ptr(i,j,k,bi,bj,iPOFe) +
1241     & dtplankton*dpofel
1242     Ptr(i,j,k,bi,bj,iPOSi) = Ptr(i,j,k,bi,bj,iPOSi) +
1243     & dtplankton*dpsil
1244     Ptr(i,j,k,bi,bj,iNH4 ) = Ptr(i,j,k,bi,bj,iNH4 ) +
1245     & dtplankton*dnh4l
1246     Ptr(i,j,k,bi,bj,iNO2 ) = Ptr(i,j,k,bi,bj,iNO2 ) +
1247     & dtplankton*dno2l
1248     DO nz = 1,nzmax
1249     Ptr(i,j,k,bi,bj,iZooP (nz)) = Ptr(i,j,k,bi,bj,iZooP (nz)) +
1250     & dtplankton*dzoop (nz)
1251     Ptr(i,j,k,bi,bj,iZooN (nz)) = Ptr(i,j,k,bi,bj,iZooN (nz)) +
1252     & dtplankton*dzoon (nz)
1253     Ptr(i,j,k,bi,bj,iZooFe(nz)) = Ptr(i,j,k,bi,bj,iZooFe(nz)) +
1254     & dtplankton*dzoofe(nz)
1255     Ptr(i,j,k,bi,bj,iZooSi(nz)) = Ptr(i,j,k,bi,bj,iZooSi(nz)) +
1256     & dtplankton*dzoosi(nz)
1257     ENDDO
1258     DO np = 1,npmax
1259     Ptr(i,j,k,bi,bj,iPhy+np-1) = Ptr(i,j,k,bi,bj,iPhy+np-1) +
1260     & dtplankton*dPhy(np)
1261     #ifdef GEIDER
1262     #ifdef DYNAMIC_CHL
1263     if (np.eq.1) Chl=0. _d 0
1264     Ptr(i,j,k,bi,bj,iChl+np-1) = Ptr(i,j,k,bi,bj,iChl+np-1) +
1265     & dtplankton*dphychl(np)
1266     c chltmp=Ptr(i,j,k,bi,bj,iChl+np-1)
1267     c phytmp=Ptr(i,j,k,bi,bj,iPhy+np-1)
1268     c Ptr(i,j,k,bi,bj,iChl+np-1)=
1269     c & max(chltmp,phytmp*R_PC(np)*chl2cmin(np))
1270     c if (np.eq.1.and.i.eq.1.and.j.eq.1.and.k.eq.1)
1271     c & print*,chltmp,phytmp,phytmp*R_PC(np)*chl2cmin(np),
1272     c & phytmp*R_PC(np)*chl2cmax(np)
1273     c in darwin_plankton this is stored for previous timestep. Reset here.
1274     Chl=Chl+Ptr(i,j,k,bi,bj,iChl+np-1)
1275     #else
1276     Chl_phy(i,j,k,bi,bj,np)=phychl(np)
1277     #endif
1278     #endif
1279     ENDDO
1280 stephd 1.6 #ifdef ALLOW_CDOM
1281     Ptr(i,j,k,bi,bj,iCDOM ) = Ptr(i,j,k,bi,bj,iCDOM ) +
1282     & dtplankton*dcdoml
1283     #endif
1284 jahn 1.1 #ifdef ALLOW_CARBON
1285     Ptr(i,j,k,bi,bj,iDIC ) = Ptr(i,j,k,bi,bj,iDIC ) +
1286     & dtplankton*ddicl
1287     Ptr(i,j,k,bi,bj,iDOC ) = Ptr(i,j,k,bi,bj,iDOC ) +
1288     & dtplankton*ddocl
1289     Ptr(i,j,k,bi,bj,iPOC ) = Ptr(i,j,k,bi,bj,iPOC ) +
1290     & dtplankton*dpocl
1291     Ptr(i,j,k,bi,bj,iPIC ) = Ptr(i,j,k,bi,bj,iPIC ) +
1292     & dtplankton*dpicl
1293     Ptr(i,j,k,bi,bj,iALK ) = Ptr(i,j,k,bi,bj,iALK ) +
1294     & dtplankton*dalkl
1295     Ptr(i,j,k,bi,bj,iO2 ) = Ptr(i,j,k,bi,bj,iO2 ) +
1296     & dtplankton*do2l
1297     DO nz = 1,nzmax
1298     Ptr(i,j,k,bi,bj,iZooC (nz)) = Ptr(i,j,k,bi,bj,iZooC (nz)) +
1299     & dtplankton*dzoocl (nz)
1300     ENDDO
1301     #endif
1302     c
1303     #ifdef ALLOW_MUTANTS
1304     cQQQQTEST
1305     if (debug.eq.11) then
1306     if (k.lt.8) then
1307     do np=1,60
1308     if(mod(np,4).eq. 1. _d 0)then
1309     np2=np+1
1310     np4=np+3
1311    
1312     Coj: couldn't test this part after change Phynp -> Ptr(...,iPhy+np-1)
1313     Coj: used to be many copies of this:
1314     C if (dPhy(2).gt.dPhy(4).and.dPhy(4).gt.0. _d 0) then
1315     C print*,'QQQ dphy2 > dphy4',i,j,k,Phy2(i,j,k),
1316     C & Phy4(i,j,k), dPhy(2), dPhy(4)
1317     C endif
1318     C if (Phy2(i,j,k).gt.Phy4(i,j,k).and.
1319     C & Phy4(i,j,k).gt.0. _d 0) then
1320     C print*,'QQ phy02 > phy04',i,j,k,Phy2(i,j,k),
1321     C & Phy4(i,j,k), dPhy(2), dPhy(4)
1322     C endif
1323    
1324     if (dPhy(np2).gt.dPhy(np4).and.dPhy(np4).gt.0. _d 0) then
1325     print*,'QQQ dphy',np2,' > dphy',np4,i,j,k,Phy2(i,j,k),
1326     & Ptr(i,j,k,bi,bj,iPhy+np4-1), dPhy(2), dPhy(4)
1327     endif
1328     if (Ptr(i,j,k,bi,bj,iphy+np2-1).gt.Ptr(i,j,k,bi,bj,iPhy+np4-1)
1329     & .and. Ptr(i,j,k,bi,bj,iPhy+np4-1).gt.0. _d 0) then
1330     print*,'QQ phy',np2,' > ',np4,i,j,k,
1331     & Ptr(i,j,k,bi,bj,iPhy+np2-1),
1332     & Ptr(i,j,k,bi,bj,iPhy+np4-1), dPhy(2), dPhy(4)
1333     endif
1334    
1335     endif
1336     enddo ! np
1337     endif ! k
1338     endif
1339     #endif
1340    
1341     #ifdef ALLOW_DIAGNOSTICS
1342     COJ for diagnostics
1343     PParr(i,j,k) = PP
1344     Nfixarr(i,j,k) = Nfix
1345     c ANNA_TAVE
1346     #ifdef WAVES_DIAG_PCHL
1347     DO np = 1,npmax
1348     Pchlarr(i,j,k,np) = phychl(np)
1349     ENDDO
1350     #endif
1351     c ANNA end TAVE
1352     #ifdef DAR_DIAG_RSTAR
1353     DO np = 1,npmax
1354     Rstararr(i,j,k,np) = Rstarl(np)
1355     ENDDO
1356     #endif
1357     #ifdef ALLOW_DIAZ
1358     #ifdef DAR_DIAG_NFIXP
1359     DO np = 1,npmax
1360     NfixParr(i,j,k,np) = NfixPl(np)
1361     ENDDO
1362     #endif
1363     #endif
1364     #ifdef DAR_DIAG_CHL
1365     GeiderChlarr(i,j,k) = ChlGeiderlocal
1366     DoneyChlarr(i,j,k) = ChlDoneylocal
1367     CloernChlarr(i,j,k) = ChlCloernlocal
1368     IF (totphyC .NE. 0. _d 0) THEN
1369     GeiderChl2Carr(i,j,k) = ChlGeiderlocal/totphyC
1370     DoneyChl2Carr(i,j,k) = ChlDoneylocal/totphyC
1371     CloernChl2Carr(i,j,k) = ChlCloernlocal/totphyC
1372     ELSE
1373     GeiderChl2Carr(i,j,k) = 0. _d 0
1374     DoneyChl2Carr(i,j,k) = 0. _d 0
1375     CloernChl2Carr(i,j,k) = 0. _d 0
1376     ENDIF
1377     #endif
1378     COJ
1379     #endif /* ALLOW_DIAGNOSTICS */
1380    
1381     c total fixation (NOTE - STILL NEEDS GLOB SUM)
1382     tot_Nfix=tot_Nfix+
1383     & Nfix*rA(i,j,bi,bj)*rF(k)*hFacC(i,j,k,bi,bj)
1384    
1385     #ifdef ALLOW_TIMEAVE
1386     c save averages
1387     c Phygrow1ave(i,j,k,bi,bj)=Phygrow1ave(i,j,k,bi,bj)+
1388     c & mu1*py1*deltaTclock
1389     c & /float(nsubtime)
1390     c Phygrow2ave(i,j,k,bi,bj)=Phygrow2ave(i,j,k,bi,bj)+
1391     c & mu2*py2*deltaTclock
1392     c & /float(nsubtime)
1393     c Zoograzave(i,j,k,bi,bj)=Zoograzave(i,j,k,bi,bj)+
1394     c & (gampn1*graz1*zo +gampn2*graz2*zo)*
1395     c & deltaTclock/float(nsubtime)
1396     #ifdef GEIDER
1397     Chlave(i,j,k,bi,bj)=Chlave(i,j,k,bi,bj)+
1398     & Chl*dtplankton
1399     #endif
1400     PARave(i,j,k,bi,bj)=PARave(i,j,k,bi,bj)+
1401     & PARl*dtplankton
1402     PPave(i,j,k,bi,bj)=PPave(i,j,k,bi,bj)+
1403     & PP*dtplankton
1404     Nfixave(i,j,k,bi,bj)=Nfixave(i,j,k,bi,bj)+
1405     & Nfix*dtplankton
1406     Denitave(i,j,k,bi,bj)=Denitave(i,j,k,bi,bj)+
1407     & denit*dtplankton
1408     #ifdef WAVES_DIAG_PCHL
1409     do np=1,npmax
1410     Pchlave(i,j,k,bi,bj,np)=Pchlave(i,j,k,bi,bj,np)+
1411     & phychl(np)*dtplankton
1412     enddo
1413     #endif
1414 stephd 1.13 #ifdef DAR_DIAG_PARW
1415     do ilam=1,tlam
1416     PARwave(i,j,k,bi,bj,ilam)=PARwave(i,j,k,bi,bj,ilam)+
1417     & PARw_k(ilam,k)*dtplankton
1418     enddo
1419     do np=1,npmax
1420     chl2cave(i,j,k,bi,bj,np)=chl2cave(i,j,k,bi,bj,np)+
1421     & chl2cl(np)*dtplankton
1422     enddo
1423     #endif
1424 jahn 1.1 #ifdef DAR_DIAG_ACDOM
1425     c print*,'acdom',k,acdom_k(k,darwin_diag_acdom_ilam)
1426     aCDOMave(i,j,k,bi,bj)=aCDOMave(i,j,k,bi,bj)+
1427     & acdom_k(k,darwin_diag_acdom_ilam)*dtplankton
1428     #endif
1429     #ifdef DAR_DIAG_IRR
1430     do ilam = 1,tlam
1431     if (k.EQ.1) then
1432     Edave(i,j,k,bi,bj,ilam)=Edave(i,j,k,bi,bj,ilam)+
1433     & Edwsf(ilam)*dtplankton
1434     Esave(i,j,k,bi,bj,ilam)=Esave(i,j,k,bi,bj,ilam)+
1435     & Eswsf(ilam)*dtplankton
1436     Coj no Eu at surface (yet)
1437     else
1438     Edave(i,j,k,bi,bj,ilam)=Edave(i,j,k,bi,bj,ilam)+
1439     & Edz(ilam,k-1)*dtplankton
1440     Esave(i,j,k,bi,bj,ilam)=Esave(i,j,k,bi,bj,ilam)+
1441     & Esz(ilam,k-1)*dtplankton
1442     Euave(i,j,k,bi,bj,ilam)=Euave(i,j,k,bi,bj,ilam)+
1443     & Euz(ilam,k-1)*dtplankton
1444     endif
1445 jahn 1.10 Estave(i,j,k,bi,bj,ilam)=Estave(i,j,k,bi,bj,ilam)+
1446     & Estop(ilam,k)*dtplankton
1447 jahn 1.1 Eutave(i,j,k,bi,bj,ilam)=Eutave(i,j,k,bi,bj,ilam)+
1448     & Eutop(ilam,k)*dtplankton
1449     enddo
1450     #endif
1451 jahn 1.9 #ifdef DAR_DIAG_IRR_AMPS
1452     do ilam = 1,tlam
1453 jahn 1.10 amp1ave(i,j,k,bi,bj,ilam)=amp1ave(i,j,k,bi,bj,ilam)+
1454     & amp1(ilam,k)*dtplankton
1455     amp2ave(i,j,k,bi,bj,ilam)=amp2ave(i,j,k,bi,bj,ilam)+
1456     & amp2(ilam,k)*dtplankton
1457 jahn 1.9 enddo
1458     #endif
1459 jahn 1.1 #ifdef DAR_DIAG_ABSORP
1460     do ilam = 1,tlam
1461     aave(i,j,k,bi,bj,ilam)=aave(i,j,k,bi,bj,ilam)+
1462     & a_k(k,ilam)*dtplankton
1463     enddo
1464     #endif
1465     #ifdef DAR_DIAG_SCATTER
1466     do ilam = 1,tlam
1467     btave(i,j,k,bi,bj,ilam)=btave(i,j,k,bi,bj,ilam)+
1468     & bt_k(k,ilam)*dtplankton
1469     bbave(i,j,k,bi,bj,ilam)=bbave(i,j,k,bi,bj,ilam)+
1470     & bb_k(k,ilam)*dtplankton
1471     enddo
1472     #endif
1473     #ifdef DAR_DIAG_PART_SCATTER
1474     do ilam = 1,tlam
1475     apartave(i,j,k,bi,bj,ilam)=apartave(i,j,k,bi,bj,ilam)+
1476     & apart_k(k,ilam)*dtplankton
1477     btpartave(i,j,k,bi,bj,ilam)=btpartave(i,j,k,bi,bj,ilam)+
1478     & bpart_k(k,ilam)*dtplankton
1479     bbpartave(i,j,k,bi,bj,ilam)=bbpartave(i,j,k,bi,bj,ilam)+
1480     & bbpart_k(k,ilam)*dtplankton
1481     enddo
1482     #endif
1483 jahn 1.9 #ifdef DAR_RADTRANS
1484     if (k.eq.1) then
1485     rmudave(i,j,bi,bj)=rmudave(i,j,bi,bj)+
1486     & rmud*dtplankton
1487     endif
1488     #endif
1489 stephd 1.13 #ifdef DAR_DIAG_EK
1490     do np=1,npmax
1491     Ekave(i,j,k,bi,bj,np)=Ekave(i,j,k,bi,bj,np)+
1492     & Ekl(np)*dtplankton
1493     EkoverEave(i,j,k,bi,bj,np)=EkoverEave(i,j,k,bi,bj,np)+
1494     & EkoverEl(np)*dtplankton
1495     acclimave(i,j,k,bi,bj,np)=acclimave(i,j,k,bi,bj,np)+
1496     & accliml(np)*dtplankton
1497     do ilam=1,tlam
1498     Ek_nlave(i,j,k,bi,bj,np,ilam)=
1499     & Ek_nlave(i,j,k,bi,bj,np,ilam)+
1500     & Ek_nll(np,ilam)*dtplankton
1501     EkoverE_nlave(i,j,k,bi,bj,np,ilam)=
1502     & EkoverE_nlave(i,j,k,bi,bj,np,ilam)+
1503     & EkoverE_nll(np,ilam)*dtplankton
1504     enddo
1505     enddo
1506     #endif
1507 jahn 1.1 #ifdef DAR_DIAG_RSTAR
1508     do np=1,npmax
1509     Rstarave(i,j,k,bi,bj,np)=Rstarave(i,j,k,bi,bj,np)+
1510     & Rstarl(np)*dtplankton
1511     RNstarave(i,j,k,bi,bj,np)=RNstarave(i,j,k,bi,bj,np)+
1512     & RNstarl(np)*dtplankton
1513     enddo
1514     #endif
1515     #ifdef DAR_DIAG_DIVER
1516     Diver1ave(i,j,k,bi,bj)=Diver1ave(i,j,k,bi,bj)+
1517     & Diver1(i,j,k)*dtplankton
1518     Diver2ave(i,j,k,bi,bj)=Diver2ave(i,j,k,bi,bj)+
1519     & Diver2(i,j,k)*dtplankton
1520     Diver3ave(i,j,k,bi,bj)=Diver3ave(i,j,k,bi,bj)+
1521     & Diver3(i,j,k)*dtplankton
1522     Diver4ave(i,j,k,bi,bj)=Diver4ave(i,j,k,bi,bj)+
1523     & Diver4(i,j,k)*dtplankton
1524     #endif
1525     #ifdef DAR_DIAG_GROW
1526     do np=1,npmax
1527     Growave(i,j,k,bi,bj,np)=Growave(i,j,k,bi,bj,np)+
1528     & Growl(np)*dtplankton
1529     Growsqave(i,j,k,bi,bj,np)=Growsqave(i,j,k,bi,bj,np)+
1530     & Growsql(np)*dtplankton
1531     enddo
1532     #endif
1533    
1534     #ifdef ALLOW_DIAZ
1535     #ifdef DAR_DIAG_NFIXP
1536     do np=1,npmax
1537     NfixPave(i,j,k,bi,bj,np)=NfixPave(i,j,k,bi,bj,np)+
1538     & NfixPl(np)*dtplankton
1539     enddo
1540     #endif
1541     #endif
1542     #endif
1543    
1544     #ifdef ALLOW_CARBON
1545     if (k.eq.1) then
1546     SURave(i,j,bi,bj) =SURave(i,j,bi,bj)+
1547 jahn 1.2 & flxCO2(i,j)*dtplankton
1548 jahn 1.1 SURCave(i,j,bi,bj) =SURCave(i,j,bi,bj)+
1549     & FluxCO2(i,j,bi,bj)*dtplankton
1550     SUROave(i,j,bi,bj) =SUROave(i,j,bi,bj)+
1551 jahn 1.2 & flxO2(i,j)*dtplankton
1552 jahn 1.1 pCO2ave(i,j,bi,bj) =pCO2ave(i,j,bi,bj)+
1553     & pCO2(i,j,bi,bj)*dtplankton
1554     pHave(i,j,bi,bj) =pHave(i,j,bi,bj)+
1555     & pH(i,j,bi,bj)*dtplankton
1556     endif
1557     #endif
1558     endif
1559     c end if hFac>0
1560    
1561     enddo ! k
1562     c end layer loop
1563     c
1564    
1565     ENDDO ! i
1566     ENDDO ! j
1567    
1568     #ifdef ALLOW_PAR_DAY
1569     C 1 <-> 2
1570     PARiaccum = 3 - PARiprev
1571    
1572     DO k=1,nR
1573     DO j=1,sNy
1574     DO i=1,sNx
1575     PARday(i,j,k,bi,bj,PARiaccum) =
1576     & PARday(i,j,k,bi,bj,PARiaccum) + PAR(i,j,k)
1577     ENDDO
1578     ENDDO
1579     ENDDO
1580    
1581     phase = 0. _d 0
1582     itistime = DIFF_PHASE_MULTIPLE( phase, darwin_PARavPeriod,
1583     & newtime, dtsubtime)
1584    
1585     IF ( itistime ) THEN
1586     C compute average
1587     nav = darwin_PARnav
1588     IF (newtime - baseTime .LT. darwin_PARavPeriod) THEN
1589     C incomplete period at beginning of run
1590     nav = NINT((newtime-baseTime)/dtsubtime)
1591     ENDIF
1592     DO k=1,nR
1593     DO j=1,sNy
1594     DO i=1,sNx
1595     PARday(i,j,k,bi,bj,PARiaccum) =
1596     & PARday(i,j,k,bi,bj,PARiaccum) / nav
1597     ENDDO
1598     ENDDO
1599     ENDDO
1600     C reset the other slot for averaging
1601     DO k=1,nR
1602     DO j=1,sNy
1603     DO i=1,sNx
1604     PARday(i,j,k,bi,bj,PARiprev) = 0. _d 0
1605     ENDDO
1606     ENDDO
1607     ENDDO
1608     ENDIF
1609     C itistime
1610     #endif
1611    
1612 jahn 1.11 #ifdef DAR_CHECK_IRR_CONT
1613 jahn 1.12 i = myXGlobalLo-1+(bi-1)*sNx+idiscEs
1614     j = myYGlobalLo-1+(bj-1)*sNy+jdiscEs
1615     write(6,'(I4.4,X,A,4(X,I4),1PE24.16)')myProcId,'max Es disc',
1616     & i,j,kdiscEs,ldiscEs,discEs
1617     i = myXGlobalLo-1+(bi-1)*sNx+idiscEu
1618     j = myYGlobalLo-1+(bj-1)*sNy+jdiscEu
1619     write(6,'(I4.4,X,A,4(X,I4),1PE24.16)')myProcId,'max Eu disc',
1620     & i,j,kdiscEu,ldiscEu,discEu
1621 jahn 1.11 #endif
1622    
1623 jahn 1.1 COJ fill diagnostics
1624     #ifdef ALLOW_DIAGNOSTICS
1625     IF ( useDiagnostics ) THEN
1626     diagname = ' '
1627     WRITE(diagname,'(A8)') 'PAR '
1628     CALL DIAGNOSTICS_FILL( PAR(1-Olx,1-Oly,1), diagname,
1629     & 0,Nr,2,bi,bj,myThid )
1630     WRITE(diagname,'(A8)') 'PP '
1631     CALL DIAGNOSTICS_FILL( PParr(1-Olx,1-Oly,1), diagname,
1632     & 0,Nr,2,bi,bj,myThid )
1633     WRITE(diagname,'(A8)') 'Nfix '
1634     CALL DIAGNOSTICS_FILL( Nfixarr(1-Olx,1-Oly,1), diagname,
1635     & 0,Nr,2,bi,bj,myThid )
1636     c ANNA_TAVE
1637     #ifdef WAVES_DIAG_PCHL
1638     DO np=1,MIN(99,npmax)
1639     WRITE(diagname,'(A5,I2.2,A1)') 'Pchl',np,' '
1640     CALL DIAGNOSTICS_FILL( Pchlarr(1-Olx,1-Oly,1,np), diagname,
1641     & 0,Nr,2,bi,bj,myThid )
1642     ENDDO
1643     #endif
1644     c ANNA end TAVE
1645     #ifdef DAR_DIAG_RSTAR
1646     DO np=1,MIN(99,npmax)
1647     WRITE(diagname,'(A5,I2.2,A1)') 'Rstar',np,' '
1648     CALL DIAGNOSTICS_FILL( Rstararr(1-Olx,1-Oly,1,np), diagname,
1649     & 0,Nr,2,bi,bj,myThid )
1650     ENDDO
1651     #endif
1652     #ifdef DAR_DIAG_DIVER
1653     WRITE(diagname,'(A8)') 'Diver1 '
1654     CALL DIAGNOSTICS_FILL( Diver1(1-Olx,1-Oly,1), diagname,
1655     & 0,Nr,2,bi,bj,myThid )
1656     WRITE(diagname,'(A8)') 'Diver2 '
1657     CALL DIAGNOSTICS_FILL( Diver2(1-Olx,1-Oly,1), diagname,
1658     & 0,Nr,2,bi,bj,myThid )
1659     WRITE(diagname,'(A8)') 'Diver3 '
1660     CALL DIAGNOSTICS_FILL( Diver3(1-Olx,1-Oly,1), diagname,
1661     & 0,Nr,2,bi,bj,myThid )
1662     WRITE(diagname,'(A8)') 'Diver4 '
1663     CALL DIAGNOSTICS_FILL( Diver4(1-Olx,1-Oly,1), diagname,
1664     & 0,Nr,2,bi,bj,myThid )
1665 jahn 1.5 WRITE(diagname,'(A8)') 'Shannon '
1666     CALL DIAGNOSTICS_FILL( Shannon(1-Olx,1-Oly,1), diagname,
1667     & 0,Nr,2,bi,bj,myThid )
1668     WRITE(diagname,'(A8)') 'Simpson '
1669     CALL DIAGNOSTICS_FILL( Simpson(1-Olx,1-Oly,1), diagname,
1670     & 0,Nr,2,bi,bj,myThid )
1671 jahn 1.1 #endif
1672     #ifdef ALLOW_DIAZ
1673     #ifdef DAR_DIAG_NFIXP
1674     DO np=1,MIN(99,npmax)
1675     WRITE(diagname,'(A5,I2.2,A1)') 'NfixP',np,' '
1676     CALL DIAGNOSTICS_FILL( NfixParr(1-Olx,1-Oly,1,np), diagname,
1677     & 0,Nr,2,bi,bj,myThid )
1678     ENDDO
1679     #endif
1680     #endif
1681     #ifdef DAR_DIAG_CHL
1682     CALL DIAGNOSTICS_FILL( GeiderChlarr(1-Olx,1-Oly,1), 'ChlGeide',
1683     & 0,Nr,2,bi,bj,myThid )
1684     CALL DIAGNOSTICS_FILL( GeiderChl2Carr(1-Olx,1-Oly,1),'Chl2CGei',
1685     & 0,Nr,2,bi,bj,myThid )
1686     CALL DIAGNOSTICS_FILL( DoneyChlarr(1-Olx,1-Oly,1), 'ChlDoney',
1687     & 0,Nr,2,bi,bj,myThid )
1688     CALL DIAGNOSTICS_FILL( DoneyChl2Carr(1-Olx,1-Oly,1), 'Chl2CDon',
1689     & 0,Nr,2,bi,bj,myThid )
1690     CALL DIAGNOSTICS_FILL( CloernChlarr(1-Olx,1-Oly,1), 'ChlCloer',
1691     & 0,Nr,2,bi,bj,myThid )
1692     CALL DIAGNOSTICS_FILL( CloernChl2Carr(1-Olx,1-Oly,1),'Chl2CClo',
1693     & 0,Nr,2,bi,bj,myThid )
1694     #endif
1695     #ifdef ALLOW_CARBON
1696 jahn 1.2 CALL DIAGNOSTICS_FILL( flxCO2(1-Olx,1-Oly), 'DICTFLX ',
1697 jahn 1.1 & 0,1,2,bi,bj,myThid )
1698     CALL DIAGNOSTICS_FILL( FluxCO2(1-Olx,1-Oly,bi,bj), 'DICCFLX ',
1699     & 0,1,2,bi,bj,myThid )
1700 jahn 1.2 CALL DIAGNOSTICS_FILL( flxO2(1-Olx,1-Oly), 'DICOFLX ',
1701 jahn 1.1 & 0,1,2,bi,bj,myThid )
1702     CALL DIAGNOSTICS_FILL( pCO2(1-Olx,1-Oly,bi,bj), 'DICPCO2 ',
1703     & 0,1,2,bi,bj,myThid )
1704     CALL DIAGNOSTICS_FILL( pH(1-Olx,1-Oly,bi,bj), 'DICPHAV ',
1705     & 0,1,2,bi,bj,myThid )
1706     #endif /* ALLOW_CARBON */
1707     ENDIF
1708     #endif /* ALLOW_DIAGNOSTICS */
1709     COJ
1710    
1711     c determine iron partitioning - solve for free iron
1712     call darwin_fe_chem(bi,bj,iMin,iMax,jMin,jMax,
1713     & Ptr(1-OLx,1-OLy,1,bi,bj,iFeT), freefe,
1714     & myIter, mythid)
1715     c
1716     #ifdef ALLOW_TIMEAVE
1717     c save averages
1718     do k=1,nR
1719     dar_timeave(bi,bj,k)=dar_timeave(bi,bj,k)
1720     & +dtplankton
1721     #ifdef ALLOW_CARBON
1722     dic_timeave(bi,bj,k)=dic_timeave(bi,bj,k)
1723     & +dtplankton
1724     #endif
1725     enddo
1726     #endif
1727     c
1728     c -----------------------------------------------------
1729     ENDDO ! it
1730     c -----------------------------------------------------
1731     c end of bio-chemical time loop
1732     c
1733     RETURN
1734     END
1735     #endif /*MONOD*/
1736     #endif /*ALLOW_PTRACERS*/
1737    
1738     C============================================================================

  ViewVC Help
Powered by ViewVC 1.1.22