1 |
#include "CPP_OPTIONS.h" |
2 |
#include "PTRACERS_OPTIONS.h" |
3 |
#include "DARWIN_OPTIONS.h" |
4 |
|
5 |
#ifdef ALLOW_PTRACERS |
6 |
#ifdef ALLOW_DARWIN |
7 |
|
8 |
#ifdef ALLOW_CARBON |
9 |
|
10 |
CBOP |
11 |
C !ROUTINE: CALC_PCO2 |
12 |
|
13 |
C !INTERFACE: ========================================================== |
14 |
SUBROUTINE CALC_PCO2( |
15 |
I donewt,inewtonmax,ibrackmax, |
16 |
I t,s,diclocal,pt,sit,ta, |
17 |
I k1local,k2local, |
18 |
I k1plocal,k2plocal,k3plocal, |
19 |
I kslocal,kblocal,kwlocal, |
20 |
I ksilocal,kflocal, |
21 |
I k0local, fugflocal, |
22 |
I fflocal,btlocal,stlocal,ftlocal, |
23 |
U pHlocal,pCO2surfloc, |
24 |
I myThid) |
25 |
|
26 |
C !DESCRIPTION: |
27 |
C surface ocean inorganic carbon chemistry to OCMIP2 |
28 |
C regulations modified from OCMIP2 code; |
29 |
C Mick Follows, MIT, Oct 1999. |
30 |
|
31 |
|
32 |
C !USES: =============================================================== |
33 |
IMPLICIT NONE |
34 |
#include "SIZE.h" |
35 |
#include "DYNVARS.h" |
36 |
#include "EEPARAMS.h" |
37 |
#include "PARAMS.h" |
38 |
#include "GRID.h" |
39 |
#include "FFIELDS.h" |
40 |
#include "DARWIN_FLUX.h" |
41 |
|
42 |
C == Routine arguments == |
43 |
C diclocal = total inorganic carbon (mol/m^3) |
44 |
C where 1 T = 1 metric ton = 1000 kg |
45 |
C ta = total alkalinity (eq/m^3) |
46 |
C pt = inorganic phosphate (mol/^3) |
47 |
C sit = inorganic silicate (mol/^3) |
48 |
C t = temperature (degrees C) |
49 |
C s = salinity (PSU) |
50 |
INTEGER donewt |
51 |
INTEGER inewtonmax |
52 |
INTEGER ibrackmax |
53 |
_RL t, s, pt, sit, ta |
54 |
_RL pCO2surfloc, diclocal, pHlocal |
55 |
_RL fflocal, btlocal, stlocal, ftlocal |
56 |
_RL k1local, k2local |
57 |
_RL k1plocal, k2plocal, k3plocal |
58 |
_RL kslocal, kblocal, kwlocal, ksilocal, kflocal |
59 |
_RL k0local, fugflocal |
60 |
INTEGER myThid |
61 |
CEndOfInterface |
62 |
|
63 |
C == Local variables == |
64 |
C INPUT |
65 |
C phlo= lower limit of pH range |
66 |
C phhi= upper limit of pH range |
67 |
C atmpres = atmospheric pressure in atmospheres (1 atm==1013.25mbar) |
68 |
C OUTPUT |
69 |
C co2star = CO2*water (mol/m^3) |
70 |
C pco2surf = oceanic pCO2 (ppmv) |
71 |
C --------------------------------------------------------------------- |
72 |
C OCMIP NOTE: Some words about units - (JCO, 4/4/1999) |
73 |
C - Models carry tracers in mol/m^3 (on a per volume basis) |
74 |
C - Conversely, this routine, which was written by |
75 |
C observationalists (C. Sabine and R. Key), passes input |
76 |
C arguments in umol/kg (i.e., on a per mass basis) |
77 |
C - I have changed things slightly so that input arguments are in |
78 |
C mol/m^3, |
79 |
C - Thus, all input concentrations (diclocal, ta, pt, and st) should be |
80 |
C given in mol/m^3; output arguments "co2star" and "dco2star" |
81 |
C are likewise be in mol/m^3. |
82 |
C --------------------------------------------------------------------- |
83 |
_RL phhi |
84 |
_RL phlo |
85 |
_RL tk |
86 |
_RL tk100 |
87 |
_RL tk1002 |
88 |
_RL dlogtk |
89 |
_RL sqrtis |
90 |
_RL sqrts |
91 |
_RL s15 |
92 |
_RL scl |
93 |
_RL c |
94 |
_RL a |
95 |
_RL a2 |
96 |
_RL da |
97 |
_RL b |
98 |
_RL b2 |
99 |
_RL db |
100 |
_RL fn |
101 |
_RL df |
102 |
_RL deltax |
103 |
_RL x |
104 |
_RL x1 |
105 |
_RL x2 |
106 |
_RL x3 |
107 |
_RL xmid |
108 |
_RL ftest |
109 |
_RL htotal |
110 |
_RL htotal2 |
111 |
_RL s2 |
112 |
_RL xacc |
113 |
_RL co2star |
114 |
_RL co2starair |
115 |
_RL dco2star |
116 |
_RL dpCO2 |
117 |
_RL phguess |
118 |
_RL atmpres |
119 |
_RL fco2 |
120 |
INTEGER inewton |
121 |
INTEGER ibrack |
122 |
INTEGER hstep |
123 |
_RL fni(3) |
124 |
_RL xlo |
125 |
_RL xhi |
126 |
_RL xguess |
127 |
_RL invtk |
128 |
_RL is |
129 |
_RL is2 |
130 |
_RL k123p |
131 |
_RL k12p |
132 |
_RL k12 |
133 |
c --------------------------------------------------------------------- |
134 |
c import donewt flag |
135 |
c set donewt = 1 for newton-raphson iteration |
136 |
c set donewt = 0 for bracket and bisection |
137 |
c --------------------------------------------------------------------- |
138 |
C Change units from the input of mol/m^3 -> mol/kg: |
139 |
c (1 mol/m^3) x (1 m^3/1024.5 kg) |
140 |
c where the ocean's mean surface density is 1024.5 kg/m^3 |
141 |
c Note: mol/kg are actually what the body of this routine uses |
142 |
c for calculations. Units are reconverted back to mol/m^3 at the |
143 |
c end of this routine. |
144 |
c --------------------------------------------------------------------- |
145 |
c To convert input in mol/m^3 -> mol/kg |
146 |
pt=pt*permil |
147 |
sit=sit*permil |
148 |
ta=ta*permil |
149 |
diclocal=diclocal*permil |
150 |
c --------------------------------------------------------------------- |
151 |
c set first guess and brackets for [H+] solvers |
152 |
c first guess (for newton-raphson) |
153 |
phguess = phlocal |
154 |
|
155 |
|
156 |
c bracketing values (for bracket/bisection) |
157 |
phhi = 10.0 |
158 |
phlo = 5.0 |
159 |
c convert to [H+]... |
160 |
xguess = 10.0**(-phguess) |
161 |
xlo = 10.0**(-phhi) |
162 |
xhi = 10.0**(-phlo) |
163 |
xmid = (xlo + xhi)*0.5 |
164 |
|
165 |
|
166 |
c---------------------------------------------------------------- |
167 |
c iteratively solve for [H+] |
168 |
c (i) Newton-Raphson method with fixed number of iterations, |
169 |
c use previous [H+] as first guess |
170 |
|
171 |
c select newton-raphson, inewt=1 |
172 |
c else select bracket and bisection |
173 |
|
174 |
cQQQQQ |
175 |
if( donewt .eq. 1)then |
176 |
c......................................................... |
177 |
c NEWTON-RAPHSON METHOD |
178 |
c......................................................... |
179 |
x = xguess |
180 |
cdiags |
181 |
c WRITE(0,*)'xguess ',xguess |
182 |
cdiags |
183 |
do inewton = 1, inewtonmax |
184 |
c set some common combinations of parameters used in |
185 |
c the iterative [H+] solvers |
186 |
x2=x*x |
187 |
x3=x2*x |
188 |
k12 = k1local*k2local |
189 |
k12p = k1plocal*k2plocal |
190 |
k123p = k12p*k3plocal |
191 |
c = 1.0 + stlocal/kslocal |
192 |
a = x3 + k1plocal*x2 + k12p*x + k123p |
193 |
a2=a*a |
194 |
da = 3.0*x2 + 2.0*k1plocal*x + k12p |
195 |
b = x2 + k1local*x + k12 |
196 |
b2=b*b |
197 |
db = 2.0*x + k1local |
198 |
|
199 |
c Evaluate f([H+]) and f'([H+]) |
200 |
c fn = hco3+co3+borate+oh+hpo4+2*po4+silicate+hfree |
201 |
c +hso4+hf+h3po4-ta |
202 |
fn = k1local*x*diclocal/b + |
203 |
& 2.0*diclocal*k12/b + |
204 |
& btlocal/(1.0 + x/kblocal) + |
205 |
& kwlocal/x + |
206 |
& pt*k12p*x/a + |
207 |
& 2.0*pt*k123p/a + |
208 |
& sit/(1.0 + x/ksilocal) - |
209 |
& x/c - |
210 |
& stlocal/(1.0 + kslocal/x/c) - |
211 |
& ftlocal/(1.0 + kflocal/x) - |
212 |
& pt*x3/a - |
213 |
& ta |
214 |
|
215 |
c df = dfn/dx |
216 |
cdiags |
217 |
c WRITE(0,*)'values',b2,kblocal,x2,a2,c,x |
218 |
cdiags |
219 |
df = ((k1local*diclocal*b) - k1local*x*diclocal*db)/b2 - |
220 |
& 2.0*diclocal*k12*db/b2 - |
221 |
& btlocal/kblocal/(1.0+x/kblocal)**2. - |
222 |
& kwlocal/x2 + |
223 |
& (pt*k12p*(a - x*da))/a2 - |
224 |
& 2.0*pt*k123p*da/a2 - |
225 |
& sit/ksilocal/(1.0+x/ksilocal)**2. + |
226 |
& 1.0/c + |
227 |
& stlocal*(1.0 + kslocal/x/c)**(-2.0)*(kslocal/c/x2) + |
228 |
& ftlocal*(1.0 + kflocal/x)**(-2.)*kflocal/x2 - |
229 |
& pt*x2*(3.0*a-x*da)/a2 |
230 |
c evaluate increment in [H+] |
231 |
deltax = - fn/df |
232 |
c update estimate of [H+] |
233 |
x = x + deltax |
234 |
cdiags |
235 |
c write value of x to check convergence.... |
236 |
c write(0,*)'inewton, x, deltax ',inewton, x, deltax |
237 |
c write(6,*) |
238 |
cdiags |
239 |
|
240 |
end do |
241 |
c end of newton-raphson method |
242 |
c.................................................... |
243 |
else |
244 |
c.................................................... |
245 |
C BRACKET AND BISECTION METHOD |
246 |
c.................................................... |
247 |
c (ii) If first step use Bracket and Bisection method |
248 |
c with fixed, large number of iterations |
249 |
do ibrack = 1, ibrackmax |
250 |
do hstep = 1,3 |
251 |
if(hstep .eq. 1)x = xhi |
252 |
if(hstep .eq. 2)x = xlo |
253 |
if(hstep .eq. 3)x = xmid |
254 |
c set some common combinations of parameters used in |
255 |
c the iterative [H+] solvers |
256 |
|
257 |
|
258 |
x2=x*x |
259 |
x3=x2*x |
260 |
k12 = k1local*k2local |
261 |
k12p = k1plocal*k2plocal |
262 |
k123p = k12p*k3plocal |
263 |
c = 1.0 + stlocal/kslocal |
264 |
a = x3 + k1plocal*x2 + k12p*x + k123p |
265 |
a2=a*a |
266 |
da = 3.0*x2 + 2.0*k1plocal*x + k12p |
267 |
b = x2 + k1local*x + k12 |
268 |
b2=b*b |
269 |
db = 2.0*x + k1local |
270 |
c evaluate f([H+]) for bracketing and mid-value cases |
271 |
fn = k1local*x*diclocal/b + |
272 |
& 2.0*diclocal*k12/b + |
273 |
& btlocal/(1.0 + x/kblocal) + |
274 |
& kwlocal/x + |
275 |
& pt*k12p*x/a + |
276 |
& 2.0*pt*k123p/a + |
277 |
& sit/(1.0 + x/ksilocal) - |
278 |
& x/c - |
279 |
& stlocal/(1.0 + kslocal/x/c) - |
280 |
& ftlocal/(1.0 + kflocal/x) - |
281 |
& pt*x3/a - |
282 |
& ta |
283 |
fni(hstep) = fn |
284 |
end do |
285 |
c now bracket solution within two of three |
286 |
ftest = fni(1)/fni(3) |
287 |
if(ftest .gt. 0.0)then |
288 |
xhi = xmid |
289 |
else |
290 |
xlo = xmid |
291 |
end if |
292 |
xmid = (xlo + xhi)*0.5 |
293 |
|
294 |
cdiags |
295 |
c write value of x to check convergence.... |
296 |
c WRITE(0,*)'bracket-bisection iteration ',ibrack, xmid |
297 |
cdiags |
298 |
end do |
299 |
c last iteration gives value |
300 |
x = xmid |
301 |
c end of bracket and bisection method |
302 |
c.................................... |
303 |
end if |
304 |
c iterative [H+] solver finished |
305 |
c---------------------------------------------------------------- |
306 |
|
307 |
c now determine pCO2 etc... |
308 |
c htotal = [H+], hydrogen ion conc |
309 |
htotal = x |
310 |
C Calculate [CO2*] as defined in DOE Methods Handbook 1994 Ver.2, |
311 |
C ORNL/CDIAC-74, dickson and Goyet, eds. (Ch 2 p 10, Eq A.49) |
312 |
htotal2=htotal*htotal |
313 |
co2star=diclocal*htotal2/(htotal2 + k1local*htotal |
314 |
& + k1local*k2local) |
315 |
phlocal=-log10(htotal) |
316 |
|
317 |
c --------------------------------------------------------------- |
318 |
c Add two output arguments for storing pCO2surf |
319 |
c Should we be using K0 or ff for the solubility here? |
320 |
c --------------------------------------------------------------- |
321 |
#ifdef WATERVAP_BUG |
322 |
pCO2surfloc = co2star / fflocal |
323 |
#else |
324 |
c Corrected by Val Bennington (Nov 2010) |
325 |
fco2 = co2star / k0local |
326 |
pCO2surfloc = fco2/fugflocal |
327 |
#endif |
328 |
|
329 |
C ---------------------------------------------------------------- |
330 |
C Reconvert units back to original values for input arguments |
331 |
C no longer necessary???? |
332 |
C ---------------------------------------------------------------- |
333 |
c Reconvert from mol/kg -> mol/m^3 |
334 |
pt=pt/permil |
335 |
sit=sit/permil |
336 |
ta=ta/permil |
337 |
diclocal=diclocal/permil |
338 |
|
339 |
return |
340 |
end |
341 |
|
342 |
c================================================================= |
343 |
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
344 |
CC New efficient pCO2 solver, Mick Follows CC |
345 |
CC Taka Ito CC |
346 |
CC Stephanie Dutkiewicz CC |
347 |
CC 20 April 2003 CC |
348 |
CC ADD CO3 ESTIMATION AND PASS OUT CC |
349 |
CC Karsten Friis, Mick Follows CC |
350 |
CC 1 sep 04 CC |
351 |
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
352 |
#include "DARWIN_OPTIONS.h" |
353 |
CStartOfInterFace |
354 |
SUBROUTINE CALC_PCO2_APPROX_CO3( |
355 |
I t,s,diclocal,pt,sit,ta, |
356 |
I k1local,k2local, |
357 |
I k1plocal,k2plocal,k3plocal, |
358 |
I kslocal,kblocal,kwlocal, |
359 |
I ksilocal,kflocal, |
360 |
I fflocal,btlocal,stlocal,ftlocal, |
361 |
U pHlocal,pCO2surfloc,co3local, |
362 |
I myThid) |
363 |
C /==========================================================\ |
364 |
C | SUBROUTINE CALC_PCO2_APPROX_CO3 | |
365 |
C \==========================================================/ |
366 |
IMPLICIT NONE |
367 |
|
368 |
C == GLobal variables == |
369 |
#include "SIZE.h" |
370 |
#include "DYNVARS.h" |
371 |
#include "EEPARAMS.h" |
372 |
#include "PARAMS.h" |
373 |
#include "GRID.h" |
374 |
#include "FFIELDS.h" |
375 |
#include "DARWIN_FLUX.h" |
376 |
|
377 |
C == Routine arguments == |
378 |
C diclocal = total inorganic carbon (mol/m^3) |
379 |
C where 1 T = 1 metric ton = 1000 kg |
380 |
C ta = total alkalinity (eq/m^3) |
381 |
C pt = inorganic phosphate (mol/^3) |
382 |
C sit = inorganic silicate (mol/^3) |
383 |
C t = temperature (degrees C) |
384 |
C s = salinity (PSU) |
385 |
_RL t, s, pt, sit, ta |
386 |
_RL pCO2surfloc, diclocal, pHlocal |
387 |
_RL fflocal, btlocal, stlocal, ftlocal |
388 |
_RL k1local, k2local |
389 |
_RL k1plocal, k2plocal, k3plocal |
390 |
_RL kslocal, kblocal, kwlocal, ksilocal, kflocal |
391 |
INTEGER myThid |
392 |
CEndOfInterface |
393 |
|
394 |
C == Local variables == |
395 |
_RL phguess |
396 |
_RL cag |
397 |
_RL bohg |
398 |
_RL hguess |
399 |
_RL stuff |
400 |
_RL gamm |
401 |
_RL hnew |
402 |
_RL co2s |
403 |
_RL h3po4g, h2po4g, hpo4g, po4g |
404 |
_RL siooh3g |
405 |
c carbonate |
406 |
_RL co3local |
407 |
|
408 |
|
409 |
c --------------------------------------------------------------------- |
410 |
C Change units from the input of mol/m^3 -> mol/kg: |
411 |
c (1 mol/m^3) x (1 m^3/1024.5 kg) |
412 |
c where the ocean's mean surface density is 1024.5 kg/m^3 |
413 |
c Note: mol/kg are actually what the body of this routine uses |
414 |
c for calculations. Units are reconverted back to mol/m^3 at the |
415 |
c end of this routine. |
416 |
c To convert input in mol/m^3 -> mol/kg |
417 |
pt=pt*permil |
418 |
sit=sit*permil |
419 |
ta=ta*permil |
420 |
diclocal=diclocal*permil |
421 |
c --------------------------------------------------------------------- |
422 |
c set first guess and brackets for [H+] solvers |
423 |
c first guess (for newton-raphson) |
424 |
phguess = phlocal |
425 |
cmick - new approx method |
426 |
cmick - make estimate of htotal (hydrogen ion conc) using |
427 |
cmick appromate estimate of CA, carbonate alkalinity |
428 |
hguess = 10.0**(-phguess) |
429 |
cmick - first estimate borate contribution using guess for [H+] |
430 |
bohg = btlocal*kblocal/(hguess+kblocal) |
431 |
|
432 |
cmick - first estimate of contribution from phosphate |
433 |
cmick based on Dickson and Goyet |
434 |
stuff = hguess*hguess*hguess |
435 |
& + (k1plocal*hguess*hguess) |
436 |
& + (k1plocal*k2plocal*hguess) |
437 |
& + (k1plocal*k2plocal*k3plocal) |
438 |
h3po4g = (pt*hguess*hguess*hguess) / stuff |
439 |
h2po4g = (pt*k1plocal*hguess*hguess) / stuff |
440 |
hpo4g = (pt*k1plocal*k2plocal*hguess) / stuff |
441 |
po4g = (pt*k1plocal*k2plocal*k3plocal) / stuff |
442 |
|
443 |
cmick - estimate contribution from silicate |
444 |
cmick based on Dickson and Goyet |
445 |
siooh3g = sit*ksilocal / (ksilocal + hguess) |
446 |
|
447 |
cmick - now estimate carbonate alkalinity |
448 |
cag = ta - bohg - (kwlocal/hguess) + hguess |
449 |
& - hpo4g - 2.0*po4g + h3po4g |
450 |
& - siooh3g |
451 |
|
452 |
cmick - now evaluate better guess of hydrogen ion conc |
453 |
cmick htotal = [H+], hydrogen ion conc |
454 |
gamm = diclocal/cag |
455 |
stuff = (1.0-gamm)*(1.0-gamm)*k1local*k1local |
456 |
& - 4.0*k1local*k2local*(1.0-2.0*gamm) |
457 |
hnew = 0.5*( (gamm-1.0)*k1local + sqrt(stuff) ) |
458 |
cmick - now determine [CO2*] |
459 |
co2s = diclocal/ |
460 |
& (1.0 + (k1local/hnew) + (k1local*k2local/(hnew*hnew))) |
461 |
cmick - return update pH to main routine |
462 |
phlocal = -log10(hnew) |
463 |
|
464 |
c NOW EVALUATE CO32-, carbonate ion concentration |
465 |
c used in determination of calcite compensation depth |
466 |
c Karsten Friis & Mick - Sep 2004 |
467 |
co3local = k1local*k2local*diclocal / |
468 |
& (hnew*hnew + k1local*hnew + k1local*k2local) |
469 |
|
470 |
c --------------------------------------------------------------- |
471 |
c surface pCO2 (following Dickson and Goyet, DOE...) |
472 |
pCO2surfloc = co2s/fflocal |
473 |
|
474 |
C ---------------------------------------------------------------- |
475 |
c Reconvert from mol/kg -> mol/m^3 |
476 |
pt=pt/permil |
477 |
sit=sit/permil |
478 |
ta=ta/permil |
479 |
diclocal=diclocal/permil |
480 |
return |
481 |
end |
482 |
|
483 |
c================================================================= |
484 |
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
485 |
CC New efficient pCO2 solver, Mick Follows CC |
486 |
CC Taka Ito CC |
487 |
CC Stephanie Dutkiewicz CC |
488 |
CC 20 April 2003 CC |
489 |
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
490 |
C Apr 2011: fix vapour bug (following Bennington) |
491 |
#include "DARWIN_OPTIONS.h" |
492 |
CStartOfInterFace |
493 |
SUBROUTINE CALC_PCO2_APPROX( |
494 |
I t,s,diclocal,pt,sit,ta, |
495 |
I k1local,k2local, |
496 |
I k1plocal,k2plocal,k3plocal, |
497 |
I kslocal,kblocal,kwlocal, |
498 |
I ksilocal,kflocal, |
499 |
I k0local, fugflocal, |
500 |
I fflocal,btlocal,stlocal,ftlocal, |
501 |
U pHlocal,pCO2surfloc, |
502 |
I myThid) |
503 |
C /==========================================================\ |
504 |
C | SUBROUTINE CALC_PCO2_APPROX | |
505 |
C \==========================================================/ |
506 |
IMPLICIT NONE |
507 |
|
508 |
C == GLobal variables == |
509 |
#include "SIZE.h" |
510 |
#include "DYNVARS.h" |
511 |
#include "EEPARAMS.h" |
512 |
#include "PARAMS.h" |
513 |
#include "GRID.h" |
514 |
#include "FFIELDS.h" |
515 |
#include "DARWIN_FLUX.h" |
516 |
|
517 |
C == Routine arguments == |
518 |
C diclocal = total inorganic carbon (mol/m^3) |
519 |
C where 1 T = 1 metric ton = 1000 kg |
520 |
C ta = total alkalinity (eq/m^3) |
521 |
C pt = inorganic phosphate (mol/^3) |
522 |
C sit = inorganic silicate (mol/^3) |
523 |
C t = temperature (degrees C) |
524 |
C s = salinity (PSU) |
525 |
_RL t, s, pt, sit, ta |
526 |
_RL pCO2surfloc, diclocal, pHlocal |
527 |
_RL fflocal, btlocal, stlocal, ftlocal |
528 |
_RL k1local, k2local |
529 |
_RL k1plocal, k2plocal, k3plocal |
530 |
_RL kslocal, kblocal, kwlocal, ksilocal, kflocal |
531 |
_RL k0local, fugflocal |
532 |
INTEGER myThid |
533 |
CEndOfInterface |
534 |
|
535 |
C == Local variables == |
536 |
_RL phguess |
537 |
_RL cag |
538 |
_RL bohg |
539 |
_RL hguess |
540 |
_RL stuff |
541 |
_RL gamm |
542 |
_RL hnew |
543 |
_RL co2s |
544 |
_RL h3po4g, h2po4g, hpo4g, po4g |
545 |
_RL siooh3g |
546 |
_RL fco2 |
547 |
c carbonate |
548 |
_RL co3local |
549 |
|
550 |
|
551 |
c --------------------------------------------------------------------- |
552 |
C Change units from the input of mol/m^3 -> mol/kg: |
553 |
c (1 mol/m^3) x (1 m^3/1024.5 kg) |
554 |
c where the ocean's mean surface density is 1024.5 kg/m^3 |
555 |
c Note: mol/kg are actually what the body of this routine uses |
556 |
c for calculations. Units are reconverted back to mol/m^3 at the |
557 |
c end of this routine. |
558 |
c To convert input in mol/m^3 -> mol/kg |
559 |
pt=pt*permil |
560 |
sit=sit*permil |
561 |
ta=ta*permil |
562 |
diclocal=diclocal*permil |
563 |
c --------------------------------------------------------------------- |
564 |
c set first guess and brackets for [H+] solvers |
565 |
c first guess (for newton-raphson) |
566 |
phguess = phlocal |
567 |
cmick - new approx method |
568 |
cmick - make estimate of htotal (hydrogen ion conc) using |
569 |
cmick appromate estimate of CA, carbonate alkalinity |
570 |
hguess = 10.0**(-phguess) |
571 |
cmick - first estimate borate contribution using guess for [H+] |
572 |
bohg = btlocal*kblocal/(hguess+kblocal) |
573 |
|
574 |
cmick - first estimate of contribution from phosphate |
575 |
cmick based on Dickson and Goyet |
576 |
stuff = hguess*hguess*hguess |
577 |
& + (k1plocal*hguess*hguess) |
578 |
& + (k1plocal*k2plocal*hguess) |
579 |
& + (k1plocal*k2plocal*k3plocal) |
580 |
h3po4g = (pt*hguess*hguess*hguess) / stuff |
581 |
h2po4g = (pt*k1plocal*hguess*hguess) / stuff |
582 |
hpo4g = (pt*k1plocal*k2plocal*hguess) / stuff |
583 |
po4g = (pt*k1plocal*k2plocal*k3plocal) / stuff |
584 |
|
585 |
cmick - estimate contribution from silicate |
586 |
cmick based on Dickson and Goyet |
587 |
siooh3g = sit*ksilocal / (ksilocal + hguess) |
588 |
|
589 |
cmick - now estimate carbonate alkalinity |
590 |
cag = ta - bohg - (kwlocal/hguess) + hguess |
591 |
& - hpo4g - 2.0 _d 0*po4g + h3po4g |
592 |
& - siooh3g |
593 |
|
594 |
cmick - now evaluate better guess of hydrogen ion conc |
595 |
cmick htotal = [H+], hydrogen ion conc |
596 |
gamm = diclocal/cag |
597 |
stuff = (1.0 _d 0-gamm)*(1.0 _d 0-gamm)*k1local*k1local |
598 |
& - 4.0 _d 0*k1local*k2local*(1.0 _d 0-2.0 _d 0*gamm) |
599 |
hnew = 0.5 _d 0*( (gamm-1.0 _d 0)*k1local + sqrt(stuff) ) |
600 |
cmick - now determine [CO2*] |
601 |
co2s = diclocal/ |
602 |
& (1.0 _d 0 + (k1local/hnew) + (k1local*k2local/(hnew*hnew))) |
603 |
cmick - return update pH to main routine |
604 |
phlocal = -log10(hnew) |
605 |
|
606 |
c NOW EVALUATE CO32-, carbonate ion concentration |
607 |
c used in determination of calcite compensation depth |
608 |
c Karsten Friis & Mick - Sep 2004 |
609 |
c co3local = k1local*k2local*diclocal / |
610 |
c & (hnew*hnew + k1local*hnew + k1local*k2local) |
611 |
|
612 |
c --------------------------------------------------------------- |
613 |
c surface pCO2 (following Dickson and Goyet, DOE...) |
614 |
#ifdef WATERVAP_BUG |
615 |
pCO2surfloc = co2s/fflocal |
616 |
#else |
617 |
c bug fix by Bennington |
618 |
fco2 = co2s/k0local |
619 |
pco2surfloc = fco2/fugflocal |
620 |
#endif |
621 |
|
622 |
C ---------------------------------------------------------------- |
623 |
c Reconvert from mol/kg -> mol/m^3 |
624 |
pt=pt/permil |
625 |
sit=sit/permil |
626 |
ta=ta/permil |
627 |
diclocal=diclocal/permil |
628 |
return |
629 |
end |
630 |
|
631 |
c================================================================= |
632 |
c ******************************************************************* |
633 |
c================================================================= |
634 |
CStartOfInterFace |
635 |
SUBROUTINE CARBON_COEFFS( |
636 |
I ttemp,stemp, |
637 |
I bi,bj,iMin,iMax,jMin,jMax, |
638 |
I kLevel, myThid) |
639 |
C |
640 |
C /==========================================================\ |
641 |
C | SUBROUTINE CARBON_COEFFS | |
642 |
C | determine coefficients for surface carbon chemistry | |
643 |
C | adapted from OCMIP2: SUBROUTINE CO2CALC | |
644 |
C | mick follows, oct 1999 | |
645 |
c | minor changes to tidy, swd aug 2002 | |
646 |
c | MODIFIED FOR PRESSURE DEPENDENCE | |
647 |
c | Karsten Friis and Mick Follows 2004 | |
648 |
c | added 2013 (steph) | |
649 |
C \==========================================================/ |
650 |
C INPUT |
651 |
C diclocal = total inorganic carbon (mol/m^3) |
652 |
C where 1 T = 1 metric ton = 1000 kg |
653 |
C ta = total alkalinity (eq/m^3) |
654 |
C pt = inorganic phosphate (mol/^3) |
655 |
C sit = inorganic silicate (mol/^3) |
656 |
C t = temperature (degrees C) |
657 |
C s = salinity (PSU) |
658 |
C OUTPUT |
659 |
C IMPORTANT: Some words about units - (JCO, 4/4/1999) |
660 |
c - Models carry tracers in mol/m^3 (on a per volume basis) |
661 |
c - Conversely, this routine, which was written by observationalists |
662 |
c (C. Sabine and R. Key), passes input arguments in umol/kg |
663 |
c (i.e., on a per mass basis) |
664 |
c - I have changed things slightly so that input arguments are in mol/m^3, |
665 |
c - Thus, all input concentrations (diclocal, ta, pt, and st) should be |
666 |
c given in mol/m^3; output arguments "co2star" and "dco2star" |
667 |
c are likewise be in mol/m^3. |
668 |
C |
669 |
C Apr 2011: fix vapour bug (following Bennington) |
670 |
C Oct 2013: c NOW INCLUDES: |
671 |
c PRESSURE DEPENDENCE of K1, K2, solubility product of calcite |
672 |
c based on Takahashi, GEOSECS Atlantic Report, Vol. 1 (1981) |
673 |
C-------------------------------------------------------------------------- |
674 |
IMPLICIT NONE |
675 |
C == GLobal variables == |
676 |
#include "SIZE.h" |
677 |
#include "DYNVARS.h" |
678 |
#include "EEPARAMS.h" |
679 |
#include "PARAMS.h" |
680 |
#include "GRID.h" |
681 |
#include "FFIELDS.h" |
682 |
#include "DARWIN_FLUX.h" |
683 |
C == Routine arguments == |
684 |
C ttemp and stemp are local theta and salt arrays |
685 |
C dont really need to pass T and S in, could use theta, salt in |
686 |
C common block in DYNVARS.h, but this way keeps subroutine more |
687 |
C general |
688 |
_RL ttemp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
689 |
_RL stemp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
690 |
INTEGER bi,bj,iMin,iMax,jMin,jMax |
691 |
INTEGER kLevel |
692 |
INTEGER myThid |
693 |
CEndOfInterface |
694 |
|
695 |
|
696 |
C LOCAL VARIABLES |
697 |
_RL t |
698 |
_RL s |
699 |
_RL ta |
700 |
_RL pt |
701 |
_RL sit |
702 |
_RL tk |
703 |
_RL tk100 |
704 |
_RL tk1002 |
705 |
_RL dlogtk |
706 |
_RL sqrtis |
707 |
_RL sqrts |
708 |
_RL s15 |
709 |
_RL scl |
710 |
_RL x1 |
711 |
_RL x2 |
712 |
_RL s2 |
713 |
_RL xacc |
714 |
_RL invtk |
715 |
_RL is |
716 |
_RL is2 |
717 |
c add pressure dependency |
718 |
_RL bdepth |
719 |
_RL cdepth |
720 |
_RL pressc |
721 |
c calcite stuff |
722 |
_RL Ksp_T_Calc |
723 |
_RL xvalue |
724 |
_RL zdum |
725 |
_RL tmpa1 |
726 |
_RL tmpa2 |
727 |
_RL tmpa3 |
728 |
_RL logKspc |
729 |
_RL dv |
730 |
_RL dk |
731 |
_RL pfactor |
732 |
_RL bigR |
733 |
c add Bennington |
734 |
_RL P1atm |
735 |
_RL Rgas |
736 |
_RL RT |
737 |
_RL delta |
738 |
_RL B1 |
739 |
_RL B |
740 |
INTEGER i |
741 |
INTEGER j |
742 |
INTEGER k |
743 |
|
744 |
C..................................................................... |
745 |
C OCMIP note: |
746 |
C Calculate all constants needed to convert between various measured |
747 |
C carbon species. References for each equation are noted in the code. |
748 |
C Once calculated, the constants are |
749 |
C stored and passed in the common block "const". The original version |
750 |
C of this code was based on the code by dickson in Version 2 of |
751 |
C "Handbook of Methods C for the Analysis of the Various Parameters of |
752 |
C the Carbon Dioxide System in Seawater", DOE, 1994 (SOP No. 3, p25-26). |
753 |
C.................................................................... |
754 |
|
755 |
c determine pressure (bar) from depth |
756 |
c 1 BAR at z=0m (atmos pressure) |
757 |
c use UPPER surface of cell so top layer pressure = 0 bar |
758 |
c for surface exchange coeffs |
759 |
|
760 |
c if surface, calculate at interface pressure, |
761 |
c else calculate at mid-depth pressure |
762 |
if (Klevel.gt.1) then |
763 |
bdepth = 0.0d0 |
764 |
cdepth = 0.0d0 |
765 |
pressc = 1.01325 _d 0 |
766 |
do k = 1,Klevel |
767 |
cdepth = bdepth + 0.5d0*drF(k) |
768 |
bdepth = bdepth + drF(k) |
769 |
pressc = 1.0d0 + 0.1d0*cdepth |
770 |
end do |
771 |
else |
772 |
pressc = 1.01325 _d 0 |
773 |
endif |
774 |
|
775 |
do i=imin,imax |
776 |
do j=jmin,jmax |
777 |
if (hFacC(i,j,1,bi,bj).gt.0. _d 0) then |
778 |
t = ttemp(i,j) |
779 |
s = stemp(i,j) |
780 |
C terms used more than once |
781 |
tk = 273.15 _d 0 + t |
782 |
tk100 = tk/100. _d 0 |
783 |
tk1002=tk100*tk100 |
784 |
invtk=1.0 _d 0/tk |
785 |
dlogtk=log(tk) |
786 |
is=19.924 _d 0*s/(1000. _d 0-1.005 _d 0*s) |
787 |
is2=is*is |
788 |
sqrtis=sqrt(is) |
789 |
s2=s*s |
790 |
sqrts=sqrt(s) |
791 |
s15=s**1.5 _d 0 |
792 |
scl=s/1.80655 _d 0 |
793 |
C ----------------------------------------------------------------------- |
794 |
C added by Val Bennington Nov 2010 |
795 |
C Fugacity Factor needed for non-ideality in ocean |
796 |
C ff used for atmospheric correction for water vapor and pressure |
797 |
C Weiss (1974) Marine Chemistry |
798 |
P1atm = pressc ! bars |
799 |
Rgas = 83.1451 _d 0 ! bar*cm3/(mol*K) |
800 |
RT = Rgas*tk |
801 |
delta = (57.7 _d 0 - 0.118 _d 0*tk) |
802 |
B1 = -1636.75 _d 0 + 12.0408 _d 0*tk - 0.0327957 _d 0*tk*tk |
803 |
B = B1 + 3.16528 _d 0*tk*tk*tk*(0.00001 _d 0) |
804 |
fugf(i,j,bi,bj) = exp( (B+2. _d 0*delta) * P1atm / RT) |
805 |
C------------------------------------------------------------------------ |
806 |
C f = k0(1-pH2O)*correction term for non-ideality |
807 |
C Weiss & Price (1980, Mar. Chem., 8, 347-359; Eq 13 with table 6 values) |
808 |
ff(i,j,bi,bj) = exp(-162.8301 _d 0 + 218.2968 _d 0/tk100 + |
809 |
& 90.9241 _d 0*log(tk100) - 1.47696 _d 0*tk1002 + |
810 |
& s * (.025695 _d 0 - .025225 _d 0*tk100 + |
811 |
& 0.0049867 _d 0*tk1002)) |
812 |
C------------------------------------------------------------------------ |
813 |
C K0 from Weiss 1974 |
814 |
ak0(i,j,bi,bj) = exp(93.4517 _d 0/tk100 - 60.2409 _d 0 + |
815 |
& 23.3585 _d 0 * log(tk100) + |
816 |
& s * (0.023517 _d 0 - 0.023656 _d 0*tk100 + |
817 |
& 0.0047036 _d 0*tk1002)) |
818 |
C------------------------------------------------------------------------ |
819 |
C k1 = [H][HCO3]/[H2CO3] |
820 |
C k2 = [H][CO3]/[HCO3] |
821 |
C Millero p.664 (1995) using Mehrbach et al. data on seawater scale |
822 |
ak1(i,j,bi,bj)=10.**(-1. _d 0*(3670.7 _d 0*invtk - |
823 |
& 62.008 _d 0 + 9.7944 _d 0*dlogtk - |
824 |
& 0.0118 _d 0 * s + 0.000116 _d 0*s2)) |
825 |
ak2(i,j,bi,bj)=10.**(-1. _d 0*(1394.7 _d 0*invtk+ 4.777 _d 0- |
826 |
& 0.0184 _d 0*s + 0.000118 _d 0*s2)) |
827 |
C |
828 |
C NOW PRESSURE DEPENDENCE: |
829 |
c Following Takahashi (1981) GEOSECS report - quoting Culberson and |
830 |
c Pytkowicz (1968) |
831 |
if (kLevel.gt.1) then |
832 |
c pressc = pressure in bars |
833 |
ak1(i,j,bi,bj) = ak1(i,j,bi,bj)* |
834 |
& exp( (24.2-0.085*t)*(pressc-1.0)/(83.143*tk) ) |
835 |
c FIRST GO FOR K2: According to GEOSECS (1982) report |
836 |
c ak2(i,j,bi,bj) = ak2(i,j,bi,bj)* |
837 |
c & exp( (26.4-0.040*t)*(pressc-1.0)/(83.143*tk) ) |
838 |
c SECOND GO FOR K2: corrected coeff according to CO2sys documentation |
839 |
c E. Lewis and D. Wallace (1998) ORNL/CDIAC-105 |
840 |
ak2(i,j,bi,bj) = ak2(i,j,bi,bj)* |
841 |
& exp( (16.4-0.040*t)*(pressc-1.0)/(83.143*tk) ) |
842 |
endif |
843 |
C------------------------------------------------------------------------ |
844 |
C kb = [H][BO2]/[HBO2] |
845 |
C Millero p.669 (1995) using data from dickson (1990) |
846 |
akb(i,j,bi,bj)=exp((-8966.90 _d 0- 2890.53 _d 0*sqrts - |
847 |
& 77.942 _d 0*s + 1.728 _d 0*s15 - 0.0996 _d 0*s2)*invtk + |
848 |
& (148.0248 _d 0 + 137.1942 _d 0*sqrts + 1.62142 _d 0*s) + |
849 |
& (-24.4344 _d 0 - 25.085 _d 0*sqrts - 0.2474 _d 0*s) * |
850 |
& dlogtk + 0.053105 _d 0*sqrts*tk) |
851 |
if (kLevel.gt.1) then |
852 |
C Mick and Karsten - Dec 04 |
853 |
C ADDING pressure dependence based on Millero (1995), p675 |
854 |
C with additional info from CO2sys documentation (E. Lewis and |
855 |
C D. Wallace, 1998 - see endnotes for commentary on Millero, 95) |
856 |
bigR = 83.145 |
857 |
dv = -29.48 + 0.1622*t + 2.608d-3*t*t |
858 |
dk = -2.84d-3 |
859 |
pfactor = - (dv/(bigR*tk))*pressc |
860 |
& + (0.5*dk/(bigR*tk))*pressc*pressc |
861 |
akb(i,j,bi,bj) = akb(i,j,bi,bj)*exp(pfactor) |
862 |
endif |
863 |
C------------------------------------------------------------------------ |
864 |
C k1p = [H][H2PO4]/[H3PO4] |
865 |
C DOE(1994) eq 7.2.20 with footnote using data from Millero (1974) |
866 |
ak1p(i,j,bi,bj) = exp(-4576.752 _d 0*invtk + 115.525 _d 0 - |
867 |
& 18.453 _d 0*dlogtk + |
868 |
& (-106.736 _d 0*invtk + 0.69171 _d 0)*sqrts + |
869 |
& (-0.65643 _d 0*invtk - 0.01844 _d 0)*s) |
870 |
C------------------------------------------------------------------------ |
871 |
C k2p = [H][HPO4]/[H2PO4] |
872 |
C DOE(1994) eq 7.2.23 with footnote using data from Millero (1974)) |
873 |
ak2p(i,j,bi,bj) = exp(-8814.715 _d 0*invtk + 172.0883 _d 0 - |
874 |
& 27.927 _d 0*dlogtk + |
875 |
& (-160.340 _d 0*invtk + 1.3566 _d 0) * sqrts + |
876 |
& (0.37335 _d 0*invtk - 0.05778 _d 0) * s) |
877 |
C------------------------------------------------------------------------ |
878 |
C k3p = [H][PO4]/[HPO4] |
879 |
C DOE(1994) eq 7.2.26 with footnote using data from Millero (1974) |
880 |
ak3p(i,j,bi,bj) = exp(-3070.75 _d 0*invtk - 18.141 _d 0 + |
881 |
& (17.27039 _d 0*invtk + 2.81197 _d 0) * |
882 |
& sqrts + (-44.99486 _d 0*invtk - 0.09984 _d 0) * s) |
883 |
C------------------------------------------------------------------------ |
884 |
C ksi = [H][SiO(OH)3]/[Si(OH)4] |
885 |
C Millero p.671 (1995) using data from Yao and Millero (1995) |
886 |
aksi(i,j,bi,bj) = exp(-8904.2 _d 0*invtk + 117.385 _d 0 - |
887 |
& 19.334 _d 0*dlogtk + |
888 |
& (-458.79 _d 0*invtk + 3.5913 _d 0) * sqrtis + |
889 |
& (188.74 _d 0*invtk - 1.5998 _d 0) * is + |
890 |
& (-12.1652 _d 0*invtk + 0.07871 _d 0) * is2 + |
891 |
& log(1.0 _d 0-0.001005 _d 0*s)) |
892 |
C------------------------------------------------------------------------ |
893 |
C kw = [H][OH] |
894 |
C Millero p.670 (1995) using composite data |
895 |
akw(i,j,bi,bj) = exp(-13847.26 _d 0*invtk + 148.9652 _d 0 - |
896 |
& 23.6521 _d 0*dlogtk + |
897 |
& (118.67 _d 0*invtk - 5.977 _d 0 + 1.0495 _d 0 * dlogtk) |
898 |
& * sqrts - 0.01615 _d 0 * s) |
899 |
C------------------------------------------------------------------------ |
900 |
C ks = [H][SO4]/[HSO4] |
901 |
C dickson (1990, J. chem. Thermodynamics 22, 113) |
902 |
aks(i,j,bi,bj)=exp(-4276.1 _d 0*invtk + 141.328 _d 0 - |
903 |
& 23.093 _d 0*dlogtk + |
904 |
& (-13856. _d 0*invtk + 324.57 _d 0 - 47.986 _d 0*dlogtk)*sqrtis+ |
905 |
& (35474. _d 0*invtk - 771.54 _d 0 + 114.723 _d 0*dlogtk)*is - |
906 |
& 2698. _d 0*invtk*is**1.5 _d 0 + 1776. _d 0*invtk*is2 + |
907 |
& log(1.0 _d 0 - 0.001005 _d 0*s)) |
908 |
C------------------------------------------------------------------------ |
909 |
C kf = [H][F]/[HF] |
910 |
C dickson and Riley (1979) -- change pH scale to total |
911 |
akf(i,j,bi,bj)=exp(1590.2 _d 0*invtk - 12.641 _d 0 + |
912 |
& 1.525 _d 0*sqrtis + log(1.0 _d 0 - 0.001005 _d 0*s) + |
913 |
& log(1.0 _d 0 + (0.1400 _d 0/96.062 _d 0)*(scl)/aks(i,j,bi,bj))) |
914 |
C------------------------------------------------------------------------ |
915 |
C Calculate concentrations for borate, sulfate, and fluoride |
916 |
C Uppstrom (1974) |
917 |
bt(i,j,bi,bj) = 0.000232 _d 0 * scl/10.811 _d 0 |
918 |
C Morris & Riley (1966) |
919 |
st(i,j,bi,bj) = 0.14 _d 0 * scl/96.062 _d 0 |
920 |
C Riley (1965) |
921 |
ft(i,j,bi,bj) = 0.000067 _d 0 * scl/18.9984 _d 0 |
922 |
C------------------------------------------------------------------------ |
923 |
C solubility product for calcite |
924 |
C |
925 |
c Following Takahashi (1982) GEOSECS handbook |
926 |
C NOT SURE THIS IS WORKING??? |
927 |
C Ingle et al. (1973) |
928 |
c Ksp_T_Calc = ( -34.452 - 39.866*(s**0.333333) |
929 |
c & + 110.21*log(s) - 7.5752d-6 * (tk**2.0) |
930 |
c & ) * 1.0d-7 |
931 |
c with pressure dependence Culberson and Pytkowicz (1968) |
932 |
c xvalue = (36-0.20*t)*(pressc-1.0)/(83.143*tk) |
933 |
c Ksp_TP_Calc(i,j,bi,bj) = Ksp_T_Calc*exp(xvalue) |
934 |
c |
935 |
c |
936 |
C Following Mucci (1983) - from Zeebe/Wolf-Gladrow equic.m |
937 |
tmpa1 = - 171.9065 - (0.077993*tk) + (2839.319/tk) |
938 |
& + (71.595*log10(tk)) |
939 |
tmpa2 = +(-0.77712 + (0.0028426*tk) + (178.34/tk) )*sqrts |
940 |
tmpa3 = -(0.07711*s) + (0.0041249*s15) |
941 |
logKspc = tmpa1 + tmpa2 + tmpa3 |
942 |
Ksp_T_Calc = 10.0**logKspc |
943 |
c write(6,*)i,j,k,tmpa1,tmpa2,tmpa3,logkspc,Ksp_T_Calc |
944 |
c with pressure dependence Culberson and Pytkowicz (1968) |
945 |
c xvalue = (36.0-0.20*t)*(pressc-1.0)/(83.143*tk) |
946 |
c Ksp_TP_Calc(i,j,bi,bj) = Ksp_T_Calc*exp(xvalue) |
947 |
|
948 |
c alternative pressure depdendence |
949 |
c following Millero (1995) but using info from Appendix A11 of |
950 |
c Zeebe and Wolf-Gladrow (2001) book |
951 |
c dv = -48.6 - 0.5304*t |
952 |
c dk = -11.76d-3 - 0.3692*t |
953 |
c xvalue = - (dv/(bigR*tk))*pressc |
954 |
c & + (0.5*dk/(bigR*tk))*pressc*pressc |
955 |
c Ksp_TP_Calc(i,j,bi,bj) = Ksp_T_Calc*exp(xvalue) |
956 |
|
957 |
c alternative pressure dependence from Ingle (1975) |
958 |
|
959 |
zdum = (pressc*10.0d0 - 10.0d0)/10.0d0 |
960 |
xvalue = ( (48.8d0 - 0.53d0*t)*zdum |
961 |
& + (-0.00588d0 + 0.0001845d0*t)*zdum*zdum) |
962 |
& / (188.93d0*(t + 273.15d0)) |
963 |
|
964 |
Ksp_TP_Calc(i,j,bi,bj) = Ksp_T_Calc*10**(xvalue) |
965 |
|
966 |
C------------------------------------------------------------------------ |
967 |
else |
968 |
c add Bennington |
969 |
fugf(i,j,bi,bj)=0. _d 0 |
970 |
ff(i,j,bi,bj)=0. _d 0 |
971 |
ak0(i,j,bi,bj)= 0. _d 0 |
972 |
ak1(i,j,bi,bj)= 0. _d 0 |
973 |
ak2(i,j,bi,bj)= 0. _d 0 |
974 |
akb(i,j,bi,bj)= 0. _d 0 |
975 |
ak1p(i,j,bi,bj) = 0. _d 0 |
976 |
ak2p(i,j,bi,bj) = 0. _d 0 |
977 |
ak3p(i,j,bi,bj) = 0. _d 0 |
978 |
aksi(i,j,bi,bj) = 0. _d 0 |
979 |
akw(i,j,bi,bj) = 0. _d 0 |
980 |
aks(i,j,bi,bj)= 0. _d 0 |
981 |
akf(i,j,bi,bj)= 0. _d 0 |
982 |
bt(i,j,bi,bj) = 0. _d 0 |
983 |
st(i,j,bi,bj) = 0. _d 0 |
984 |
ft(i,j,bi,bj) = 0. _d 0 |
985 |
Ksp_TP_Calc(i,j,bi,bj) = 0.d0 |
986 |
endif |
987 |
end do |
988 |
end do |
989 |
|
990 |
return |
991 |
end |
992 |
|
993 |
#endif /*ALLOW_CARBON*/ |
994 |
|
995 |
#endif /*DARWIN*/ |
996 |
#endif /*ALLOW_PTRACERS*/ |
997 |
c ================================================================== |
998 |
|