1 |
jahn |
1.1 |
#include "CPP_OPTIONS.h" |
2 |
|
|
#include "PTRACERS_OPTIONS.h" |
3 |
|
|
#include "DARWIN_OPTIONS.h" |
4 |
|
|
|
5 |
|
|
#ifdef ALLOW_PTRACERS |
6 |
|
|
#ifdef ALLOW_DARWIN |
7 |
|
|
|
8 |
|
|
#ifdef ALLOW_CARBON |
9 |
|
|
|
10 |
|
|
CBOP |
11 |
|
|
C !ROUTINE: CALC_PCO2 |
12 |
|
|
|
13 |
|
|
C !INTERFACE: ========================================================== |
14 |
|
|
SUBROUTINE CALC_PCO2( |
15 |
|
|
I donewt,inewtonmax,ibrackmax, |
16 |
|
|
I t,s,diclocal,pt,sit,ta, |
17 |
|
|
I k1local,k2local, |
18 |
|
|
I k1plocal,k2plocal,k3plocal, |
19 |
|
|
I kslocal,kblocal,kwlocal, |
20 |
|
|
I ksilocal,kflocal, |
21 |
stephd |
1.2 |
I k0local, fugflocal, |
22 |
jahn |
1.1 |
I fflocal,btlocal,stlocal,ftlocal, |
23 |
|
|
U pHlocal,pCO2surfloc, |
24 |
|
|
I myThid) |
25 |
|
|
|
26 |
|
|
C !DESCRIPTION: |
27 |
|
|
C surface ocean inorganic carbon chemistry to OCMIP2 |
28 |
|
|
C regulations modified from OCMIP2 code; |
29 |
|
|
C Mick Follows, MIT, Oct 1999. |
30 |
|
|
|
31 |
|
|
|
32 |
|
|
C !USES: =============================================================== |
33 |
|
|
IMPLICIT NONE |
34 |
|
|
#include "SIZE.h" |
35 |
|
|
#include "DYNVARS.h" |
36 |
|
|
#include "EEPARAMS.h" |
37 |
|
|
#include "PARAMS.h" |
38 |
|
|
#include "GRID.h" |
39 |
|
|
#include "FFIELDS.h" |
40 |
|
|
#include "DARWIN_FLUX.h" |
41 |
|
|
|
42 |
|
|
C == Routine arguments == |
43 |
|
|
C diclocal = total inorganic carbon (mol/m^3) |
44 |
|
|
C where 1 T = 1 metric ton = 1000 kg |
45 |
|
|
C ta = total alkalinity (eq/m^3) |
46 |
|
|
C pt = inorganic phosphate (mol/^3) |
47 |
|
|
C sit = inorganic silicate (mol/^3) |
48 |
|
|
C t = temperature (degrees C) |
49 |
|
|
C s = salinity (PSU) |
50 |
|
|
INTEGER donewt |
51 |
|
|
INTEGER inewtonmax |
52 |
|
|
INTEGER ibrackmax |
53 |
|
|
_RL t, s, pt, sit, ta |
54 |
|
|
_RL pCO2surfloc, diclocal, pHlocal |
55 |
|
|
_RL fflocal, btlocal, stlocal, ftlocal |
56 |
|
|
_RL k1local, k2local |
57 |
|
|
_RL k1plocal, k2plocal, k3plocal |
58 |
|
|
_RL kslocal, kblocal, kwlocal, ksilocal, kflocal |
59 |
stephd |
1.2 |
_RL k0local, fugflocal |
60 |
jahn |
1.1 |
INTEGER myThid |
61 |
|
|
CEndOfInterface |
62 |
|
|
|
63 |
|
|
C == Local variables == |
64 |
|
|
C INPUT |
65 |
|
|
C phlo= lower limit of pH range |
66 |
|
|
C phhi= upper limit of pH range |
67 |
|
|
C atmpres = atmospheric pressure in atmospheres (1 atm==1013.25mbar) |
68 |
|
|
C OUTPUT |
69 |
|
|
C co2star = CO2*water (mol/m^3) |
70 |
|
|
C pco2surf = oceanic pCO2 (ppmv) |
71 |
|
|
C --------------------------------------------------------------------- |
72 |
|
|
C OCMIP NOTE: Some words about units - (JCO, 4/4/1999) |
73 |
|
|
C - Models carry tracers in mol/m^3 (on a per volume basis) |
74 |
|
|
C - Conversely, this routine, which was written by |
75 |
|
|
C observationalists (C. Sabine and R. Key), passes input |
76 |
|
|
C arguments in umol/kg (i.e., on a per mass basis) |
77 |
|
|
C - I have changed things slightly so that input arguments are in |
78 |
|
|
C mol/m^3, |
79 |
|
|
C - Thus, all input concentrations (diclocal, ta, pt, and st) should be |
80 |
|
|
C given in mol/m^3; output arguments "co2star" and "dco2star" |
81 |
|
|
C are likewise be in mol/m^3. |
82 |
|
|
C --------------------------------------------------------------------- |
83 |
|
|
_RL phhi |
84 |
|
|
_RL phlo |
85 |
|
|
_RL tk |
86 |
|
|
_RL tk100 |
87 |
|
|
_RL tk1002 |
88 |
|
|
_RL dlogtk |
89 |
|
|
_RL sqrtis |
90 |
|
|
_RL sqrts |
91 |
|
|
_RL s15 |
92 |
|
|
_RL scl |
93 |
|
|
_RL c |
94 |
|
|
_RL a |
95 |
|
|
_RL a2 |
96 |
|
|
_RL da |
97 |
|
|
_RL b |
98 |
|
|
_RL b2 |
99 |
|
|
_RL db |
100 |
|
|
_RL fn |
101 |
|
|
_RL df |
102 |
|
|
_RL deltax |
103 |
|
|
_RL x |
104 |
|
|
_RL x1 |
105 |
|
|
_RL x2 |
106 |
|
|
_RL x3 |
107 |
|
|
_RL xmid |
108 |
|
|
_RL ftest |
109 |
|
|
_RL htotal |
110 |
|
|
_RL htotal2 |
111 |
|
|
_RL s2 |
112 |
|
|
_RL xacc |
113 |
|
|
_RL co2star |
114 |
|
|
_RL co2starair |
115 |
|
|
_RL dco2star |
116 |
|
|
_RL dpCO2 |
117 |
|
|
_RL phguess |
118 |
|
|
_RL atmpres |
119 |
stephd |
1.2 |
_RL fco2 |
120 |
jahn |
1.1 |
INTEGER inewton |
121 |
|
|
INTEGER ibrack |
122 |
|
|
INTEGER hstep |
123 |
|
|
_RL fni(3) |
124 |
|
|
_RL xlo |
125 |
|
|
_RL xhi |
126 |
|
|
_RL xguess |
127 |
|
|
_RL invtk |
128 |
|
|
_RL is |
129 |
|
|
_RL is2 |
130 |
|
|
_RL k123p |
131 |
|
|
_RL k12p |
132 |
|
|
_RL k12 |
133 |
|
|
c --------------------------------------------------------------------- |
134 |
|
|
c import donewt flag |
135 |
|
|
c set donewt = 1 for newton-raphson iteration |
136 |
|
|
c set donewt = 0 for bracket and bisection |
137 |
|
|
c --------------------------------------------------------------------- |
138 |
|
|
C Change units from the input of mol/m^3 -> mol/kg: |
139 |
|
|
c (1 mol/m^3) x (1 m^3/1024.5 kg) |
140 |
|
|
c where the ocean's mean surface density is 1024.5 kg/m^3 |
141 |
|
|
c Note: mol/kg are actually what the body of this routine uses |
142 |
|
|
c for calculations. Units are reconverted back to mol/m^3 at the |
143 |
|
|
c end of this routine. |
144 |
|
|
c --------------------------------------------------------------------- |
145 |
|
|
c To convert input in mol/m^3 -> mol/kg |
146 |
|
|
pt=pt*permil |
147 |
|
|
sit=sit*permil |
148 |
|
|
ta=ta*permil |
149 |
|
|
diclocal=diclocal*permil |
150 |
|
|
c --------------------------------------------------------------------- |
151 |
|
|
c set first guess and brackets for [H+] solvers |
152 |
|
|
c first guess (for newton-raphson) |
153 |
|
|
phguess = phlocal |
154 |
|
|
|
155 |
|
|
|
156 |
|
|
c bracketing values (for bracket/bisection) |
157 |
|
|
phhi = 10.0 |
158 |
|
|
phlo = 5.0 |
159 |
|
|
c convert to [H+]... |
160 |
|
|
xguess = 10.0**(-phguess) |
161 |
|
|
xlo = 10.0**(-phhi) |
162 |
|
|
xhi = 10.0**(-phlo) |
163 |
|
|
xmid = (xlo + xhi)*0.5 |
164 |
|
|
|
165 |
|
|
|
166 |
|
|
c---------------------------------------------------------------- |
167 |
|
|
c iteratively solve for [H+] |
168 |
|
|
c (i) Newton-Raphson method with fixed number of iterations, |
169 |
|
|
c use previous [H+] as first guess |
170 |
|
|
|
171 |
|
|
c select newton-raphson, inewt=1 |
172 |
|
|
c else select bracket and bisection |
173 |
|
|
|
174 |
|
|
cQQQQQ |
175 |
|
|
if( donewt .eq. 1)then |
176 |
|
|
c......................................................... |
177 |
|
|
c NEWTON-RAPHSON METHOD |
178 |
|
|
c......................................................... |
179 |
|
|
x = xguess |
180 |
|
|
cdiags |
181 |
|
|
c WRITE(0,*)'xguess ',xguess |
182 |
|
|
cdiags |
183 |
|
|
do inewton = 1, inewtonmax |
184 |
|
|
c set some common combinations of parameters used in |
185 |
|
|
c the iterative [H+] solvers |
186 |
|
|
x2=x*x |
187 |
|
|
x3=x2*x |
188 |
|
|
k12 = k1local*k2local |
189 |
|
|
k12p = k1plocal*k2plocal |
190 |
|
|
k123p = k12p*k3plocal |
191 |
|
|
c = 1.0 + stlocal/kslocal |
192 |
|
|
a = x3 + k1plocal*x2 + k12p*x + k123p |
193 |
|
|
a2=a*a |
194 |
|
|
da = 3.0*x2 + 2.0*k1plocal*x + k12p |
195 |
|
|
b = x2 + k1local*x + k12 |
196 |
|
|
b2=b*b |
197 |
|
|
db = 2.0*x + k1local |
198 |
|
|
|
199 |
|
|
c Evaluate f([H+]) and f'([H+]) |
200 |
|
|
c fn = hco3+co3+borate+oh+hpo4+2*po4+silicate+hfree |
201 |
|
|
c +hso4+hf+h3po4-ta |
202 |
|
|
fn = k1local*x*diclocal/b + |
203 |
|
|
& 2.0*diclocal*k12/b + |
204 |
|
|
& btlocal/(1.0 + x/kblocal) + |
205 |
|
|
& kwlocal/x + |
206 |
|
|
& pt*k12p*x/a + |
207 |
|
|
& 2.0*pt*k123p/a + |
208 |
|
|
& sit/(1.0 + x/ksilocal) - |
209 |
|
|
& x/c - |
210 |
|
|
& stlocal/(1.0 + kslocal/x/c) - |
211 |
|
|
& ftlocal/(1.0 + kflocal/x) - |
212 |
|
|
& pt*x3/a - |
213 |
|
|
& ta |
214 |
|
|
|
215 |
|
|
c df = dfn/dx |
216 |
|
|
cdiags |
217 |
|
|
c WRITE(0,*)'values',b2,kblocal,x2,a2,c,x |
218 |
|
|
cdiags |
219 |
|
|
df = ((k1local*diclocal*b) - k1local*x*diclocal*db)/b2 - |
220 |
|
|
& 2.0*diclocal*k12*db/b2 - |
221 |
|
|
& btlocal/kblocal/(1.0+x/kblocal)**2. - |
222 |
|
|
& kwlocal/x2 + |
223 |
|
|
& (pt*k12p*(a - x*da))/a2 - |
224 |
|
|
& 2.0*pt*k123p*da/a2 - |
225 |
|
|
& sit/ksilocal/(1.0+x/ksilocal)**2. + |
226 |
|
|
& 1.0/c + |
227 |
|
|
& stlocal*(1.0 + kslocal/x/c)**(-2.0)*(kslocal/c/x2) + |
228 |
|
|
& ftlocal*(1.0 + kflocal/x)**(-2.)*kflocal/x2 - |
229 |
|
|
& pt*x2*(3.0*a-x*da)/a2 |
230 |
|
|
c evaluate increment in [H+] |
231 |
|
|
deltax = - fn/df |
232 |
|
|
c update estimate of [H+] |
233 |
|
|
x = x + deltax |
234 |
|
|
cdiags |
235 |
|
|
c write value of x to check convergence.... |
236 |
|
|
c write(0,*)'inewton, x, deltax ',inewton, x, deltax |
237 |
|
|
c write(6,*) |
238 |
|
|
cdiags |
239 |
|
|
|
240 |
|
|
end do |
241 |
|
|
c end of newton-raphson method |
242 |
|
|
c.................................................... |
243 |
|
|
else |
244 |
|
|
c.................................................... |
245 |
|
|
C BRACKET AND BISECTION METHOD |
246 |
|
|
c.................................................... |
247 |
|
|
c (ii) If first step use Bracket and Bisection method |
248 |
|
|
c with fixed, large number of iterations |
249 |
|
|
do ibrack = 1, ibrackmax |
250 |
|
|
do hstep = 1,3 |
251 |
|
|
if(hstep .eq. 1)x = xhi |
252 |
|
|
if(hstep .eq. 2)x = xlo |
253 |
|
|
if(hstep .eq. 3)x = xmid |
254 |
|
|
c set some common combinations of parameters used in |
255 |
|
|
c the iterative [H+] solvers |
256 |
|
|
|
257 |
|
|
|
258 |
|
|
x2=x*x |
259 |
|
|
x3=x2*x |
260 |
|
|
k12 = k1local*k2local |
261 |
|
|
k12p = k1plocal*k2plocal |
262 |
|
|
k123p = k12p*k3plocal |
263 |
|
|
c = 1.0 + stlocal/kslocal |
264 |
|
|
a = x3 + k1plocal*x2 + k12p*x + k123p |
265 |
|
|
a2=a*a |
266 |
|
|
da = 3.0*x2 + 2.0*k1plocal*x + k12p |
267 |
|
|
b = x2 + k1local*x + k12 |
268 |
|
|
b2=b*b |
269 |
|
|
db = 2.0*x + k1local |
270 |
|
|
c evaluate f([H+]) for bracketing and mid-value cases |
271 |
|
|
fn = k1local*x*diclocal/b + |
272 |
|
|
& 2.0*diclocal*k12/b + |
273 |
|
|
& btlocal/(1.0 + x/kblocal) + |
274 |
|
|
& kwlocal/x + |
275 |
|
|
& pt*k12p*x/a + |
276 |
|
|
& 2.0*pt*k123p/a + |
277 |
|
|
& sit/(1.0 + x/ksilocal) - |
278 |
|
|
& x/c - |
279 |
|
|
& stlocal/(1.0 + kslocal/x/c) - |
280 |
|
|
& ftlocal/(1.0 + kflocal/x) - |
281 |
|
|
& pt*x3/a - |
282 |
|
|
& ta |
283 |
|
|
fni(hstep) = fn |
284 |
|
|
end do |
285 |
|
|
c now bracket solution within two of three |
286 |
|
|
ftest = fni(1)/fni(3) |
287 |
|
|
if(ftest .gt. 0.0)then |
288 |
|
|
xhi = xmid |
289 |
|
|
else |
290 |
|
|
xlo = xmid |
291 |
|
|
end if |
292 |
|
|
xmid = (xlo + xhi)*0.5 |
293 |
|
|
|
294 |
|
|
cdiags |
295 |
|
|
c write value of x to check convergence.... |
296 |
|
|
c WRITE(0,*)'bracket-bisection iteration ',ibrack, xmid |
297 |
|
|
cdiags |
298 |
|
|
end do |
299 |
|
|
c last iteration gives value |
300 |
|
|
x = xmid |
301 |
|
|
c end of bracket and bisection method |
302 |
|
|
c.................................... |
303 |
|
|
end if |
304 |
|
|
c iterative [H+] solver finished |
305 |
|
|
c---------------------------------------------------------------- |
306 |
|
|
|
307 |
|
|
c now determine pCO2 etc... |
308 |
|
|
c htotal = [H+], hydrogen ion conc |
309 |
|
|
htotal = x |
310 |
|
|
C Calculate [CO2*] as defined in DOE Methods Handbook 1994 Ver.2, |
311 |
|
|
C ORNL/CDIAC-74, dickson and Goyet, eds. (Ch 2 p 10, Eq A.49) |
312 |
|
|
htotal2=htotal*htotal |
313 |
|
|
co2star=diclocal*htotal2/(htotal2 + k1local*htotal |
314 |
|
|
& + k1local*k2local) |
315 |
|
|
phlocal=-log10(htotal) |
316 |
|
|
|
317 |
|
|
c --------------------------------------------------------------- |
318 |
|
|
c Add two output arguments for storing pCO2surf |
319 |
|
|
c Should we be using K0 or ff for the solubility here? |
320 |
|
|
c --------------------------------------------------------------- |
321 |
stephd |
1.2 |
#ifdef WATERVAP_BUG |
322 |
jahn |
1.1 |
pCO2surfloc = co2star / fflocal |
323 |
stephd |
1.2 |
#else |
324 |
|
|
c Corrected by Val Bennington (Nov 2010) |
325 |
|
|
fco2 = co2star / k0local |
326 |
|
|
pCO2surfloc = fco2/fugflocal |
327 |
|
|
#endif |
328 |
jahn |
1.1 |
|
329 |
|
|
C ---------------------------------------------------------------- |
330 |
|
|
C Reconvert units back to original values for input arguments |
331 |
|
|
C no longer necessary???? |
332 |
|
|
C ---------------------------------------------------------------- |
333 |
|
|
c Reconvert from mol/kg -> mol/m^3 |
334 |
|
|
pt=pt/permil |
335 |
|
|
sit=sit/permil |
336 |
|
|
ta=ta/permil |
337 |
|
|
diclocal=diclocal/permil |
338 |
|
|
|
339 |
|
|
return |
340 |
|
|
end |
341 |
|
|
|
342 |
|
|
c================================================================= |
343 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
344 |
|
|
CC New efficient pCO2 solver, Mick Follows CC |
345 |
|
|
CC Taka Ito CC |
346 |
|
|
CC Stephanie Dutkiewicz CC |
347 |
|
|
CC 20 April 2003 CC |
348 |
|
|
CC ADD CO3 ESTIMATION AND PASS OUT CC |
349 |
|
|
CC Karsten Friis, Mick Follows CC |
350 |
|
|
CC 1 sep 04 CC |
351 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
352 |
|
|
#include "DARWIN_OPTIONS.h" |
353 |
|
|
CStartOfInterFace |
354 |
|
|
SUBROUTINE CALC_PCO2_APPROX_CO3( |
355 |
|
|
I t,s,diclocal,pt,sit,ta, |
356 |
|
|
I k1local,k2local, |
357 |
|
|
I k1plocal,k2plocal,k3plocal, |
358 |
|
|
I kslocal,kblocal,kwlocal, |
359 |
|
|
I ksilocal,kflocal, |
360 |
|
|
I fflocal,btlocal,stlocal,ftlocal, |
361 |
|
|
U pHlocal,pCO2surfloc,co3local, |
362 |
|
|
I myThid) |
363 |
|
|
C /==========================================================\ |
364 |
|
|
C | SUBROUTINE CALC_PCO2_APPROX_CO3 | |
365 |
|
|
C \==========================================================/ |
366 |
|
|
IMPLICIT NONE |
367 |
|
|
|
368 |
|
|
C == GLobal variables == |
369 |
|
|
#include "SIZE.h" |
370 |
|
|
#include "DYNVARS.h" |
371 |
|
|
#include "EEPARAMS.h" |
372 |
|
|
#include "PARAMS.h" |
373 |
|
|
#include "GRID.h" |
374 |
|
|
#include "FFIELDS.h" |
375 |
|
|
#include "DARWIN_FLUX.h" |
376 |
|
|
|
377 |
|
|
C == Routine arguments == |
378 |
|
|
C diclocal = total inorganic carbon (mol/m^3) |
379 |
|
|
C where 1 T = 1 metric ton = 1000 kg |
380 |
|
|
C ta = total alkalinity (eq/m^3) |
381 |
|
|
C pt = inorganic phosphate (mol/^3) |
382 |
|
|
C sit = inorganic silicate (mol/^3) |
383 |
|
|
C t = temperature (degrees C) |
384 |
|
|
C s = salinity (PSU) |
385 |
|
|
_RL t, s, pt, sit, ta |
386 |
|
|
_RL pCO2surfloc, diclocal, pHlocal |
387 |
|
|
_RL fflocal, btlocal, stlocal, ftlocal |
388 |
|
|
_RL k1local, k2local |
389 |
|
|
_RL k1plocal, k2plocal, k3plocal |
390 |
|
|
_RL kslocal, kblocal, kwlocal, ksilocal, kflocal |
391 |
|
|
INTEGER myThid |
392 |
|
|
CEndOfInterface |
393 |
|
|
|
394 |
|
|
C == Local variables == |
395 |
|
|
_RL phguess |
396 |
|
|
_RL cag |
397 |
|
|
_RL bohg |
398 |
|
|
_RL hguess |
399 |
|
|
_RL stuff |
400 |
|
|
_RL gamm |
401 |
|
|
_RL hnew |
402 |
|
|
_RL co2s |
403 |
|
|
_RL h3po4g, h2po4g, hpo4g, po4g |
404 |
|
|
_RL siooh3g |
405 |
|
|
c carbonate |
406 |
|
|
_RL co3local |
407 |
|
|
|
408 |
|
|
|
409 |
|
|
c --------------------------------------------------------------------- |
410 |
|
|
C Change units from the input of mol/m^3 -> mol/kg: |
411 |
|
|
c (1 mol/m^3) x (1 m^3/1024.5 kg) |
412 |
|
|
c where the ocean's mean surface density is 1024.5 kg/m^3 |
413 |
|
|
c Note: mol/kg are actually what the body of this routine uses |
414 |
|
|
c for calculations. Units are reconverted back to mol/m^3 at the |
415 |
|
|
c end of this routine. |
416 |
|
|
c To convert input in mol/m^3 -> mol/kg |
417 |
|
|
pt=pt*permil |
418 |
|
|
sit=sit*permil |
419 |
|
|
ta=ta*permil |
420 |
|
|
diclocal=diclocal*permil |
421 |
|
|
c --------------------------------------------------------------------- |
422 |
|
|
c set first guess and brackets for [H+] solvers |
423 |
|
|
c first guess (for newton-raphson) |
424 |
|
|
phguess = phlocal |
425 |
|
|
cmick - new approx method |
426 |
|
|
cmick - make estimate of htotal (hydrogen ion conc) using |
427 |
|
|
cmick appromate estimate of CA, carbonate alkalinity |
428 |
|
|
hguess = 10.0**(-phguess) |
429 |
|
|
cmick - first estimate borate contribution using guess for [H+] |
430 |
|
|
bohg = btlocal*kblocal/(hguess+kblocal) |
431 |
|
|
|
432 |
|
|
cmick - first estimate of contribution from phosphate |
433 |
|
|
cmick based on Dickson and Goyet |
434 |
|
|
stuff = hguess*hguess*hguess |
435 |
|
|
& + (k1plocal*hguess*hguess) |
436 |
|
|
& + (k1plocal*k2plocal*hguess) |
437 |
|
|
& + (k1plocal*k2plocal*k3plocal) |
438 |
|
|
h3po4g = (pt*hguess*hguess*hguess) / stuff |
439 |
|
|
h2po4g = (pt*k1plocal*hguess*hguess) / stuff |
440 |
|
|
hpo4g = (pt*k1plocal*k2plocal*hguess) / stuff |
441 |
|
|
po4g = (pt*k1plocal*k2plocal*k3plocal) / stuff |
442 |
|
|
|
443 |
|
|
cmick - estimate contribution from silicate |
444 |
|
|
cmick based on Dickson and Goyet |
445 |
|
|
siooh3g = sit*ksilocal / (ksilocal + hguess) |
446 |
|
|
|
447 |
|
|
cmick - now estimate carbonate alkalinity |
448 |
|
|
cag = ta - bohg - (kwlocal/hguess) + hguess |
449 |
|
|
& - hpo4g - 2.0*po4g + h3po4g |
450 |
|
|
& - siooh3g |
451 |
|
|
|
452 |
|
|
cmick - now evaluate better guess of hydrogen ion conc |
453 |
|
|
cmick htotal = [H+], hydrogen ion conc |
454 |
|
|
gamm = diclocal/cag |
455 |
|
|
stuff = (1.0-gamm)*(1.0-gamm)*k1local*k1local |
456 |
|
|
& - 4.0*k1local*k2local*(1.0-2.0*gamm) |
457 |
|
|
hnew = 0.5*( (gamm-1.0)*k1local + sqrt(stuff) ) |
458 |
|
|
cmick - now determine [CO2*] |
459 |
|
|
co2s = diclocal/ |
460 |
|
|
& (1.0 + (k1local/hnew) + (k1local*k2local/(hnew*hnew))) |
461 |
|
|
cmick - return update pH to main routine |
462 |
|
|
phlocal = -log10(hnew) |
463 |
|
|
|
464 |
|
|
c NOW EVALUATE CO32-, carbonate ion concentration |
465 |
|
|
c used in determination of calcite compensation depth |
466 |
|
|
c Karsten Friis & Mick - Sep 2004 |
467 |
|
|
co3local = k1local*k2local*diclocal / |
468 |
|
|
& (hnew*hnew + k1local*hnew + k1local*k2local) |
469 |
|
|
|
470 |
|
|
c --------------------------------------------------------------- |
471 |
|
|
c surface pCO2 (following Dickson and Goyet, DOE...) |
472 |
|
|
pCO2surfloc = co2s/fflocal |
473 |
|
|
|
474 |
|
|
C ---------------------------------------------------------------- |
475 |
|
|
c Reconvert from mol/kg -> mol/m^3 |
476 |
|
|
pt=pt/permil |
477 |
|
|
sit=sit/permil |
478 |
|
|
ta=ta/permil |
479 |
|
|
diclocal=diclocal/permil |
480 |
|
|
return |
481 |
|
|
end |
482 |
|
|
|
483 |
|
|
c================================================================= |
484 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
485 |
|
|
CC New efficient pCO2 solver, Mick Follows CC |
486 |
|
|
CC Taka Ito CC |
487 |
|
|
CC Stephanie Dutkiewicz CC |
488 |
|
|
CC 20 April 2003 CC |
489 |
|
|
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
490 |
stephd |
1.2 |
C Apr 2011: fix vapour bug (following Bennington) |
491 |
jahn |
1.1 |
#include "DARWIN_OPTIONS.h" |
492 |
|
|
CStartOfInterFace |
493 |
|
|
SUBROUTINE CALC_PCO2_APPROX( |
494 |
|
|
I t,s,diclocal,pt,sit,ta, |
495 |
|
|
I k1local,k2local, |
496 |
|
|
I k1plocal,k2plocal,k3plocal, |
497 |
|
|
I kslocal,kblocal,kwlocal, |
498 |
|
|
I ksilocal,kflocal, |
499 |
stephd |
1.2 |
I k0local, fugflocal, |
500 |
jahn |
1.1 |
I fflocal,btlocal,stlocal,ftlocal, |
501 |
|
|
U pHlocal,pCO2surfloc, |
502 |
|
|
I myThid) |
503 |
|
|
C /==========================================================\ |
504 |
|
|
C | SUBROUTINE CALC_PCO2_APPROX | |
505 |
|
|
C \==========================================================/ |
506 |
|
|
IMPLICIT NONE |
507 |
|
|
|
508 |
|
|
C == GLobal variables == |
509 |
|
|
#include "SIZE.h" |
510 |
|
|
#include "DYNVARS.h" |
511 |
|
|
#include "EEPARAMS.h" |
512 |
|
|
#include "PARAMS.h" |
513 |
|
|
#include "GRID.h" |
514 |
|
|
#include "FFIELDS.h" |
515 |
|
|
#include "DARWIN_FLUX.h" |
516 |
|
|
|
517 |
|
|
C == Routine arguments == |
518 |
|
|
C diclocal = total inorganic carbon (mol/m^3) |
519 |
|
|
C where 1 T = 1 metric ton = 1000 kg |
520 |
|
|
C ta = total alkalinity (eq/m^3) |
521 |
|
|
C pt = inorganic phosphate (mol/^3) |
522 |
|
|
C sit = inorganic silicate (mol/^3) |
523 |
|
|
C t = temperature (degrees C) |
524 |
|
|
C s = salinity (PSU) |
525 |
|
|
_RL t, s, pt, sit, ta |
526 |
|
|
_RL pCO2surfloc, diclocal, pHlocal |
527 |
|
|
_RL fflocal, btlocal, stlocal, ftlocal |
528 |
|
|
_RL k1local, k2local |
529 |
|
|
_RL k1plocal, k2plocal, k3plocal |
530 |
|
|
_RL kslocal, kblocal, kwlocal, ksilocal, kflocal |
531 |
stephd |
1.2 |
_RL k0local, fugflocal |
532 |
jahn |
1.1 |
INTEGER myThid |
533 |
|
|
CEndOfInterface |
534 |
|
|
|
535 |
|
|
C == Local variables == |
536 |
|
|
_RL phguess |
537 |
|
|
_RL cag |
538 |
|
|
_RL bohg |
539 |
|
|
_RL hguess |
540 |
|
|
_RL stuff |
541 |
|
|
_RL gamm |
542 |
|
|
_RL hnew |
543 |
|
|
_RL co2s |
544 |
|
|
_RL h3po4g, h2po4g, hpo4g, po4g |
545 |
|
|
_RL siooh3g |
546 |
stephd |
1.2 |
_RL fco2 |
547 |
jahn |
1.1 |
c carbonate |
548 |
|
|
_RL co3local |
549 |
|
|
|
550 |
|
|
|
551 |
|
|
c --------------------------------------------------------------------- |
552 |
|
|
C Change units from the input of mol/m^3 -> mol/kg: |
553 |
|
|
c (1 mol/m^3) x (1 m^3/1024.5 kg) |
554 |
|
|
c where the ocean's mean surface density is 1024.5 kg/m^3 |
555 |
|
|
c Note: mol/kg are actually what the body of this routine uses |
556 |
|
|
c for calculations. Units are reconverted back to mol/m^3 at the |
557 |
|
|
c end of this routine. |
558 |
|
|
c To convert input in mol/m^3 -> mol/kg |
559 |
|
|
pt=pt*permil |
560 |
|
|
sit=sit*permil |
561 |
|
|
ta=ta*permil |
562 |
|
|
diclocal=diclocal*permil |
563 |
|
|
c --------------------------------------------------------------------- |
564 |
|
|
c set first guess and brackets for [H+] solvers |
565 |
|
|
c first guess (for newton-raphson) |
566 |
|
|
phguess = phlocal |
567 |
|
|
cmick - new approx method |
568 |
|
|
cmick - make estimate of htotal (hydrogen ion conc) using |
569 |
|
|
cmick appromate estimate of CA, carbonate alkalinity |
570 |
|
|
hguess = 10.0**(-phguess) |
571 |
|
|
cmick - first estimate borate contribution using guess for [H+] |
572 |
|
|
bohg = btlocal*kblocal/(hguess+kblocal) |
573 |
|
|
|
574 |
|
|
cmick - first estimate of contribution from phosphate |
575 |
|
|
cmick based on Dickson and Goyet |
576 |
|
|
stuff = hguess*hguess*hguess |
577 |
|
|
& + (k1plocal*hguess*hguess) |
578 |
|
|
& + (k1plocal*k2plocal*hguess) |
579 |
|
|
& + (k1plocal*k2plocal*k3plocal) |
580 |
|
|
h3po4g = (pt*hguess*hguess*hguess) / stuff |
581 |
|
|
h2po4g = (pt*k1plocal*hguess*hguess) / stuff |
582 |
|
|
hpo4g = (pt*k1plocal*k2plocal*hguess) / stuff |
583 |
|
|
po4g = (pt*k1plocal*k2plocal*k3plocal) / stuff |
584 |
|
|
|
585 |
|
|
cmick - estimate contribution from silicate |
586 |
|
|
cmick based on Dickson and Goyet |
587 |
|
|
siooh3g = sit*ksilocal / (ksilocal + hguess) |
588 |
|
|
|
589 |
|
|
cmick - now estimate carbonate alkalinity |
590 |
|
|
cag = ta - bohg - (kwlocal/hguess) + hguess |
591 |
|
|
& - hpo4g - 2.0 _d 0*po4g + h3po4g |
592 |
|
|
& - siooh3g |
593 |
|
|
|
594 |
|
|
cmick - now evaluate better guess of hydrogen ion conc |
595 |
|
|
cmick htotal = [H+], hydrogen ion conc |
596 |
|
|
gamm = diclocal/cag |
597 |
|
|
stuff = (1.0 _d 0-gamm)*(1.0 _d 0-gamm)*k1local*k1local |
598 |
|
|
& - 4.0 _d 0*k1local*k2local*(1.0 _d 0-2.0 _d 0*gamm) |
599 |
|
|
hnew = 0.5 _d 0*( (gamm-1.0 _d 0)*k1local + sqrt(stuff) ) |
600 |
|
|
cmick - now determine [CO2*] |
601 |
|
|
co2s = diclocal/ |
602 |
|
|
& (1.0 _d 0 + (k1local/hnew) + (k1local*k2local/(hnew*hnew))) |
603 |
|
|
cmick - return update pH to main routine |
604 |
|
|
phlocal = -log10(hnew) |
605 |
|
|
|
606 |
|
|
c NOW EVALUATE CO32-, carbonate ion concentration |
607 |
|
|
c used in determination of calcite compensation depth |
608 |
|
|
c Karsten Friis & Mick - Sep 2004 |
609 |
|
|
c co3local = k1local*k2local*diclocal / |
610 |
|
|
c & (hnew*hnew + k1local*hnew + k1local*k2local) |
611 |
|
|
|
612 |
|
|
c --------------------------------------------------------------- |
613 |
|
|
c surface pCO2 (following Dickson and Goyet, DOE...) |
614 |
stephd |
1.2 |
#ifdef WATERVAP_BUG |
615 |
jahn |
1.1 |
pCO2surfloc = co2s/fflocal |
616 |
stephd |
1.2 |
#else |
617 |
|
|
c bug fix by Bennington |
618 |
|
|
fco2 = co2s/k0local |
619 |
|
|
pco2surfloc = fco2/fugflocal |
620 |
|
|
#endif |
621 |
jahn |
1.1 |
|
622 |
|
|
C ---------------------------------------------------------------- |
623 |
|
|
c Reconvert from mol/kg -> mol/m^3 |
624 |
|
|
pt=pt/permil |
625 |
|
|
sit=sit/permil |
626 |
|
|
ta=ta/permil |
627 |
|
|
diclocal=diclocal/permil |
628 |
|
|
return |
629 |
|
|
end |
630 |
|
|
|
631 |
|
|
c================================================================= |
632 |
|
|
c ******************************************************************* |
633 |
|
|
c================================================================= |
634 |
|
|
CStartOfInterFace |
635 |
|
|
SUBROUTINE CARBON_COEFFS( |
636 |
|
|
I ttemp,stemp, |
637 |
|
|
I bi,bj,iMin,iMax,jMin,jMax,myThid) |
638 |
|
|
C |
639 |
|
|
C /==========================================================\ |
640 |
|
|
C | SUBROUTINE CARBON_COEFFS | |
641 |
|
|
C | determine coefficients for surface carbon chemistry | |
642 |
|
|
C | adapted from OCMIP2: SUBROUTINE CO2CALC | |
643 |
|
|
C | mick follows, oct 1999 | |
644 |
|
|
c | minor changes to tidy, swd aug 2002 | |
645 |
|
|
C \==========================================================/ |
646 |
|
|
C INPUT |
647 |
|
|
C diclocal = total inorganic carbon (mol/m^3) |
648 |
|
|
C where 1 T = 1 metric ton = 1000 kg |
649 |
|
|
C ta = total alkalinity (eq/m^3) |
650 |
|
|
C pt = inorganic phosphate (mol/^3) |
651 |
|
|
C sit = inorganic silicate (mol/^3) |
652 |
|
|
C t = temperature (degrees C) |
653 |
|
|
C s = salinity (PSU) |
654 |
|
|
C OUTPUT |
655 |
|
|
C IMPORTANT: Some words about units - (JCO, 4/4/1999) |
656 |
|
|
c - Models carry tracers in mol/m^3 (on a per volume basis) |
657 |
|
|
c - Conversely, this routine, which was written by observationalists |
658 |
|
|
c (C. Sabine and R. Key), passes input arguments in umol/kg |
659 |
|
|
c (i.e., on a per mass basis) |
660 |
|
|
c - I have changed things slightly so that input arguments are in mol/m^3, |
661 |
|
|
c - Thus, all input concentrations (diclocal, ta, pt, and st) should be |
662 |
|
|
c given in mol/m^3; output arguments "co2star" and "dco2star" |
663 |
|
|
c are likewise be in mol/m^3. |
664 |
stephd |
1.2 |
C |
665 |
|
|
C Apr 2011: fix vapour bug (following Bennington) |
666 |
jahn |
1.1 |
C-------------------------------------------------------------------------- |
667 |
|
|
IMPLICIT NONE |
668 |
|
|
C == GLobal variables == |
669 |
|
|
#include "SIZE.h" |
670 |
|
|
#include "DYNVARS.h" |
671 |
|
|
#include "EEPARAMS.h" |
672 |
|
|
#include "PARAMS.h" |
673 |
|
|
#include "GRID.h" |
674 |
|
|
#include "FFIELDS.h" |
675 |
|
|
#include "DARWIN_FLUX.h" |
676 |
|
|
C == Routine arguments == |
677 |
|
|
C ttemp and stemp are local theta and salt arrays |
678 |
|
|
C dont really need to pass T and S in, could use theta, salt in |
679 |
|
|
C common block in DYNVARS.h, but this way keeps subroutine more |
680 |
|
|
C general |
681 |
stephd |
1.3 |
_RL ttemp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
682 |
|
|
_RL stemp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
683 |
jahn |
1.1 |
INTEGER bi,bj,iMin,iMax,jMin,jMax |
684 |
|
|
INTEGER myThid |
685 |
|
|
CEndOfInterface |
686 |
|
|
|
687 |
|
|
|
688 |
|
|
C LOCAL VARIABLES |
689 |
|
|
_RL t |
690 |
|
|
_RL s |
691 |
|
|
_RL ta |
692 |
|
|
_RL pt |
693 |
|
|
_RL sit |
694 |
|
|
_RL tk |
695 |
|
|
_RL tk100 |
696 |
|
|
_RL tk1002 |
697 |
|
|
_RL dlogtk |
698 |
|
|
_RL sqrtis |
699 |
|
|
_RL sqrts |
700 |
|
|
_RL s15 |
701 |
|
|
_RL scl |
702 |
|
|
_RL x1 |
703 |
|
|
_RL x2 |
704 |
|
|
_RL s2 |
705 |
|
|
_RL xacc |
706 |
|
|
_RL invtk |
707 |
|
|
_RL is |
708 |
|
|
_RL is2 |
709 |
stephd |
1.2 |
c add Bennington |
710 |
|
|
_RL P1atm |
711 |
|
|
_RL Rgas |
712 |
|
|
_RL RT |
713 |
|
|
_RL delta |
714 |
|
|
_RL B1 |
715 |
|
|
_RL B |
716 |
jahn |
1.1 |
INTEGER i |
717 |
|
|
INTEGER j |
718 |
|
|
|
719 |
|
|
C..................................................................... |
720 |
|
|
C OCMIP note: |
721 |
|
|
C Calculate all constants needed to convert between various measured |
722 |
|
|
C carbon species. References for each equation are noted in the code. |
723 |
|
|
C Once calculated, the constants are |
724 |
|
|
C stored and passed in the common block "const". The original version |
725 |
|
|
C of this code was based on the code by dickson in Version 2 of |
726 |
|
|
C "Handbook of Methods C for the Analysis of the Various Parameters of |
727 |
|
|
C the Carbon Dioxide System in Seawater", DOE, 1994 (SOP No. 3, p25-26). |
728 |
|
|
C.................................................................... |
729 |
|
|
|
730 |
|
|
do i=imin,imax |
731 |
|
|
do j=jmin,jmax |
732 |
|
|
if (hFacC(i,j,1,bi,bj).gt.0. _d 0) then |
733 |
stephd |
1.3 |
t = ttemp(i,j) |
734 |
|
|
s = stemp(i,j) |
735 |
jahn |
1.1 |
C terms used more than once |
736 |
|
|
tk = 273.15 _d 0 + t |
737 |
|
|
tk100 = tk/100. _d 0 |
738 |
|
|
tk1002=tk100*tk100 |
739 |
|
|
invtk=1.0 _d 0/tk |
740 |
|
|
dlogtk=log(tk) |
741 |
|
|
is=19.924 _d 0*s/(1000. _d 0-1.005 _d 0*s) |
742 |
|
|
is2=is*is |
743 |
|
|
sqrtis=sqrt(is) |
744 |
|
|
s2=s*s |
745 |
|
|
sqrts=sqrt(s) |
746 |
|
|
s15=s**1.5 _d 0 |
747 |
|
|
scl=s/1.80655 _d 0 |
748 |
stephd |
1.2 |
C ----------------------------------------------------------------------- |
749 |
|
|
C added by Val Bennington Nov 2010 |
750 |
|
|
C Fugacity Factor needed for non-ideality in ocean |
751 |
|
|
C ff used for atmospheric correction for water vapor and pressure |
752 |
|
|
C Weiss (1974) Marine Chemistry |
753 |
|
|
P1atm = 1.01325 _d 0 ! bars |
754 |
|
|
Rgas = 83.1451 _d 0 ! bar*cm3/(mol*K) |
755 |
|
|
RT = Rgas*tk |
756 |
|
|
delta = (57.7 _d 0 - 0.118 _d 0*tk) |
757 |
|
|
B1 = -1636.75 _d 0 + 12.0408 _d 0*tk - 0.0327957 _d 0*tk*tk |
758 |
|
|
B = B1 + 3.16528 _d 0*tk*tk*tk*(0.00001 _d 0) |
759 |
|
|
fugf(i,j,bi,bj) = exp( (B+2. _d 0*delta) * P1atm / RT) |
760 |
jahn |
1.1 |
C------------------------------------------------------------------------ |
761 |
|
|
C f = k0(1-pH2O)*correction term for non-ideality |
762 |
|
|
C Weiss & Price (1980, Mar. Chem., 8, 347-359; Eq 13 with table 6 values) |
763 |
|
|
ff(i,j,bi,bj) = exp(-162.8301 _d 0 + 218.2968 _d 0/tk100 + |
764 |
|
|
& 90.9241 _d 0*log(tk100) - 1.47696 _d 0*tk1002 + |
765 |
|
|
& s * (.025695 _d 0 - .025225 _d 0*tk100 + |
766 |
|
|
& 0.0049867 _d 0*tk1002)) |
767 |
|
|
C------------------------------------------------------------------------ |
768 |
|
|
C K0 from Weiss 1974 |
769 |
|
|
ak0(i,j,bi,bj) = exp(93.4517 _d 0/tk100 - 60.2409 _d 0 + |
770 |
|
|
& 23.3585 _d 0 * log(tk100) + |
771 |
|
|
& s * (0.023517 _d 0 - 0.023656 _d 0*tk100 + |
772 |
|
|
& 0.0047036 _d 0*tk1002)) |
773 |
|
|
C------------------------------------------------------------------------ |
774 |
|
|
C k1 = [H][HCO3]/[H2CO3] |
775 |
|
|
C k2 = [H][CO3]/[HCO3] |
776 |
|
|
C Millero p.664 (1995) using Mehrbach et al. data on seawater scale |
777 |
|
|
ak1(i,j,bi,bj)=10.**(-1. _d 0*(3670.7 _d 0*invtk - |
778 |
|
|
& 62.008 _d 0 + 9.7944 _d 0*dlogtk - |
779 |
|
|
& 0.0118 _d 0 * s + 0.000116 _d 0*s2)) |
780 |
|
|
ak2(i,j,bi,bj)=10.**(-1. _d 0*(1394.7 _d 0*invtk+ 4.777 _d 0- |
781 |
|
|
& 0.0184 _d 0*s + 0.000118 _d 0*s2)) |
782 |
|
|
C------------------------------------------------------------------------ |
783 |
|
|
C kb = [H][BO2]/[HBO2] |
784 |
|
|
C Millero p.669 (1995) using data from dickson (1990) |
785 |
|
|
akb(i,j,bi,bj)=exp((-8966.90 _d 0- 2890.53 _d 0*sqrts - |
786 |
|
|
& 77.942 _d 0*s + 1.728 _d 0*s15 - 0.0996 _d 0*s2)*invtk + |
787 |
|
|
& (148.0248 _d 0 + 137.1942 _d 0*sqrts + 1.62142 _d 0*s) + |
788 |
|
|
& (-24.4344 _d 0 - 25.085 _d 0*sqrts - 0.2474 _d 0*s) * |
789 |
|
|
& dlogtk + 0.053105 _d 0*sqrts*tk) |
790 |
|
|
C------------------------------------------------------------------------ |
791 |
|
|
C k1p = [H][H2PO4]/[H3PO4] |
792 |
|
|
C DOE(1994) eq 7.2.20 with footnote using data from Millero (1974) |
793 |
|
|
ak1p(i,j,bi,bj) = exp(-4576.752 _d 0*invtk + 115.525 _d 0 - |
794 |
|
|
& 18.453 _d 0*dlogtk + |
795 |
|
|
& (-106.736 _d 0*invtk + 0.69171 _d 0)*sqrts + |
796 |
|
|
& (-0.65643 _d 0*invtk - 0.01844 _d 0)*s) |
797 |
|
|
C------------------------------------------------------------------------ |
798 |
|
|
C k2p = [H][HPO4]/[H2PO4] |
799 |
|
|
C DOE(1994) eq 7.2.23 with footnote using data from Millero (1974)) |
800 |
|
|
ak2p(i,j,bi,bj) = exp(-8814.715 _d 0*invtk + 172.0883 _d 0 - |
801 |
|
|
& 27.927 _d 0*dlogtk + |
802 |
|
|
& (-160.340 _d 0*invtk + 1.3566 _d 0) * sqrts + |
803 |
|
|
& (0.37335 _d 0*invtk - 0.05778 _d 0) * s) |
804 |
|
|
C------------------------------------------------------------------------ |
805 |
|
|
C k3p = [H][PO4]/[HPO4] |
806 |
|
|
C DOE(1994) eq 7.2.26 with footnote using data from Millero (1974) |
807 |
|
|
ak3p(i,j,bi,bj) = exp(-3070.75 _d 0*invtk - 18.141 _d 0 + |
808 |
|
|
& (17.27039 _d 0*invtk + 2.81197 _d 0) * |
809 |
|
|
& sqrts + (-44.99486 _d 0*invtk - 0.09984 _d 0) * s) |
810 |
|
|
C------------------------------------------------------------------------ |
811 |
|
|
C ksi = [H][SiO(OH)3]/[Si(OH)4] |
812 |
|
|
C Millero p.671 (1995) using data from Yao and Millero (1995) |
813 |
|
|
aksi(i,j,bi,bj) = exp(-8904.2 _d 0*invtk + 117.385 _d 0 - |
814 |
|
|
& 19.334 _d 0*dlogtk + |
815 |
|
|
& (-458.79 _d 0*invtk + 3.5913 _d 0) * sqrtis + |
816 |
|
|
& (188.74 _d 0*invtk - 1.5998 _d 0) * is + |
817 |
|
|
& (-12.1652 _d 0*invtk + 0.07871 _d 0) * is2 + |
818 |
|
|
& log(1.0 _d 0-0.001005 _d 0*s)) |
819 |
|
|
C------------------------------------------------------------------------ |
820 |
|
|
C kw = [H][OH] |
821 |
|
|
C Millero p.670 (1995) using composite data |
822 |
|
|
akw(i,j,bi,bj) = exp(-13847.26 _d 0*invtk + 148.9652 _d 0 - |
823 |
|
|
& 23.6521 _d 0*dlogtk + |
824 |
|
|
& (118.67 _d 0*invtk - 5.977 _d 0 + 1.0495 _d 0 * dlogtk) |
825 |
|
|
& * sqrts - 0.01615 _d 0 * s) |
826 |
|
|
C------------------------------------------------------------------------ |
827 |
|
|
C ks = [H][SO4]/[HSO4] |
828 |
|
|
C dickson (1990, J. chem. Thermodynamics 22, 113) |
829 |
|
|
aks(i,j,bi,bj)=exp(-4276.1 _d 0*invtk + 141.328 _d 0 - |
830 |
|
|
& 23.093 _d 0*dlogtk + |
831 |
|
|
& (-13856. _d 0*invtk + 324.57 _d 0 - 47.986 _d 0*dlogtk)*sqrtis+ |
832 |
|
|
& (35474. _d 0*invtk - 771.54 _d 0 + 114.723 _d 0*dlogtk)*is - |
833 |
|
|
& 2698. _d 0*invtk*is**1.5 _d 0 + 1776. _d 0*invtk*is2 + |
834 |
|
|
& log(1.0 _d 0 - 0.001005 _d 0*s)) |
835 |
|
|
C------------------------------------------------------------------------ |
836 |
|
|
C kf = [H][F]/[HF] |
837 |
|
|
C dickson and Riley (1979) -- change pH scale to total |
838 |
|
|
akf(i,j,bi,bj)=exp(1590.2 _d 0*invtk - 12.641 _d 0 + |
839 |
|
|
& 1.525 _d 0*sqrtis + log(1.0 _d 0 - 0.001005 _d 0*s) + |
840 |
|
|
& log(1.0 _d 0 + (0.1400 _d 0/96.062 _d 0)*(scl)/aks(i,j,bi,bj))) |
841 |
|
|
C------------------------------------------------------------------------ |
842 |
|
|
C Calculate concentrations for borate, sulfate, and fluoride |
843 |
|
|
C Uppstrom (1974) |
844 |
|
|
bt(i,j,bi,bj) = 0.000232 _d 0 * scl/10.811 _d 0 |
845 |
|
|
C Morris & Riley (1966) |
846 |
|
|
st(i,j,bi,bj) = 0.14 _d 0 * scl/96.062 _d 0 |
847 |
|
|
C Riley (1965) |
848 |
|
|
ft(i,j,bi,bj) = 0.000067 _d 0 * scl/18.9984 _d 0 |
849 |
|
|
C------------------------------------------------------------------------ |
850 |
|
|
else |
851 |
stephd |
1.2 |
c add Bennington |
852 |
|
|
fugf(i,j,bi,bj)=0. _d 0 |
853 |
jahn |
1.1 |
ff(i,j,bi,bj)=0. _d 0 |
854 |
|
|
ak0(i,j,bi,bj)= 0. _d 0 |
855 |
|
|
ak1(i,j,bi,bj)= 0. _d 0 |
856 |
|
|
ak2(i,j,bi,bj)= 0. _d 0 |
857 |
|
|
akb(i,j,bi,bj)= 0. _d 0 |
858 |
|
|
ak1p(i,j,bi,bj) = 0. _d 0 |
859 |
|
|
ak2p(i,j,bi,bj) = 0. _d 0 |
860 |
|
|
ak3p(i,j,bi,bj) = 0. _d 0 |
861 |
|
|
aksi(i,j,bi,bj) = 0. _d 0 |
862 |
|
|
akw(i,j,bi,bj) = 0. _d 0 |
863 |
|
|
aks(i,j,bi,bj)= 0. _d 0 |
864 |
|
|
akf(i,j,bi,bj)= 0. _d 0 |
865 |
|
|
bt(i,j,bi,bj) = 0. _d 0 |
866 |
|
|
st(i,j,bi,bj) = 0. _d 0 |
867 |
|
|
ft(i,j,bi,bj) = 0. _d 0 |
868 |
|
|
endif |
869 |
|
|
end do |
870 |
|
|
end do |
871 |
|
|
|
872 |
|
|
return |
873 |
|
|
end |
874 |
|
|
|
875 |
|
|
c================================================================= |
876 |
|
|
c ******************************************************************* |
877 |
|
|
c================================================================= |
878 |
|
|
CStartOfInterFace |
879 |
|
|
SUBROUTINE CARBON_COEFFS_PRESSURE_DEP( |
880 |
|
|
I ttemp,stemp, |
881 |
|
|
I bi,bj,iMin,iMax,jMin,jMax, |
882 |
|
|
I Klevel,myThid) |
883 |
|
|
C |
884 |
|
|
C /==========================================================\ |
885 |
|
|
C | SUBROUTINE CARBON_COEFFS | |
886 |
|
|
C | determine coefficients for surface carbon chemistry | |
887 |
|
|
C | adapted from OCMIP2: SUBROUTINE CO2CALC | |
888 |
|
|
C | mick follows, oct 1999 | |
889 |
|
|
c | minor changes to tidy, swd aug 2002 | |
890 |
|
|
c | MODIFIED FOR PRESSURE DEPENDENCE | |
891 |
|
|
c | Karsten Friis and Mick Follows 2004 | |
892 |
|
|
C \==========================================================/ |
893 |
|
|
C INPUT |
894 |
|
|
C diclocal = total inorganic carbon (mol/m^3) |
895 |
|
|
C where 1 T = 1 metric ton = 1000 kg |
896 |
|
|
C ta = total alkalinity (eq/m^3) |
897 |
|
|
C pt = inorganic phosphate (mol/^3) |
898 |
|
|
C sit = inorganic silicate (mol/^3) |
899 |
|
|
C t = temperature (degrees C) |
900 |
|
|
C s = salinity (PSU) |
901 |
|
|
C OUTPUT |
902 |
|
|
C IMPORTANT: Some words about units - (JCO, 4/4/1999) |
903 |
|
|
c - Models carry tracers in mol/m^3 (on a per volume basis) |
904 |
|
|
c - Conversely, this routine, which was written by observationalists |
905 |
|
|
c (C. Sabine and R. Key), passes input arguments in umol/kg |
906 |
|
|
c (i.e., on a per mass basis) |
907 |
|
|
c - I have changed things slightly so that input arguments are in mol/m^3, |
908 |
|
|
c - Thus, all input concentrations (diclocal, ta, pt, and st) should be |
909 |
|
|
c given in mol/m^3; output arguments "co2star" and "dco2star" |
910 |
|
|
c are likewise be in mol/m^3. |
911 |
|
|
c |
912 |
|
|
c |
913 |
|
|
c NOW INCLUDES: |
914 |
|
|
c PRESSURE DEPENDENCE of K1, K2, solubility product of calcite |
915 |
|
|
c based on Takahashi, GEOSECS Atlantic Report, Vol. 1 (1981) |
916 |
|
|
c |
917 |
|
|
C-------------------------------------------------------------------------- |
918 |
|
|
IMPLICIT NONE |
919 |
|
|
C == GLobal variables == |
920 |
|
|
#include "SIZE.h" |
921 |
|
|
#include "DYNVARS.h" |
922 |
|
|
#include "EEPARAMS.h" |
923 |
|
|
#include "PARAMS.h" |
924 |
|
|
#include "GRID.h" |
925 |
|
|
#include "FFIELDS.h" |
926 |
|
|
#include "DARWIN_FLUX.h" |
927 |
|
|
C == Routine arguments == |
928 |
|
|
C ttemp and stemp are local theta and salt arrays |
929 |
|
|
C dont really need to pass T and S in, could use theta, salt in |
930 |
|
|
C common block in DYNVARS.h, but this way keeps subroutine more |
931 |
|
|
C general |
932 |
|
|
_RL ttemp(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
933 |
|
|
_RL stemp(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
934 |
|
|
INTEGER bi,bj,iMin,iMax,jMin,jMax |
935 |
|
|
c K is depth index |
936 |
|
|
INTEGER Klevel |
937 |
|
|
INTEGER myThid |
938 |
|
|
CEndOfInterface |
939 |
|
|
|
940 |
|
|
|
941 |
|
|
|
942 |
|
|
C LOCAL VARIABLES |
943 |
|
|
_RL t |
944 |
|
|
_RL s |
945 |
|
|
_RL ta |
946 |
|
|
_RL pt |
947 |
|
|
_RL sit |
948 |
|
|
_RL tk |
949 |
|
|
_RL tk100 |
950 |
|
|
_RL tk1002 |
951 |
|
|
_RL dlogtk |
952 |
|
|
_RL sqrtis |
953 |
|
|
_RL sqrts |
954 |
|
|
_RL s15 |
955 |
|
|
_RL scl |
956 |
|
|
_RL x1 |
957 |
|
|
_RL x2 |
958 |
|
|
_RL s2 |
959 |
|
|
_RL xacc |
960 |
|
|
_RL invtk |
961 |
|
|
_RL is |
962 |
|
|
_RL is2 |
963 |
|
|
INTEGER i |
964 |
|
|
INTEGER j |
965 |
|
|
INTEGER k |
966 |
|
|
_RL bdepth |
967 |
|
|
_RL cdepth |
968 |
|
|
_RL pressc |
969 |
|
|
_RL Ksp_T_Calc |
970 |
|
|
_RL xvalue |
971 |
|
|
_RL zdum |
972 |
|
|
_RL tmpa1 |
973 |
|
|
_RL tmpa2 |
974 |
|
|
_RL tmpa3 |
975 |
|
|
_RL logKspc |
976 |
|
|
_RL dv |
977 |
|
|
_RL dk |
978 |
|
|
_RL pfactor |
979 |
|
|
_RL bigR |
980 |
|
|
|
981 |
|
|
C..................................................................... |
982 |
|
|
C OCMIP note: |
983 |
|
|
C Calculate all constants needed to convert between various measured |
984 |
|
|
C carbon species. References for each equation are noted in the code. |
985 |
|
|
C Once calculated, the constants are |
986 |
|
|
C stored and passed in the common block "const". The original version |
987 |
|
|
C of this code was based on the code by dickson in Version 2 of |
988 |
|
|
C "Handbook of Methods C for the Analysis of the Various Parameters of |
989 |
|
|
C the Carbon Dioxide System in Seawater", DOE, 1994 (SOP No. 3, p25-26). |
990 |
|
|
C.................................................................... |
991 |
|
|
|
992 |
|
|
c determine pressure (bar) from depth |
993 |
|
|
c 1 BAR at z=0m (atmos pressure) |
994 |
|
|
c use UPPER surface of cell so top layer pressure = 0 bar |
995 |
|
|
c for surface exchange coeffs |
996 |
|
|
|
997 |
|
|
cmick.............................. |
998 |
|
|
c write(6,*)'Klevel ',klevel |
999 |
|
|
|
1000 |
|
|
bdepth = 0.0d0 |
1001 |
|
|
cdepth = 0.0d0 |
1002 |
|
|
pressc = 1.0d0 |
1003 |
|
|
do k = 1,Klevel |
1004 |
|
|
cdepth = bdepth + 0.5d0*drF(k) |
1005 |
|
|
bdepth = bdepth + drF(k) |
1006 |
|
|
pressc = 1.0d0 + 0.1d0*cdepth |
1007 |
|
|
end do |
1008 |
|
|
cmick................................................... |
1009 |
|
|
c write(6,*)'depth,pressc ',cdepth,pressc |
1010 |
|
|
cmick.................................................... |
1011 |
|
|
|
1012 |
|
|
|
1013 |
|
|
|
1014 |
|
|
do i=imin,imax |
1015 |
|
|
do j=jmin,jmax |
1016 |
|
|
if (hFacC(i,j,Klevel,bi,bj).gt.0.d0) then |
1017 |
|
|
t = ttemp(i,j,Klevel,bi,bj) |
1018 |
|
|
s = max(4. _d 0, stemp(i,j,Klevel,bi,bj)) |
1019 |
|
|
C terms used more than once |
1020 |
|
|
tk = 273.15 + t |
1021 |
|
|
tk100 = tk/100.0 |
1022 |
|
|
tk1002=tk100*tk100 |
1023 |
|
|
invtk=1.0/tk |
1024 |
|
|
dlogtk=log(tk) |
1025 |
|
|
is=19.924*s/(1000.-1.005*s) |
1026 |
|
|
is2=is*is |
1027 |
|
|
sqrtis=sqrt(is) |
1028 |
|
|
s2=s*s |
1029 |
|
|
sqrts=sqrt(s) |
1030 |
|
|
s15=s**1.5 |
1031 |
|
|
scl=s/1.80655 |
1032 |
|
|
|
1033 |
|
|
C------------------------------------------------------------------------ |
1034 |
|
|
C f = k0(1-pH2O)*correction term for non-ideality |
1035 |
|
|
C Weiss & Price (1980, Mar. Chem., 8, 347-359; Eq 13 with table 6 values) |
1036 |
|
|
ff(i,j,bi,bj) = exp(-162.8301 + 218.2968/tk100 + |
1037 |
|
|
& 90.9241*log(tk100) - 1.47696*tk1002 + |
1038 |
|
|
& s * (.025695 - .025225*tk100 + |
1039 |
|
|
& 0.0049867*tk1002)) |
1040 |
|
|
C------------------------------------------------------------------------ |
1041 |
|
|
C K0 from Weiss 1974 |
1042 |
|
|
ak0(i,j,bi,bj) = exp(93.4517/tk100 - 60.2409 + |
1043 |
|
|
& 23.3585 * log(tk100) + |
1044 |
|
|
& s * (0.023517 - 0.023656*tk100 + |
1045 |
|
|
& 0.0047036*tk1002)) |
1046 |
|
|
C------------------------------------------------------------------------ |
1047 |
|
|
C k1 = [H][HCO3]/[H2CO3] |
1048 |
|
|
C k2 = [H][CO3]/[HCO3] |
1049 |
|
|
C Millero p.664 (1995) using Mehrbach et al. data on seawater scale |
1050 |
|
|
ak1(i,j,bi,bj)=10**(-1*(3670.7*invtk - |
1051 |
|
|
& 62.008 + 9.7944*dlogtk - |
1052 |
|
|
& 0.0118 * s + 0.000116*s2)) |
1053 |
|
|
ak2(i,j,bi,bj)=10**(-1*(1394.7*invtk + 4.777 - |
1054 |
|
|
& 0.0184*s + 0.000118*s2)) |
1055 |
|
|
C NOW PRESSURE DEPENDENCE: |
1056 |
|
|
c Following Takahashi (1981) GEOSECS report - quoting Culberson and |
1057 |
|
|
c Pytkowicz (1968) |
1058 |
|
|
c pressc = pressure in bars |
1059 |
|
|
ak1(i,j,bi,bj) = ak1(i,j,bi,bj)* |
1060 |
|
|
& exp( (24.2-0.085*t)*(pressc-1.0)/(83.143*tk) ) |
1061 |
|
|
c FIRST GO FOR K2: According to GEOSECS (1982) report |
1062 |
|
|
c ak2(i,j,bi,bj) = ak2(i,j,bi,bj)* |
1063 |
|
|
c & exp( (26.4-0.040*t)*(pressc-1.0)/(83.143*tk) ) |
1064 |
|
|
c SECOND GO FOR K2: corrected coeff according to CO2sys documentation |
1065 |
|
|
c E. Lewis and D. Wallace (1998) ORNL/CDIAC-105 |
1066 |
|
|
ak2(i,j,bi,bj) = ak2(i,j,bi,bj)* |
1067 |
|
|
& exp( (16.4-0.040*t)*(pressc-1.0)/(83.143*tk) ) |
1068 |
|
|
C------------------------------------------------------------------------ |
1069 |
|
|
C kb = [H][BO2]/[HBO2] |
1070 |
|
|
C Millero p.669 (1995) using data from dickson (1990) |
1071 |
|
|
akb(i,j,bi,bj)=exp((-8966.90 - 2890.53*sqrts - 77.942*s + |
1072 |
|
|
& 1.728*s15 - 0.0996*s2)*invtk + |
1073 |
|
|
& (148.0248 + 137.1942*sqrts + 1.62142*s) + |
1074 |
|
|
& (-24.4344 - 25.085*sqrts - 0.2474*s) * |
1075 |
|
|
& dlogtk + 0.053105*sqrts*tk) |
1076 |
|
|
C Mick and Karsten - Dec 04 |
1077 |
|
|
C ADDING pressure dependence based on Millero (1995), p675 |
1078 |
|
|
C with additional info from CO2sys documentation (E. Lewis and |
1079 |
|
|
C D. Wallace, 1998 - see endnotes for commentary on Millero, 95) |
1080 |
|
|
bigR = 83.145 |
1081 |
|
|
dv = -29.48 + 0.1622*t + 2.608d-3*t*t |
1082 |
|
|
dk = -2.84d-3 |
1083 |
|
|
pfactor = - (dv/(bigR*tk))*pressc |
1084 |
|
|
& + (0.5*dk/(bigR*tk))*pressc*pressc |
1085 |
|
|
akb(i,j,bi,bj) = akb(i,j,bi,bj)*exp(pfactor) |
1086 |
|
|
C------------------------------------------------------------------------ |
1087 |
|
|
C k1p = [H][H2PO4]/[H3PO4] |
1088 |
|
|
C DOE(1994) eq 7.2.20 with footnote using data from Millero (1974) |
1089 |
|
|
ak1p(i,j,bi,bj) = exp(-4576.752*invtk + 115.525 - |
1090 |
|
|
& 18.453*dlogtk + |
1091 |
|
|
& (-106.736*invtk + 0.69171)*sqrts + |
1092 |
|
|
& (-0.65643*invtk - 0.01844)*s) |
1093 |
|
|
C------------------------------------------------------------------------ |
1094 |
|
|
C k2p = [H][HPO4]/[H2PO4] |
1095 |
|
|
C DOE(1994) eq 7.2.23 with footnote using data from Millero (1974)) |
1096 |
|
|
ak2p(i,j,bi,bj) = exp(-8814.715*invtk + 172.0883 - |
1097 |
|
|
& 27.927*dlogtk + |
1098 |
|
|
& (-160.340*invtk + 1.3566) * sqrts + |
1099 |
|
|
& (0.37335*invtk - 0.05778) * s) |
1100 |
|
|
C------------------------------------------------------------------------ |
1101 |
|
|
C k3p = [H][PO4]/[HPO4] |
1102 |
|
|
C DOE(1994) eq 7.2.26 with footnote using data from Millero (1974) |
1103 |
|
|
ak3p(i,j,bi,bj) = exp(-3070.75*invtk - 18.141 + |
1104 |
|
|
& (17.27039*invtk + 2.81197) * |
1105 |
|
|
& sqrts + (-44.99486*invtk - 0.09984) * s) |
1106 |
|
|
C------------------------------------------------------------------------ |
1107 |
|
|
C ksi = [H][SiO(OH)3]/[Si(OH)4] |
1108 |
|
|
C Millero p.671 (1995) using data from Yao and Millero (1995) |
1109 |
|
|
aksi(i,j,bi,bj) = exp(-8904.2*invtk + 117.385 - |
1110 |
|
|
& 19.334*dlogtk + |
1111 |
|
|
& (-458.79*invtk + 3.5913) * sqrtis + |
1112 |
|
|
& (188.74*invtk - 1.5998) * is + |
1113 |
|
|
& (-12.1652*invtk + 0.07871) * is2 + |
1114 |
|
|
& log(1.0-0.001005*s)) |
1115 |
|
|
C------------------------------------------------------------------------ |
1116 |
|
|
C kw = [H][OH] |
1117 |
|
|
C Millero p.670 (1995) using composite data |
1118 |
|
|
akw(i,j,bi,bj) = exp(-13847.26*invtk + 148.9652 - |
1119 |
|
|
& 23.6521*dlogtk + |
1120 |
|
|
& (118.67*invtk - 5.977 + 1.0495 * dlogtk) * |
1121 |
|
|
& sqrts - 0.01615 * s) |
1122 |
|
|
C------------------------------------------------------------------------ |
1123 |
|
|
C ks = [H][SO4]/[HSO4] |
1124 |
|
|
C dickson (1990, J. chem. Thermodynamics 22, 113) |
1125 |
|
|
aks(i,j,bi,bj)=exp(-4276.1*invtk + 141.328 - |
1126 |
|
|
& 23.093*dlogtk + |
1127 |
|
|
& (-13856*invtk + 324.57 - 47.986*dlogtk)*sqrtis + |
1128 |
|
|
& (35474*invtk - 771.54 + 114.723*dlogtk)*is - |
1129 |
|
|
& 2698*invtk*is**1.5 + 1776*invtk*is2 + |
1130 |
|
|
& log(1.0 - 0.001005*s)) |
1131 |
|
|
C------------------------------------------------------------------------ |
1132 |
|
|
C kf = [H][F]/[HF] |
1133 |
|
|
C dickson and Riley (1979) -- change pH scale to total |
1134 |
|
|
akf(i,j,bi,bj)=exp(1590.2*invtk - 12.641 + 1.525*sqrtis + |
1135 |
|
|
& log(1.0 - 0.001005*s) + |
1136 |
|
|
& log(1.0 + (0.1400/96.062)*(scl)/aks(i,j,bi,bj))) |
1137 |
|
|
C------------------------------------------------------------------------ |
1138 |
|
|
C Calculate concentrations for borate, sulfate, and fluoride |
1139 |
|
|
C Uppstrom (1974) |
1140 |
|
|
bt(i,j,bi,bj) = 0.000232 * scl/10.811 |
1141 |
|
|
C Morris & Riley (1966) |
1142 |
|
|
st(i,j,bi,bj) = 0.14 * scl/96.062 |
1143 |
|
|
C Riley (1965) |
1144 |
|
|
ft(i,j,bi,bj) = 0.000067 * scl/18.9984 |
1145 |
|
|
C------------------------------------------------------------------------ |
1146 |
|
|
C solubility product for calcite |
1147 |
|
|
C |
1148 |
|
|
c Following Takahashi (1982) GEOSECS handbook |
1149 |
|
|
C NOT SURE THIS IS WORKING??? |
1150 |
|
|
C Ingle et al. (1973) |
1151 |
|
|
c Ksp_T_Calc = ( -34.452 - 39.866*(s**0.333333) |
1152 |
|
|
c & + 110.21*log(s) - 7.5752d-6 * (tk**2.0) |
1153 |
|
|
c & ) * 1.0d-7 |
1154 |
|
|
c with pressure dependence Culberson and Pytkowicz (1968) |
1155 |
|
|
c xvalue = (36-0.20*t)*(pressc-1.0)/(83.143*tk) |
1156 |
|
|
c Ksp_TP_Calc(i,j,bi,bj) = Ksp_T_Calc*exp(xvalue) |
1157 |
|
|
c |
1158 |
|
|
c |
1159 |
|
|
C Following Mucci (1983) - from Zeebe/Wolf-Gladrow equic.m |
1160 |
|
|
tmpa1 = - 171.9065 - (0.077993*tk) + (2839.319/tk) |
1161 |
|
|
& + (71.595*log10(tk)) |
1162 |
|
|
tmpa2 = +(-0.77712 + (0.0028426*tk) + (178.34/tk) )*sqrts |
1163 |
|
|
tmpa3 = -(0.07711*s) + (0.0041249*s15) |
1164 |
|
|
logKspc = tmpa1 + tmpa2 + tmpa3 |
1165 |
|
|
Ksp_T_Calc = 10.0**logKspc |
1166 |
|
|
c write(6,*)i,j,k,tmpa1,tmpa2,tmpa3,logkspc,Ksp_T_Calc |
1167 |
|
|
c with pressure dependence Culberson and Pytkowicz (1968) |
1168 |
|
|
c xvalue = (36.0-0.20*t)*(pressc-1.0)/(83.143*tk) |
1169 |
|
|
c Ksp_TP_Calc(i,j,bi,bj) = Ksp_T_Calc*exp(xvalue) |
1170 |
|
|
|
1171 |
|
|
c alternative pressure depdendence |
1172 |
|
|
c following Millero (1995) but using info from Appendix A11 of |
1173 |
|
|
c Zeebe and Wolf-Gladrow (2001) book |
1174 |
|
|
c dv = -48.6 - 0.5304*t |
1175 |
|
|
c dk = -11.76d-3 - 0.3692*t |
1176 |
|
|
c xvalue = - (dv/(bigR*tk))*pressc |
1177 |
|
|
c & + (0.5*dk/(bigR*tk))*pressc*pressc |
1178 |
|
|
c Ksp_TP_Calc(i,j,bi,bj) = Ksp_T_Calc*exp(xvalue) |
1179 |
|
|
|
1180 |
|
|
c alternative pressure dependence from Ingle (1975) |
1181 |
|
|
|
1182 |
|
|
zdum = (pressc*10.0d0 - 10.0d0)/10.0d0 |
1183 |
|
|
xvalue = ( (48.8d0 - 0.53d0*t)*zdum |
1184 |
|
|
& + (-0.00588d0 + 0.0001845d0*t)*zdum*zdum) |
1185 |
|
|
& / (188.93d0*(t + 273.15d0)) |
1186 |
|
|
|
1187 |
|
|
Ksp_TP_Calc(i,j,bi,bj) = Ksp_T_Calc*10**(xvalue) |
1188 |
|
|
|
1189 |
|
|
|
1190 |
|
|
|
1191 |
|
|
|
1192 |
|
|
C------------------------------------------------------------------------ |
1193 |
|
|
else |
1194 |
|
|
ff(i,j,bi,bj)=0.d0 |
1195 |
|
|
ak0(i,j,bi,bj)= 0.d0 |
1196 |
|
|
ak1(i,j,bi,bj)= 0.d0 |
1197 |
|
|
ak2(i,j,bi,bj)= 0.d0 |
1198 |
|
|
akb(i,j,bi,bj)= 0.d0 |
1199 |
|
|
ak1p(i,j,bi,bj) = 0.d0 |
1200 |
|
|
ak2p(i,j,bi,bj) = 0.d0 |
1201 |
|
|
ak3p(i,j,bi,bj) = 0.d0 |
1202 |
|
|
aksi(i,j,bi,bj) = 0.d0 |
1203 |
|
|
akw(i,j,bi,bj) = 0.d0 |
1204 |
|
|
aks(i,j,bi,bj)= 0.d0 |
1205 |
|
|
akf(i,j,bi,bj)= 0.d0 |
1206 |
|
|
bt(i,j,bi,bj) = 0.d0 |
1207 |
|
|
st(i,j,bi,bj) = 0.d0 |
1208 |
|
|
ft(i,j,bi,bj) = 0.d0 |
1209 |
|
|
Ksp_TP_Calc(i,j,bi,bj) = 0.d0 |
1210 |
|
|
endif |
1211 |
|
|
end do |
1212 |
|
|
end do |
1213 |
|
|
|
1214 |
|
|
return |
1215 |
|
|
end |
1216 |
|
|
|
1217 |
|
|
#endif /*ALLOW_CARBON*/ |
1218 |
|
|
|
1219 |
|
|
#endif /*DARWIN*/ |
1220 |
|
|
#endif /*ALLOW_PTRACERS*/ |
1221 |
|
|
c ================================================================== |
1222 |
|
|
|