/[MITgcm]/MITgcm_contrib/darwin2/doc/monod_equations.tex
ViewVC logotype

Contents of /MITgcm_contrib/darwin2/doc/monod_equations.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (show annotations) (download) (as text)
Wed Apr 13 18:51:28 2011 UTC (14 years, 3 months ago) by jahn
Branch: MAIN
CVS Tags: ctrb_darwin2_ckpt64k_20130723, ctrb_darwin2_ckpt65w_20160512, ctrb_darwin2_ckpt65j_20150225, ctrb_darwin2_ckpt63l_20120405, ctrb_darwin2_ckpt66g_20170424, ctrb_darwin2_ckpt64h_20130528, ctrb_darwin2_ckpt66k_20171025, ctrb_darwin2_ckpt66n_20180118, ctrb_darwin2_ckpt62v_20110413, ctrb_darwin2_ckpt65v_20160409, ctrb_darwin2_ckpt65s_20160114, ctrb_darwin2_ckpt65_20140718, ctrb_darwin2_ckpt64m_20130820, ctrb_darwin2_ckpt66d_20170214, ctrb_darwin2_ckpt64r_20131210, ctrb_darwin2_ckpt65m_20150615, ctrb_darwin2_ckpt65q_20151118, ctrb_darwin2_ckpt65o_20150914, ctrb_darwin2_ckpt64f_20130405, ctrb_darwin2_ckpt63f_20111201, ctrb_darwin2_ckpt64a_20121116, ctrb_darwin2_ckpt65p_20151023, ctrb_darwin2_ckpt64n_20130826, ctrb_darwin2_ckpt65e_20140929, ctrb_darwin2_ckpt64o_20131024, ctrb_darwin2_ckpt64v_20140411, ctrb_darwin2_ckpt64z_20140711, ctrb_darwin2_ckpt65l_20150504, ctrb_darwin2_ckpt65z_20160929, ctrb_darwin2_ckpt65n_20150729, ctrb_darwin2_ckpt62y_20110526, ctrb_darwin2_ckpt64y_20140622, ctrb_darwin2_ckpt65d_20140915, ctrb_darwin2_ckpt64t_20140202, ctrb_darwin2_ckpt66h_20170602, ctrb_darwin2_ckpt64i_20130622, ctrb_darwin2_ckpt62x_20110513, ctrb_darwin2_ckpt64s_20140105, ctrb_darwin2_ckpt62w_20110426, ctrb_darwin2_ckpt64x_20140524, ctrb_darwin2_ckpt63o_20120629, ctrb_darwin2_ckpt64e_20130305, ctrb_darwin2_ckpt65x_20160612, ctrb_darwin2_ckpt66f_20170407, ctrb_darwin2_ckpt63c_20111011, ctrb_darwin2_ckpt63i_20120124, ctrb_darwin2_ckpt65g_20141120, ctrb_darwin2_ckpt63m_20120506, ctrb_darwin2_ckpt63s_20120908, ctrb_darwin2_ckpt65k_20150402, ctrb_darwin2_ckpt63e_20111107, ctrb_darwin2_ckpt64w_20140502, ctrb_darwin2_ckpt63b_20110830, ctrb_darwin2_ckpt63j_20120217, ctrb_darwin2_ckpt66a_20161020, ctrb_darwin2_ckpt63r_20120817, ctrb_darwin2_ckpt64g_20130503, ctrb_darwin2_ckpt64l_20130806, ctrb_darwin2_ckpt63g_20111220, ctrb_darwin2_ckpt65f_20141014, ctrb_darwin2_ckpt64c_20130120, ctrb_darwin2_ckpt63a_20110804, ctrb_darwin2_ckpt66b_20161219, ctrb_darwin2_ckpt64u_20140308, ctrb_darwin2_ckpt64j_20130704, ctrb_darwin2_ckpt65i_20150123, ctrb_darwin2_ckpt66j_20170815, ctrb_darwin2_ckpt65y_20160801, ctrb_darwin2_ckpt63h_20111230, ctrb_darwin2_ckpt63p_20120707, ctrb_darwin2_ckpt66c_20170121, ctrb_darwin2_ckpt65a_20140728, ctrb_darwin2_ckpt65b_20140812, ctrb_darwin2_ckpt65t_20160221, ctrb_darwin2_ckpt64p_20131118, ctrb_darwin2_ckpt63d_20111107, ctrb_darwin2_ckpt63q_20120731, ctrb_darwin2_ckpt63_20110728, ctrb_darwin2_ckpt64b_20121224, ctrb_darwin2_ckpt64d_20130219, ctrb_darwin2_ckpt66o_20180209, ctrb_darwin2_ckpt66e_20170314, ctrb_darwin2_ckpt64_20121012, ctrb_darwin2_ckpt64q_20131118, ctrb_darwin2_baseline, ctrb_darwin2_ckpt64p_20131024, ctrb_darwin2_ckpt65u_20160315, ctrb_darwin2_ckpt65r_20151221, ctrb_darwin2_ckpt66i_20170718, ctrb_darwin2_ckpt63n_20120604, ctrb_darwin2_ckpt63k_20120317, ctrb_darwin2_ckpt65c_20140830, ctrb_darwin2_ckpt62z_20110622, ctrb_darwin2_ckpt66l_20171025, ctrb_darwin2_ckpt65h_20141217, ctrb_darwin2_ckpt66m_20171213, HEAD
File MIME type: application/x-tex
darwin2 initial checkin

1 \documentclass[11pt,letterpaper,english]{article}
2 \usepackage[T1]{fontenc}
3 \usepackage[latin1]{inputenc}
4 \setlength\parskip{\medskipamount}
5 \setlength\parindent{0pt}
6 \usepackage{amsmath}
7 %\usepackage{graphicx}
8 \usepackage{amssymb}
9 \usepackage{babel}
10 %use epsfig package for figs
11 \usepackage{epsfig}
12 \makeatother
13
14
15 %MICK - STUFF TO USE HELVETICA FONTS IN TEX
16 %%\usepackage[scaled=0.92]{helvet}
17 \usepackage{helvet}
18 \usepackage[sf]{titlesec}
19 \renewcommand\familydefault{\sfdefault}
20
21 %use lgrind to include code listing
22 %\usepackage{lgrind}
23
24 %other formatting stuff
25 \oddsidemargin 0pt
26 \flushbottom
27 \parskip 10pt
28 \parindent 0pt
29 \textwidth 465pt
30 \topmargin 10pt
31 \textheight 610pt
32 \renewcommand{\baselinestretch}{1.0}
33
34
35 \begin{document}
36
37 % SOME MACROS
38 \newcommand{\etal}{{\em et al.}}
39 \newcommand{\ux}{{\underline{x}}}
40 \newcommand{\tdt}{{t}}
41
42
43 {\bf {\large A1. Ecosystem Model Parametrization}}
44
45 The ecosystem model equations are similar that used in Follows et al. (2007).
46 Most significant change is that the grazing term is now includes variable
47 palatibility of phytoplankton and sloppy feeding as treated in Dutkiewicz et al
48 (2005), and the nitrogen limitation term has been slightly modified. For
49 fuller discussions we refer the reader to the Online Supplemental material of
50 Follows et al. (2007).
51
52 Several nutrients $N_i$ nourish many phytoplankton types $P_j$ which are grazed
53 by several zooplankton types $Z_k$. Mortality of and excretion from plankton,
54 and sloppy feeding by zooplankton contribute to a dissolved organic matter
55 $DOM_i$ pool and a sinking particulate organic matter pool $POM_i$. Subscript
56 $i$ refers to a nutrient/element, $j$ for a specific phytoplankton type, and
57 $k$ for a zooplankton type.
58
59 \begin{eqnarray}
60 \frac{\partial N_i}{\partial t} & = &
61 -\nabla \cdot (\textbf{u} N_i) +\nabla \cdot (\kappa\nabla N_i)-
62 \sum_j [\mu_j P_j M_{ij}]+S_{N_i}
63 \nonumber \\
64 \frac{\partial P_j}{\partial t} & = &
65 -\nabla \cdot (\textbf{u} P_j) + \nabla \cdot (\kappa\nabla P_j)+
66 \mu_j P_j - m_j^P P_j-\sum_k [g_{jk} Z_{k,i=1}]
67 -\frac{\partial(w_j^P P_j)}{\partial z}
68 \nonumber \\
69 \frac{\partial Z_{ki}}{\partial t} & = &
70 - \nabla \cdot (\textbf{u} Z_{ki}) + \nabla \cdot (\kappa\nabla Z_{ki})
71 +Z_{ki}\sum_j [\zeta_{jk} g_{jk} M_{ij}] -m_k^Z Z_{ki}
72 \nonumber \\
73 \frac{\partial POM_i}{\partial t} & = &
74 -\nabla \cdot (\textbf{u} POM_i) + \nabla \cdot (\kappa\nabla POM_i)-
75 r_{PO_i}POM_i-\frac{\partial(w_{POi} POM_i)}{\partial z}+S_{POM_i}
76 \nonumber \\
77 \frac{\partial DOM_i}{\partial t} & = &
78 -\nabla \cdot (\textbf{u} DOM_i) + \nabla \cdot (\kappa\nabla DOM_i)-
79 r_{DO_i}DOM_i + S_{DOM_i}
80 \nonumber
81 \end{eqnarray}
82
83 where:\\
84 \mbox{} \hspace{.5cm} $\textbf{u}=(u,v,w),$ velocity in physical model, \\
85 \mbox{} \hspace{.5cm} $\kappa=$Mixing coefficients used in physical model,\\
86 \mbox{} \hspace{.5cm} $\mu_j=$Growth rate of phytoplankton $j$ (see below),\\
87 \mbox{} \hspace{.5cm} $M_{ij}=$Matrix of Redfield ratio of element $i$ to P
88 for phytoplankton $j$\\
89 \mbox{} \hspace{.5cm} $\zeta_{jk}=$ Grazing efficiency of zooplankton $k$ on phytoplankton $j$ (represents sloppy feeding), \\
90 \mbox{} \hspace{.5cm} $g_{jk}=$Grazing of zooplankton $k$ on phytoplankton $j$ (see below),\\
91 \mbox{} \hspace{.5cm} $m_j^P=$Mortality/Excretion rate for phytoplankton $j$,\\
92 \mbox{} \hspace{.5cm} $m_k^Z=$Mortality/Excretion rate for zooplankton $k$,\\
93 \mbox{} \hspace{.5cm} $w_j^P=$Sinking rate for phytoplankton $j$,\\
94 \mbox{} \hspace{.5cm} $w_{POi}=$Sinking rate for POM $i$,\\
95 \mbox{} \hspace{.5cm} $r_{DOM_i}=$Remineralization rate of DOM for element
96 $i$,\\
97 \mbox{} \hspace{.5cm} $r_{POM_i}=$Remineralization rate of POM for element
98 $i$,\\
99 \mbox{} \hspace{.5cm} $S_{N_i}=$Additional source or sink for nutrient $i$
100 (see below),\\
101 \mbox{} \hspace{.5cm} $S_{DOM_i}=$ Source of DOM $i$,
102 for element $i$ (see below),\\
103 \mbox{} \hspace{.5cm} $S_{POM_i}=$ Source of POM $i$,
104 for element $i$ (see below),\\
105
106
107
108 \vspace{.2cm}
109
110 {\it {\bf A1.1. Phytoplankton growth:}}\\
111 \[
112 \mu_j = \mu_{max_{j}} \gamma_j^T \gamma_j^I \gamma_j^N
113 \]
114 where\\
115 \mbox{} \hspace{.5cm} $\mu_{max_{j}}=$ maximum growth rate of phytoplankton $j$,\\
116 \mbox{} \hspace{.5cm} $\gamma_j^T=$Modification of growth rate by
117 temperature for phytoplankton $j$,\\
118 \mbox{} \hspace{.5cm} $\gamma_j^I=$Modification of growth rate by light for
119 phytoplankton $j$,\\
120 \mbox{} \hspace{.5cm} $\gamma_j^N=$Modification of growth rate by nutrients
121 for phytoplankton $j$.\\
122
123 Temperature modification (Fig. \ref{fig-growexp1}a):\\
124 \[
125 \gamma_j^T= \frac{1}{\tau_1} (A^T e^{-B(T-T_o)^c} - \tau_2 )
126 \]
127 where coefficients $\tau_1$ and $\tau_2$ normalize the maximum
128 value, and $A,B,T_o$ and $C$ regulate the form of the temperature
129 modification function. $T$ is the local model ocean temperature.
130
131 Light modification (Fig. \ref{fig-growexp1}b):\\
132 \[
133 \gamma_j^I= \frac{1}{F_o} (1-e^{k_{par} I} ) e^{-k_{inhib} I}
134 \]
135 where $F_{o}$ is a factor controlling the maximum value, $k_{par}$ is the
136 PAR saturation coefficient and $k_{inhib}$ is the PAR inhibition factor.
137 $I$ is the local PAR, that has been attenuated through the water column
138 (including the effects of self-shading).
139
140 Nutrient limitation is determined by the most limiting nutrient:
141 \[
142 \gamma_j^N = \min(N_i^{lim})
143 \]
144 where typically
145 $N_i^{lim}=\frac{N_i}{N_i+\kappa_{N_{ij}}}$
146 (Fig. \ref{fig-growexp1}c) and $\kappa_{N_{ij}}$ is the half saturation constant of nutrient $i$ for phytoplankton $j$.
147
148 When we include the nitrogen as a potential limiting nutrient (EXP2) we
149 modify $N_i^{lim}$ to take into account the uptake inhibition caused by ammonium:
150 \begin{align*}
151 N_N^{lim} &= \frac{NO_2}{NO_2+\kappa_{IN}} e^{-\psi NH_4}
152 +\frac{NH_4}{NH_4 + \kappa_{NH4}} && \text{(nsource=1)} \\
153 N_N^{lim} &= \frac{NH_4}{NH_4 + \kappa_{NH4}} && \text{(nsource=2)} \\
154 N_N^{lim} &= \frac{NO_3 + NO_2}{NO_3+NO_2+\kappa_{IN}} e^{-\psi NH_4}
155 +\frac{NH_4}{NH_4 + \kappa_{NH4}} && \text{(nsource=3)}
156 \end{align*}
157 where $\psi$ reflects the inhibition and $\kappa_{IN}$ and $ \kappa_{NH4}$
158 are the half saturation constant of $IN=NO_3+NO_2$ and $NH_4$ respectively.
159
160 \vspace{.2cm}
161
162 {\it {\bf A1.2. Zooplankton grazing:}}\\
163 \[
164 g_{jk} =g_{max_{jk}} \frac{\eta_{jk} P_j}{A_k} \frac{A_k}{A_k+\kappa^P_k}
165 \]
166 where\\
167 \mbox{} \hspace{.5cm} $g_{max_{jk}}=$ Maximum grazing rate of zooplankton $k$ on
168 phytoplankton $j$,\\
169 \mbox{} \hspace{.5cm} $\eta_{jk}=$ Palatibility of plankton $j$ to zooplankton $k$,\\
170 \mbox{} \hspace{.5cm} $A_k=$ Palatibility (for zooplankton $k$) weighted total phytoplankton concentration,\\
171 \mbox{} \hspace{1.1cm} $=\sum_j [\eta_{jk} P_j$] \\
172 \mbox{} \hspace{.5cm} $\kappa^P_k=$Half-saturation constant for grazing of zooplankton $k$,\\
173
174
175 \vspace{.2cm}
176
177 {\it {\bf A1.3. Inorganic nutrient Source/Sink terms:}}\\
178 $S_{N_i}$ depends on the specific nutrient, and includes the remineralization
179 of organic matter, external sources and other non-biological transformations:
180 \begin{eqnarray}
181 S_{PO4} & = & r_{DOP} DOP + r_{POP} POP \nonumber \\
182 S_{Si} & = & r_{POSi} POSi \nonumber \\
183 S_{FeT} & = & r_{DOFe} DOFe + r_{POFe} POFe -c_{scav} Fe' + \alpha F_{atmos} \nonumber \\
184 S_{NO3} & = & \zeta_{NO3} NO_2 \nonumber \\
185 S_{NO2} & = & \zeta_{NO2} NH4 - \zeta_{NO3} NO_2 \nonumber \\
186 S_{NH4} & = & r_{DON} DON + r_{PON} PON - \zeta_{NO2} NH_4 \nonumber
187 \end{eqnarray}
188
189 where:\\
190 \mbox{} \hspace{.5cm} $r_{DOM_i}=$Remineralization rate of DOM for element
191 $i$, here P, Fe, N,\\
192 \mbox{} \hspace{.5cm} $r_{POM_i}=$Remineralization rate of POM for element
193 $i$, here P, Si, Fe, N,\\
194 \mbox{} \hspace{.5cm} $c_{scav}=$scavenging rate for free iron,\\
195 \mbox{} \hspace{.5cm} $Fe'=$free iron, modelled as in Parekh et al (2004), \\
196 \mbox{} \hspace{.5cm} $alpha=$solubility of iron dust in ocean water, \\
197 \mbox{} \hspace{.5cm} $F_{atmos}=$atmospheric deposition of iron dust on surface of model ocean,\\
198 \mbox{} \hspace{.5cm} $\zeta_{NO3}=\zeta_{NO3}^0(1-I/I_0)_+=$oxidation rate of NO$_2$ to NO$_3$,\\
199 \mbox{} \hspace{.5cm} $\zeta_{NO2}=\zeta_{NO2}^0(1-I/I_0)_+=$oxidation rate of NH$_4$ to NO$_2$ (is photoinhibited),\\
200 \mbox{} \hspace{.5cm} $I_0=$critical light level below which oxidation occurs,\\
201
202 The remineralization timescale $r_{DOi}$ and $r_{POi}$ parameterizes the break
203 down of organic matter to an inorganic form through the microbial loop.
204
205
206 {\it {\bf A1.3.1 Fe chemistry:}}\\
207 \begin{eqnarray}
208 Fe' & = & FeT - FeL \nonumber \\
209 FeL & = & L_{tot} -
210 \frac{ L_{stab} (L_{tot} - FeT) - 1
211 +\sqrt{(1 - L_{stab} (L_{tot} - FeT))^2 + 4 L_{stab} L_{tot}}}
212 {2 L_{stab}} \nonumber
213 \end{eqnarray}
214 ($Fe'$ may be constrained to be less than $Fe'_{max}$ while preserving $FeT$).
215
216
217 {\it {\bf A1.4 DOM and POM Source terms:}}\\
218 $S_{DOM_i}$ and $S_{POM_i}$ are the sources of dissolved and particulate
219 organic detritus arising from mortality, excretion and sloppy feeding of the
220 plantkon. We simply define that a fixed fraction $\lambda_m$ of the the
221 mortality/excretion term and the non-consumed grazed phytoplankton
222 ($\lambda_g$) go into the dissolved pool and the remainder into the particulate
223 pool.
224 \begin{eqnarray}
225 S_{DOM_i} & = & \sum_{j} [\lambda_{mp_{ij}} m^p_j P_j M_{ij}]
226 + \sum_{k} [\lambda_{mz_{ik}} m^z_k Z_{ik}]
227 + \sum_{k} \sum_{j} [\lambda_{g_{ijk}} (1-\zeta_{jk})
228 g_{ij} M_{ij} Z_k ]
229 \nonumber \\
230 S_{POM_i} & = & \sum_{j} [(1-\lambda_{m_{ij}}) m^p_j P_j M_{ij}]
231 + \sum_{k} [(1-\lambda_{mz_{ik}}) m^z_k Z_{ik}]
232 + \sum_{k} \sum_{j} [(1-\lambda_{g_{ijk}}) (1-\zeta_{jk})
233 g_{ij} M_{ij} Z_k ]
234 \nonumber
235 \end{eqnarray}
236
237
238 \newcommand{\pcm}[1]{P^C_{m#1}}
239 \newcommand{\pcmax}[1]{P^C_{\textrm{MAX}#1}}
240 \newcommand{\pcarbon}{P^C}
241 \newcommand{\chltoc}{\theta}
242 \newcommand{\chltocmax}{\theta^{\textrm{max}}}
243 \newcommand{\chltocmin}{\theta^{\textrm{min}}}
244 \newcommand{\alphachl}{\alpha^{\textrm{Chl}}}
245 \newcommand{\mQyield}{\mathit{mQ}^{\textrm{yield}}}
246 \newcommand{\RPC}{R^{PC}}
247 \newcommand{\phychl}{\mathit{Chl}}
248 \newcommand{\aphychlave}{A^{\mathrm{phy}}_{\mathrm{Chl,ave}}}
249
250 {\it {\bf A1.4 Geider light limitation model:}}\\
251 The phytoplankton growth rate is given by the carbon-specific photosynthesis rate
252 (rate of carbon synthesized per carbon present),
253 \[
254 \mu_j = \pcarbon_j
255 \]
256 The carbon-specific photosynthesis rate
257 \[
258 \pcarbon_j = \pcm{,j} \begin{cases}
259 1 - e^{-\alphachl_j I \chltoc_j/\pcm{,j}} & \text{if }I>0.1 \\
260 0 & \text{otherwise}
261 \end{cases}
262 \]
263 depends on the carbon-specific, light-saturated photosynthesis rate
264 \[
265 \pcm{,j}=\pcmax{j} \gamma^N_j \gamma^T_j
266 \]
267 and the Chl $a$ to carbon ratio
268 \[
269 \chltoc_j = \left[ \frac{\chltocmax_j}
270 {1 + \chltocmax_j \alphachl_j I / (2 \pcm{,j})}
271 \right]^{\chltocmax_j}_{\chltocmin_j}
272 \]
273
274 The chlorophyll concentration is
275 \[
276 \phychl_j=P_j \RPC_j \chltoc_j
277 \]
278
279 The light limitation factor can be diagnosed
280 \[
281 \gamma^I_j=\pcarbon_j/\pcm{,j}
282 \]
283
284 \[
285 \alphachl_j = \mQyield_j \aphychlave
286 \]
287
288 Parameters:\\
289 \begin{tabular}{@{\qquad}r@{}l}
290 $\pcmax{j} ={}$& Maximum C-spec.\ photosynthesis rate at reference temperature of phytoplankton $j$\\
291 $\chltocmax_j ={}$& Maximum Chl a to C ratio if phytoplankton $j$\\
292 $\RPC_j ={}$& Carbon to phosphorus (!) ratio of phytoplankton $j$\\
293 $\alphachl_j ={}$& Chl a-specific initial slope of the photosynthesis-light curve\\
294 $\mQyield_j ={}$& slope of the photosynthesis-light curve per absorption\\
295 $\aphychlave ={}$& absorption ($m^{-1}$) per mg Chl a
296 \end{tabular}
297
298
299
300 \newcommand{\Ptot}{P_{\mathrm{tot}}}
301
302 {\it {\bf A2 Diagnostics:}}\\
303 Total phytoplankton biomass:
304 \[
305 \Ptot = \sum_j P_j
306 \]
307
308 \begin{tabular}{llll}
309 name & definition && units \\
310 \hline
311 \texttt{PhyTot } & $\Ptot$ && $\mu\mathrm{M\,P}$ \\
312 \texttt{PhyGrp1 } & Total biomass of small phytoplankton with $\texttt{nsrc}=1$ && $\mu\mathrm{M\,P}$ \\
313 \texttt{PhyGrp2 } & Total biomass of small phytoplankton with $\texttt{nsrc}=2$ && $\mu\mathrm{M\,P}$ \\
314 \texttt{PhyGrp3 } & Total biomass of small phytoplankton with $\texttt{nsrc}=3$ && $\mu\mathrm{M\,P}$ \\
315 \texttt{PhyGrp4 } & Total biomass of large non-diatoms && $\mu\mathrm{M\,P}$ \\
316 \texttt{PhyGrp5 } & Total biomass of diatoms && $\mu\mathrm{M\,P}$ \\
317 \texttt{PP } & Primary production && $\mu\mathrm{M\,P}\, \mathrm{s}^{-1}$ \\
318 \texttt{Nfix } & Nitrogen fixation && $\mu\mathrm{M\,N}\, \mathrm{s}^{-1}$ \\
319 \texttt{PAR } & Photosynthetically active radiation && $\mu\mathrm{Ein}\, \mathrm{m}^{-2}\,\mathrm{s}^{-1}$ \\
320 \texttt{Rstar01 } & $R^*_{\mathrm{PO4}}$ of Phytoplankton species \#1, \dots && $\mu\mathrm{M\,P}$ \\
321 \texttt{Diver1 } & Number of species with $P_j > 10^{-8}\,\mu\mathrm{M\,P}$ & where $\Ptot>10^{-12}$ \\
322 \texttt{Diver2 } & Number of species with $P_j > 0.1\%\, \Ptot$ & where $\Ptot>10^{-12}$ \\
323 \texttt{Diver3 } & Number of species that constitute 99.9\% of $\Ptot$ & where $\Ptot>10^{-12}$ \\
324 \texttt{Diver4 } & Number of species with $P_j > 10^{-5} \cdot \max\limits_j P_j$ & where $\Ptot>10^{-12}$ \\
325 \end{tabular}
326
327
328 \end{document}

  ViewVC Help
Powered by ViewVC 1.1.22