--- MITgcm_contrib/darwin/doc/equations.tex 2008/11/24 21:59:58 1.1 +++ MITgcm_contrib/darwin/doc/equations.tex 2009/09/24 20:32:06 1.2 @@ -147,10 +147,13 @@ When we include the nitrogen as a potential limiting nutrient (EXP2) we modify $N_i^{lim}$ to take into account the uptake inhibition caused by ammonium: -\[ -N_N^{lim} = \frac{NO_3 + NO_2}{NO_3+NO_2+\kappa_{IN}} e^{-\psi NH_4} -+\frac{NH_4}{NH_4 + \kappa_{NH4}} -\] +\begin{align*} +N_N^{lim} &= \frac{NO_2}{NO_2+\kappa_{IN}} e^{-\psi NH_4} ++\frac{NH_4}{NH_4 + \kappa_{NH4}} && \text{(nsource=1)} \\ +N_N^{lim} &= \frac{NH_4}{NH_4 + \kappa_{NH4}} && \text{(nsource=2)} \\ +N_N^{lim} &= \frac{NO_3 + NO_2}{NO_3+NO_2+\kappa_{IN}} e^{-\psi NH_4} ++\frac{NH_4}{NH_4 + \kappa_{NH4}} && \text{(nsource=3)} +\end{align*} where $\psi$ reflects the inhibition and $\kappa_{IN}$ and $ \kappa_{NH4}$ are the half saturation constant of $IN=NO_3+NO_2$ and $NH_4$ respectively.