/[MITgcm]/MITgcm_contrib/darwin/doc/equations.tex
ViewVC logotype

Contents of /MITgcm_contrib/darwin/doc/equations.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (show annotations) (download) (as text)
Mon Nov 24 21:59:58 2008 UTC (16 years, 7 months ago) by jahn
Branch: MAIN
CVS Tags: ctrb_darwin_ckpt61s_20090630, ctrb_darwin_ckpt61o_20090527, ctrb_darwin_ckpt61d_20081212, ctrb_darwin_ckpt61o_20090610, ctrb_darwin_ckpt61k_20090312, ctrb_darwin_ckpt61r_20090626, ctrb_darwin_ckpt61p_20090610, ctrb_darwin_ckpt61h_20090224, ctrb_darwin_ckpt61n_20090519, ctrb_darwin_ckpt61m_20090430, ctrb_darwin_ckpt61n_20090513, ctrb_darwin_ckpt61i_20090224, ctrb_darwin_ckpt61t_20090820, ctrb_darwin_ckpt61u_20090825, ctrb_darwin_ckpt61l_20090408, ctrb_darwin_ckpt61q_20090626, ctrb_darwin_ckpt61i_20090312
File MIME type: application/x-tex
add some latex documentation

1 \documentclass[11pt,letterpaper,english]{article}
2 \usepackage[T1]{fontenc}
3 \usepackage[latin1]{inputenc}
4 \setlength\parskip{\medskipamount}
5 \setlength\parindent{0pt}
6 \usepackage{amsmath}
7 %\usepackage{graphicx}
8 \usepackage{amssymb}
9 \usepackage{babel}
10 %use epsfig package for figs
11 \usepackage{epsfig}
12 \makeatother
13
14
15 %MICK - STUFF TO USE HELVETICA FONTS IN TEX
16 %%\usepackage[scaled=0.92]{helvet}
17 \usepackage{helvet}
18 \usepackage[sf]{titlesec}
19 \renewcommand\familydefault{\sfdefault}
20
21 %use lgrind to include code listing
22 %\usepackage{lgrind}
23
24 %other formatting stuff
25 \oddsidemargin 0pt
26 \flushbottom
27 \parskip 10pt
28 \parindent 0pt
29 \textwidth 465pt
30 \topmargin 10pt
31 \textheight 610pt
32 \renewcommand{\baselinestretch}{1.0}
33
34
35 \begin{document}
36
37 % SOME MACROS
38 \newcommand{\etal}{{\em et al.}}
39 \newcommand{\ux}{{\underline{x}}}
40 \newcommand{\tdt}{{t}}
41
42
43 {\bf {\large A1. Ecosystem Model Parametrization}}
44
45 The ecosystem model equations are similar that used in Follows et al. (2007).
46 Most significant change is that the grazing term is now includes variable
47 palatibility of phytoplankton and sloppy feeding as treated in Dutkiewicz et al
48 (2005), and the nitrogen limitation term has been slightly modified. For
49 fuller discussions we refer the reader to the Online Supplemental material of
50 Follows et al. (2007).
51
52 Several nutrients $N_i$ nourish many phytoplankton types $P_j$ which are grazed
53 by several zooplankton types $Z_k$. Mortality of and excretion from plankton,
54 and sloppy feeding by zooplankton contribute to a dissolved organic matter
55 $DOM_i$ pool and a sinking particulate organic matter pool $POM_i$. Subscript
56 $i$ refers to a nutrient/element, $j$ for a specific phytoplankton type, and
57 $k$ for a zooplankton type.
58
59 \begin{eqnarray}
60 \frac{\partial N_i}{\partial t} & = &
61 -\nabla \cdot (\textbf{u} N_i) +\nabla \cdot (\kappa\nabla N_i)-
62 \sum_j [\mu_j P_j M_{ij}]+S_{N_i}
63 \nonumber \\
64 \frac{\partial P_j}{\partial t} & = &
65 -\nabla \cdot (\textbf{u} P_j) + \nabla \cdot (\kappa\nabla P_j)+
66 \mu_j P_j - m_j^P P_j-\sum_k [g_{jk} Z_{k,i=1}]
67 -\frac{\partial(w_j^P P_j)}{\partial z}
68 \nonumber \\
69 \frac{\partial Z_{ki}}{\partial t} & = &
70 - \nabla \cdot (\textbf{u} Z_{ki}) + \nabla \cdot (\kappa\nabla Z_{ki})
71 +Z_{ki}\sum_j [\zeta_{jk} g_{jk} M_{ij}] -m_k^Z Z_{ki}
72 \nonumber \\
73 \frac{\partial POM_i}{\partial t} & = &
74 -\nabla \cdot (\textbf{u} POM_i) + \nabla \cdot (\kappa\nabla POM_i)-
75 r_{PO_i}POM_i-\frac{\partial(w_{POi} POM_i)}{\partial z}+S_{POM_i}
76 \nonumber \\
77 \frac{\partial DOM_i}{\partial t} & = &
78 -\nabla \cdot (\textbf{u} DOM_i) + \nabla \cdot (\kappa\nabla DOM_i)-
79 r_{DO_i}DOM_i + S_{DOM_i}
80 \nonumber
81 \end{eqnarray}
82
83 where:\\
84 \mbox{} \hspace{.5cm} $\textbf{u}=(u,v,w),$ velocity in physical model, \\
85 \mbox{} \hspace{.5cm} $\kappa=$Mixing coefficients used in physical model,\\
86 \mbox{} \hspace{.5cm} $\mu_j=$Growth rate of phytoplankton $j$ (see below),\\
87 \mbox{} \hspace{.5cm} $M_{ij}=$Matrix of Redfield ratio of element $i$ to P
88 for phytoplankton $j$\\
89 \mbox{} \hspace{.5cm} $\zeta_{jk}=$ Grazing efficiency of zooplankton $k$ on phytoplankton $j$ (represents sloppy feeding), \\
90 \mbox{} \hspace{.5cm} $g_{jk}=$Grazing of zooplankton $k$ on phytoplankton $j$ (see below),\\
91 \mbox{} \hspace{.5cm} $m_j^P=$Mortality/Excretion rate for phytoplankton $j$,\\
92 \mbox{} \hspace{.5cm} $m_k^Z=$Mortality/Excretion rate for zooplankton $k$,\\
93 \mbox{} \hspace{.5cm} $w_j^P=$Sinking rate for phytoplankton $j$,\\
94 \mbox{} \hspace{.5cm} $w_{POi}=$Sinking rate for POM $i$,\\
95 \mbox{} \hspace{.5cm} $r_{DOM_i}=$Remineralization rate of DOM for element
96 $i$,\\
97 \mbox{} \hspace{.5cm} $r_{POM_i}=$Remineralization rate of POM for element
98 $i$,\\
99 \mbox{} \hspace{.5cm} $S_{N_i}=$Additional source or sink for nutrient $i$
100 (see below),\\
101 \mbox{} \hspace{.5cm} $S_{DOM_i}=$ Source of DOM $i$,
102 for element $i$ (see below),\\
103 \mbox{} \hspace{.5cm} $S_{POM_i}=$ Source of POM $i$,
104 for element $i$ (see below),\\
105
106
107
108 \vspace{.2cm}
109
110 {\it {\bf A1.1. Phytoplankton growth:}}\\
111 \[
112 \mu_j = \mu_{max_{j}} \gamma_j^T \gamma_j^I \gamma_j^N
113 \]
114 where\\
115 \mbox{} \hspace{.5cm} $\mu_{max_{j}}=$ maximum growth rate of phytoplankton $j$,\\
116 \mbox{} \hspace{.5cm} $\gamma_j^T=$Modification of growth rate by
117 temperature for phytoplankton $j$,\\
118 \mbox{} \hspace{.5cm} $\gamma_j^I=$Modification of growth rate by light for
119 phytoplankton $j$,\\
120 \mbox{} \hspace{.5cm} $\gamma_j^N=$Modification of growth rate by nutrients
121 for phytoplankton $j$.\\
122
123 Temperature modification (Fig. \ref{fig-growexp1}a):\\
124 \[
125 \gamma_j^T= \frac{1}{\tau_1} (A^T e^{-B(T-T_o)^c} - \tau_2 )
126 \]
127 where coefficients $\tau_1$ and $\tau_2$ normalize the maximum
128 value, and $A,B,T_o$ and $C$ regulate the form of the temperature
129 modification function. $T$ is the local model ocean temperature.
130
131 Light modification (Fig. \ref{fig-growexp1}b):\\
132 \[
133 \gamma_j^I= \frac{1}{F_o} (1-e^{k_{par} I} ) e^{-k_{inhib} I}
134 \]
135 where $F_{o}$ is a factor controlling the maximum value, $k_{par}$ is the
136 PAR saturation coefficient and $k_{inhib}$ is the PAR inhibition factor.
137 $I$ is the local PAR, that has been attenuated through the water column
138 (including the effects of self-shading).
139
140 Nutrient limitation is determined by the most limiting nutrient:
141 \[
142 \gamma_j^N = \min(N_i^{lim})
143 \]
144 where typically
145 $N_i^{lim}=\frac{N_i}{N_i+\kappa_{N_{ij}}}$
146 (Fig. \ref{fig-growexp1}c) and $\kappa_{N_{ij}}$ is the half saturation constant of nutrient $i$ for phytoplankton $j$.
147
148 When we include the nitrogen as a potential limiting nutrient (EXP2) we
149 modify $N_i^{lim}$ to take into account the uptake inhibition caused by ammonium:
150 \[
151 N_N^{lim} = \frac{NO_3 + NO_2}{NO_3+NO_2+\kappa_{IN}} e^{-\psi NH_4}
152 +\frac{NH_4}{NH_4 + \kappa_{NH4}}
153 \]
154 where $\psi$ reflects the inhibition and $\kappa_{IN}$ and $ \kappa_{NH4}$
155 are the half saturation constant of $IN=NO_3+NO_2$ and $NH_4$ respectively.
156
157 \vspace{.2cm}
158
159 {\it {\bf A1.2. Zooplankton grazing:}}\\
160 \[
161 g_{jk} =g_{max_{jk}} \frac{\eta_{jk} P_j}{A_k} \frac{A_k}{A_k+\kappa^P_k}
162 \]
163 where\\
164 \mbox{} \hspace{.5cm} $g_{max_{jk}}=$ Maximum grazing rate of zooplankton $k$ on
165 phytoplankton $j$,\\
166 \mbox{} \hspace{.5cm} $\eta_{jk}=$ Palatibility of plankton $j$ to zooplankton $k$,\\
167 \mbox{} \hspace{.5cm} $A_k=$ Palatibility (for zooplankton $k$) weighted total phytoplankton concentration,\\
168 \mbox{} \hspace{1.1cm} $=\sum_j [\eta_{jk} P_j$] \\
169 \mbox{} \hspace{.5cm} $\kappa^P_k=$Half-saturation constant for grazing of zooplankton $k$,\\
170
171
172 \vspace{.2cm}
173
174 {\it {\bf A1.3. Inorganic nutrient Source/Sink terms:}}\\
175 $S_{N_i}$ depends on the specific nutrient, and includes the remineralization
176 of organic matter, external sources and other non-biological transformations:
177 \begin{eqnarray}
178 S_{PO4} & = & r_{DOP} DOP + r_{POP} POP \nonumber \\
179 S_{Si} & = & r_{POSi} POSi \nonumber \\
180 S_{FeT} & = & r_{DOFe} DOFe + r_{POFe} POFe -c_{scav} Fe' + \alpha F_{atmos} \nonumber \\
181 S_{NO3} & = & \zeta_{NO3} NO_2 \nonumber \\
182 S_{NO2} & = & \zeta_{NO2} NH4 - \zeta_{NO3} NO_2 \nonumber \\
183 S_{NH4} & = & r_{DON} DON + r_{PON} PON - \zeta_{NO2} NH_4 \nonumber
184 \end{eqnarray}
185
186 where:\\
187 \mbox{} \hspace{.5cm} $r_{DOM_i}=$Remineralization rate of DOM for element
188 $i$, here P, Fe, N,\\
189 \mbox{} \hspace{.5cm} $r_{POM_i}=$Remineralization rate of POM for element
190 $i$, here P, Si, Fe, N,\\
191 \mbox{} \hspace{.5cm} $c_{scav}=$scavenging rate for free iron,\\
192 \mbox{} \hspace{.5cm} $Fe'=$free iron, modelled as in Parekh et al (2004), \\
193 \mbox{} \hspace{.5cm} $alpha=$solubility of iron dust in ocean water, \\
194 \mbox{} \hspace{.5cm} $F_{atmos}=$atmospheric deposition of iron dust on surface of model ocean,\\
195 \mbox{} \hspace{.5cm} $\zeta_{NO3}=\zeta_{NO3}^0(1-I/I_0)_+=$oxidation rate of NO$_2$ to NO$_3$,\\
196 \mbox{} \hspace{.5cm} $\zeta_{NO2}=\zeta_{NO2}^0(1-I/I_0)_+=$oxidation rate of NH$_4$ to NO$_2$ (is photoinhibited),\\
197 \mbox{} \hspace{.5cm} $I_0=$critical light level below which oxidation occurs,\\
198
199 The remineralization timescale $r_{DOi}$ and $r_{POi}$ parameterizes the break
200 down of organic matter to an inorganic form through the microbial loop.
201
202
203 {\it {\bf A1.3.1 Fe chemistry:}}\\
204 \begin{eqnarray}
205 Fe' & = & FeT - FeL \nonumber \\
206 FeL & = & L_{tot} -
207 \frac{ L_{stab} (L_{tot} - FeT) - 1
208 +\sqrt{(1 - L_{stab} (L_{tot} - FeT))^2 + 4 L_{stab} L_{tot}}}
209 {2 L_{stab}} \nonumber
210 \end{eqnarray}
211 ($Fe'$ may be constrained to be less than $Fe'_{max}$ while preserving $FeT$).
212
213
214 {\it {\bf A1.4 DOM and POM Source terms:}}\\
215 $S_{DOM_i}$ and $S_{POM_i}$ are the sources of dissolved and particulate
216 organic detritus arising from mortality, excretion and sloppy feeding of the
217 plantkon. We simply define that a fixed fraction $\lambda_m$ of the the
218 mortality/excretion term and the non-consumed grazed phytoplankton
219 ($\lambda_g$) go into the dissolved pool and the remainder into the particulate
220 pool.
221 \begin{eqnarray}
222 S_{DOM_i} & = & \sum_{j} [\lambda_{mp_{ij}} m^p_j P_j M_{ij}]
223 + \sum_{k} [\lambda_{mz_{ik}} m^z_k Z_{ik}]
224 + \sum_{k} \sum_{j} [\lambda_{g_{ijk}} (1-\zeta_{jk})
225 g_{ij} M_{ij} Z_k ]
226 \nonumber \\
227 S_{POM_i} & = & \sum_{j} [(1-\lambda_{m_{ij}}) m^p_j P_j M_{ij}]
228 + \sum_{k} [(1-\lambda_{mz_{ik}}) m^z_k Z_{ik}]
229 + \sum_{k} \sum_{j} [(1-\lambda_{g_{ijk}}) (1-\zeta_{jk})
230 g_{ij} M_{ij} Z_k ]
231 \nonumber
232 \end{eqnarray}
233
234
235 \newcommand{\pcm}[1]{P^C_{m#1}}
236 \newcommand{\pcmax}[1]{P^C_{\textrm{MAX}#1}}
237 \newcommand{\pcarbon}{P^C}
238 \newcommand{\chltoc}{\theta}
239 \newcommand{\chltocmax}{\theta^{\textrm{max}}}
240 \newcommand{\chltocmin}{\theta^{\textrm{min}}}
241 \newcommand{\alphachl}{\alpha^{\textrm{Chl}}}
242 \newcommand{\mQyield}{\mathit{mQ}^{\textrm{yield}}}
243 \newcommand{\RPC}{R^{PC}}
244 \newcommand{\phychl}{\mathit{Chl}}
245 \newcommand{\aphychlave}{A^{\mathrm{phy}}_{\mathrm{Chl,ave}}}
246
247 {\it {\bf A1.4 Geider light limitation model:}}\\
248 The phytoplankton growth rate is given by the carbon-specific photosynthesis rate
249 (rate of carbon synthesized per carbon present),
250 \[
251 \mu_j = \pcarbon_j
252 \]
253 The carbon-specific photosynthesis rate
254 \[
255 \pcarbon_j = \pcm{,j} \begin{cases}
256 1 - e^{-\alphachl_j I \chltoc_j/\pcm{,j}} & \text{if }I>0.1 \\
257 0 & \text{otherwise}
258 \end{cases}
259 \]
260 depends on the carbon-specific, light-saturated photosynthesis rate
261 \[
262 \pcm{,j}=\pcmax{j} \gamma^N_j \gamma^T_j
263 \]
264 and the Chl $a$ to carbon ratio
265 \[
266 \chltoc_j = \left[ \frac{\chltocmax_j}
267 {1 + \chltocmax_j \alphachl_j I / (2 \pcm{,j})}
268 \right]^{\chltocmax_j}_{\chltocmin_j}
269 \]
270
271 The chlorophyll concentration is
272 \[
273 \phychl_j=P_j \RPC_j \chltoc_j
274 \]
275
276 The light limitation factor can be diagnosed
277 \[
278 \gamma^I_j=\pcarbon_j/\pcm{,j}
279 \]
280
281 \[
282 \alphachl_j = \mQyield_j \aphychlave
283 \]
284
285 Parameters:\\
286 \begin{tabular}{@{\qquad}r@{}l}
287 $\pcmax{j} ={}$& Maximum C-spec.\ photosynthesis rate at reference temperature of phytoplankton $j$\\
288 $\chltocmax_j ={}$& Maximum Chl a to C ratio if phytoplankton $j$\\
289 $\RPC_j ={}$& Carbon to phosphorus (!) ratio of phytoplankton $j$\\
290 $\alphachl_j ={}$& Chl a-specific initial slope of the photosynthesis-light curve\\
291 $\mQyield_j ={}$& slope of the photosynthesis-light curve per absorption\\
292 $\aphychlave ={}$& absorption ($m^{-1}$) per mg Chl a
293 \end{tabular}
294
295
296
297 \newcommand{\Ptot}{P_{\mathrm{tot}}}
298
299 {\it {\bf A2 Diagnostics:}}\\
300 Total phytoplankton biomass:
301 \[
302 \Ptot = \sum_j P_j
303 \]
304
305 \begin{tabular}{llll}
306 name & definition && units \\
307 \hline
308 \texttt{PhyTot } & $\Ptot$ && $\mu\mathrm{M\,P}$ \\
309 \texttt{PhyGrp1 } & Total biomass of small phytoplankton with $\texttt{nsrc}=1$ && $\mu\mathrm{M\,P}$ \\
310 \texttt{PhyGrp2 } & Total biomass of small phytoplankton with $\texttt{nsrc}=2$ && $\mu\mathrm{M\,P}$ \\
311 \texttt{PhyGrp3 } & Total biomass of small phytoplankton with $\texttt{nsrc}=3$ && $\mu\mathrm{M\,P}$ \\
312 \texttt{PhyGrp4 } & Total biomass of large non-diatoms && $\mu\mathrm{M\,P}$ \\
313 \texttt{PhyGrp5 } & Total biomass of diatoms && $\mu\mathrm{M\,P}$ \\
314 \texttt{PP } & Primary production && $\mu\mathrm{M\,P}\, \mathrm{s}^{-1}$ \\
315 \texttt{Nfix } & Nitrogen fixation && $\mu\mathrm{M\,N}\, \mathrm{s}^{-1}$ \\
316 \texttt{PAR } & Photosynthetically active radiation && $\mu\mathrm{Ein}\, \mathrm{m}^{-2}\,\mathrm{s}^{-1}$ \\
317 \texttt{Rstar01 } & $R^*_{\mathrm{PO4}}$ of Phytoplankton species \#1, \dots && $\mu\mathrm{M\,P}$ \\
318 \texttt{Diver1 } & Number of species with $P_j > 10^{-8}\,\mu\mathrm{M\,P}$ & where $\Ptot>10^{-12}$ \\
319 \texttt{Diver2 } & Number of species with $P_j > 0.1\%\, \Ptot$ & where $\Ptot>10^{-12}$ \\
320 \texttt{Diver3 } & Number of species that constitute 99.9\% of $\Ptot$ & where $\Ptot>10^{-12}$ \\
321 \texttt{Diver4 } & Number of species with $P_j > 10^{-5} \cdot \max\limits_j P_j$ & where $\Ptot>10^{-12}$ \\
322 \end{tabular}
323
324
325 \end{document}

  ViewVC Help
Powered by ViewVC 1.1.22