/[MITgcm]/MITgcm_contrib/darwin/doc/equations.tex
ViewVC logotype

Annotation of /MITgcm_contrib/darwin/doc/equations.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download) (as text)
Mon Nov 24 21:59:58 2008 UTC (16 years, 7 months ago) by jahn
Branch: MAIN
CVS Tags: ctrb_darwin_ckpt61s_20090630, ctrb_darwin_ckpt61o_20090527, ctrb_darwin_ckpt61d_20081212, ctrb_darwin_ckpt61o_20090610, ctrb_darwin_ckpt61k_20090312, ctrb_darwin_ckpt61r_20090626, ctrb_darwin_ckpt61p_20090610, ctrb_darwin_ckpt61h_20090224, ctrb_darwin_ckpt61n_20090519, ctrb_darwin_ckpt61m_20090430, ctrb_darwin_ckpt61n_20090513, ctrb_darwin_ckpt61i_20090224, ctrb_darwin_ckpt61t_20090820, ctrb_darwin_ckpt61u_20090825, ctrb_darwin_ckpt61l_20090408, ctrb_darwin_ckpt61q_20090626, ctrb_darwin_ckpt61i_20090312
File MIME type: application/x-tex
add some latex documentation

1 jahn 1.1 \documentclass[11pt,letterpaper,english]{article}
2     \usepackage[T1]{fontenc}
3     \usepackage[latin1]{inputenc}
4     \setlength\parskip{\medskipamount}
5     \setlength\parindent{0pt}
6     \usepackage{amsmath}
7     %\usepackage{graphicx}
8     \usepackage{amssymb}
9     \usepackage{babel}
10     %use epsfig package for figs
11     \usepackage{epsfig}
12     \makeatother
13    
14    
15     %MICK - STUFF TO USE HELVETICA FONTS IN TEX
16     %%\usepackage[scaled=0.92]{helvet}
17     \usepackage{helvet}
18     \usepackage[sf]{titlesec}
19     \renewcommand\familydefault{\sfdefault}
20    
21     %use lgrind to include code listing
22     %\usepackage{lgrind}
23    
24     %other formatting stuff
25     \oddsidemargin 0pt
26     \flushbottom
27     \parskip 10pt
28     \parindent 0pt
29     \textwidth 465pt
30     \topmargin 10pt
31     \textheight 610pt
32     \renewcommand{\baselinestretch}{1.0}
33    
34    
35     \begin{document}
36    
37     % SOME MACROS
38     \newcommand{\etal}{{\em et al.}}
39     \newcommand{\ux}{{\underline{x}}}
40     \newcommand{\tdt}{{t}}
41    
42    
43     {\bf {\large A1. Ecosystem Model Parametrization}}
44    
45     The ecosystem model equations are similar that used in Follows et al. (2007).
46     Most significant change is that the grazing term is now includes variable
47     palatibility of phytoplankton and sloppy feeding as treated in Dutkiewicz et al
48     (2005), and the nitrogen limitation term has been slightly modified. For
49     fuller discussions we refer the reader to the Online Supplemental material of
50     Follows et al. (2007).
51    
52     Several nutrients $N_i$ nourish many phytoplankton types $P_j$ which are grazed
53     by several zooplankton types $Z_k$. Mortality of and excretion from plankton,
54     and sloppy feeding by zooplankton contribute to a dissolved organic matter
55     $DOM_i$ pool and a sinking particulate organic matter pool $POM_i$. Subscript
56     $i$ refers to a nutrient/element, $j$ for a specific phytoplankton type, and
57     $k$ for a zooplankton type.
58    
59     \begin{eqnarray}
60     \frac{\partial N_i}{\partial t} & = &
61     -\nabla \cdot (\textbf{u} N_i) +\nabla \cdot (\kappa\nabla N_i)-
62     \sum_j [\mu_j P_j M_{ij}]+S_{N_i}
63     \nonumber \\
64     \frac{\partial P_j}{\partial t} & = &
65     -\nabla \cdot (\textbf{u} P_j) + \nabla \cdot (\kappa\nabla P_j)+
66     \mu_j P_j - m_j^P P_j-\sum_k [g_{jk} Z_{k,i=1}]
67     -\frac{\partial(w_j^P P_j)}{\partial z}
68     \nonumber \\
69     \frac{\partial Z_{ki}}{\partial t} & = &
70     - \nabla \cdot (\textbf{u} Z_{ki}) + \nabla \cdot (\kappa\nabla Z_{ki})
71     +Z_{ki}\sum_j [\zeta_{jk} g_{jk} M_{ij}] -m_k^Z Z_{ki}
72     \nonumber \\
73     \frac{\partial POM_i}{\partial t} & = &
74     -\nabla \cdot (\textbf{u} POM_i) + \nabla \cdot (\kappa\nabla POM_i)-
75     r_{PO_i}POM_i-\frac{\partial(w_{POi} POM_i)}{\partial z}+S_{POM_i}
76     \nonumber \\
77     \frac{\partial DOM_i}{\partial t} & = &
78     -\nabla \cdot (\textbf{u} DOM_i) + \nabla \cdot (\kappa\nabla DOM_i)-
79     r_{DO_i}DOM_i + S_{DOM_i}
80     \nonumber
81     \end{eqnarray}
82    
83     where:\\
84     \mbox{} \hspace{.5cm} $\textbf{u}=(u,v,w),$ velocity in physical model, \\
85     \mbox{} \hspace{.5cm} $\kappa=$Mixing coefficients used in physical model,\\
86     \mbox{} \hspace{.5cm} $\mu_j=$Growth rate of phytoplankton $j$ (see below),\\
87     \mbox{} \hspace{.5cm} $M_{ij}=$Matrix of Redfield ratio of element $i$ to P
88     for phytoplankton $j$\\
89     \mbox{} \hspace{.5cm} $\zeta_{jk}=$ Grazing efficiency of zooplankton $k$ on phytoplankton $j$ (represents sloppy feeding), \\
90     \mbox{} \hspace{.5cm} $g_{jk}=$Grazing of zooplankton $k$ on phytoplankton $j$ (see below),\\
91     \mbox{} \hspace{.5cm} $m_j^P=$Mortality/Excretion rate for phytoplankton $j$,\\
92     \mbox{} \hspace{.5cm} $m_k^Z=$Mortality/Excretion rate for zooplankton $k$,\\
93     \mbox{} \hspace{.5cm} $w_j^P=$Sinking rate for phytoplankton $j$,\\
94     \mbox{} \hspace{.5cm} $w_{POi}=$Sinking rate for POM $i$,\\
95     \mbox{} \hspace{.5cm} $r_{DOM_i}=$Remineralization rate of DOM for element
96     $i$,\\
97     \mbox{} \hspace{.5cm} $r_{POM_i}=$Remineralization rate of POM for element
98     $i$,\\
99     \mbox{} \hspace{.5cm} $S_{N_i}=$Additional source or sink for nutrient $i$
100     (see below),\\
101     \mbox{} \hspace{.5cm} $S_{DOM_i}=$ Source of DOM $i$,
102     for element $i$ (see below),\\
103     \mbox{} \hspace{.5cm} $S_{POM_i}=$ Source of POM $i$,
104     for element $i$ (see below),\\
105    
106    
107    
108     \vspace{.2cm}
109    
110     {\it {\bf A1.1. Phytoplankton growth:}}\\
111     \[
112     \mu_j = \mu_{max_{j}} \gamma_j^T \gamma_j^I \gamma_j^N
113     \]
114     where\\
115     \mbox{} \hspace{.5cm} $\mu_{max_{j}}=$ maximum growth rate of phytoplankton $j$,\\
116     \mbox{} \hspace{.5cm} $\gamma_j^T=$Modification of growth rate by
117     temperature for phytoplankton $j$,\\
118     \mbox{} \hspace{.5cm} $\gamma_j^I=$Modification of growth rate by light for
119     phytoplankton $j$,\\
120     \mbox{} \hspace{.5cm} $\gamma_j^N=$Modification of growth rate by nutrients
121     for phytoplankton $j$.\\
122    
123     Temperature modification (Fig. \ref{fig-growexp1}a):\\
124     \[
125     \gamma_j^T= \frac{1}{\tau_1} (A^T e^{-B(T-T_o)^c} - \tau_2 )
126     \]
127     where coefficients $\tau_1$ and $\tau_2$ normalize the maximum
128     value, and $A,B,T_o$ and $C$ regulate the form of the temperature
129     modification function. $T$ is the local model ocean temperature.
130    
131     Light modification (Fig. \ref{fig-growexp1}b):\\
132     \[
133     \gamma_j^I= \frac{1}{F_o} (1-e^{k_{par} I} ) e^{-k_{inhib} I}
134     \]
135     where $F_{o}$ is a factor controlling the maximum value, $k_{par}$ is the
136     PAR saturation coefficient and $k_{inhib}$ is the PAR inhibition factor.
137     $I$ is the local PAR, that has been attenuated through the water column
138     (including the effects of self-shading).
139    
140     Nutrient limitation is determined by the most limiting nutrient:
141     \[
142     \gamma_j^N = \min(N_i^{lim})
143     \]
144     where typically
145     $N_i^{lim}=\frac{N_i}{N_i+\kappa_{N_{ij}}}$
146     (Fig. \ref{fig-growexp1}c) and $\kappa_{N_{ij}}$ is the half saturation constant of nutrient $i$ for phytoplankton $j$.
147    
148     When we include the nitrogen as a potential limiting nutrient (EXP2) we
149     modify $N_i^{lim}$ to take into account the uptake inhibition caused by ammonium:
150     \[
151     N_N^{lim} = \frac{NO_3 + NO_2}{NO_3+NO_2+\kappa_{IN}} e^{-\psi NH_4}
152     +\frac{NH_4}{NH_4 + \kappa_{NH4}}
153     \]
154     where $\psi$ reflects the inhibition and $\kappa_{IN}$ and $ \kappa_{NH4}$
155     are the half saturation constant of $IN=NO_3+NO_2$ and $NH_4$ respectively.
156    
157     \vspace{.2cm}
158    
159     {\it {\bf A1.2. Zooplankton grazing:}}\\
160     \[
161     g_{jk} =g_{max_{jk}} \frac{\eta_{jk} P_j}{A_k} \frac{A_k}{A_k+\kappa^P_k}
162     \]
163     where\\
164     \mbox{} \hspace{.5cm} $g_{max_{jk}}=$ Maximum grazing rate of zooplankton $k$ on
165     phytoplankton $j$,\\
166     \mbox{} \hspace{.5cm} $\eta_{jk}=$ Palatibility of plankton $j$ to zooplankton $k$,\\
167     \mbox{} \hspace{.5cm} $A_k=$ Palatibility (for zooplankton $k$) weighted total phytoplankton concentration,\\
168     \mbox{} \hspace{1.1cm} $=\sum_j [\eta_{jk} P_j$] \\
169     \mbox{} \hspace{.5cm} $\kappa^P_k=$Half-saturation constant for grazing of zooplankton $k$,\\
170    
171    
172     \vspace{.2cm}
173    
174     {\it {\bf A1.3. Inorganic nutrient Source/Sink terms:}}\\
175     $S_{N_i}$ depends on the specific nutrient, and includes the remineralization
176     of organic matter, external sources and other non-biological transformations:
177     \begin{eqnarray}
178     S_{PO4} & = & r_{DOP} DOP + r_{POP} POP \nonumber \\
179     S_{Si} & = & r_{POSi} POSi \nonumber \\
180     S_{FeT} & = & r_{DOFe} DOFe + r_{POFe} POFe -c_{scav} Fe' + \alpha F_{atmos} \nonumber \\
181     S_{NO3} & = & \zeta_{NO3} NO_2 \nonumber \\
182     S_{NO2} & = & \zeta_{NO2} NH4 - \zeta_{NO3} NO_2 \nonumber \\
183     S_{NH4} & = & r_{DON} DON + r_{PON} PON - \zeta_{NO2} NH_4 \nonumber
184     \end{eqnarray}
185    
186     where:\\
187     \mbox{} \hspace{.5cm} $r_{DOM_i}=$Remineralization rate of DOM for element
188     $i$, here P, Fe, N,\\
189     \mbox{} \hspace{.5cm} $r_{POM_i}=$Remineralization rate of POM for element
190     $i$, here P, Si, Fe, N,\\
191     \mbox{} \hspace{.5cm} $c_{scav}=$scavenging rate for free iron,\\
192     \mbox{} \hspace{.5cm} $Fe'=$free iron, modelled as in Parekh et al (2004), \\
193     \mbox{} \hspace{.5cm} $alpha=$solubility of iron dust in ocean water, \\
194     \mbox{} \hspace{.5cm} $F_{atmos}=$atmospheric deposition of iron dust on surface of model ocean,\\
195     \mbox{} \hspace{.5cm} $\zeta_{NO3}=\zeta_{NO3}^0(1-I/I_0)_+=$oxidation rate of NO$_2$ to NO$_3$,\\
196     \mbox{} \hspace{.5cm} $\zeta_{NO2}=\zeta_{NO2}^0(1-I/I_0)_+=$oxidation rate of NH$_4$ to NO$_2$ (is photoinhibited),\\
197     \mbox{} \hspace{.5cm} $I_0=$critical light level below which oxidation occurs,\\
198    
199     The remineralization timescale $r_{DOi}$ and $r_{POi}$ parameterizes the break
200     down of organic matter to an inorganic form through the microbial loop.
201    
202    
203     {\it {\bf A1.3.1 Fe chemistry:}}\\
204     \begin{eqnarray}
205     Fe' & = & FeT - FeL \nonumber \\
206     FeL & = & L_{tot} -
207     \frac{ L_{stab} (L_{tot} - FeT) - 1
208     +\sqrt{(1 - L_{stab} (L_{tot} - FeT))^2 + 4 L_{stab} L_{tot}}}
209     {2 L_{stab}} \nonumber
210     \end{eqnarray}
211     ($Fe'$ may be constrained to be less than $Fe'_{max}$ while preserving $FeT$).
212    
213    
214     {\it {\bf A1.4 DOM and POM Source terms:}}\\
215     $S_{DOM_i}$ and $S_{POM_i}$ are the sources of dissolved and particulate
216     organic detritus arising from mortality, excretion and sloppy feeding of the
217     plantkon. We simply define that a fixed fraction $\lambda_m$ of the the
218     mortality/excretion term and the non-consumed grazed phytoplankton
219     ($\lambda_g$) go into the dissolved pool and the remainder into the particulate
220     pool.
221     \begin{eqnarray}
222     S_{DOM_i} & = & \sum_{j} [\lambda_{mp_{ij}} m^p_j P_j M_{ij}]
223     + \sum_{k} [\lambda_{mz_{ik}} m^z_k Z_{ik}]
224     + \sum_{k} \sum_{j} [\lambda_{g_{ijk}} (1-\zeta_{jk})
225     g_{ij} M_{ij} Z_k ]
226     \nonumber \\
227     S_{POM_i} & = & \sum_{j} [(1-\lambda_{m_{ij}}) m^p_j P_j M_{ij}]
228     + \sum_{k} [(1-\lambda_{mz_{ik}}) m^z_k Z_{ik}]
229     + \sum_{k} \sum_{j} [(1-\lambda_{g_{ijk}}) (1-\zeta_{jk})
230     g_{ij} M_{ij} Z_k ]
231     \nonumber
232     \end{eqnarray}
233    
234    
235     \newcommand{\pcm}[1]{P^C_{m#1}}
236     \newcommand{\pcmax}[1]{P^C_{\textrm{MAX}#1}}
237     \newcommand{\pcarbon}{P^C}
238     \newcommand{\chltoc}{\theta}
239     \newcommand{\chltocmax}{\theta^{\textrm{max}}}
240     \newcommand{\chltocmin}{\theta^{\textrm{min}}}
241     \newcommand{\alphachl}{\alpha^{\textrm{Chl}}}
242     \newcommand{\mQyield}{\mathit{mQ}^{\textrm{yield}}}
243     \newcommand{\RPC}{R^{PC}}
244     \newcommand{\phychl}{\mathit{Chl}}
245     \newcommand{\aphychlave}{A^{\mathrm{phy}}_{\mathrm{Chl,ave}}}
246    
247     {\it {\bf A1.4 Geider light limitation model:}}\\
248     The phytoplankton growth rate is given by the carbon-specific photosynthesis rate
249     (rate of carbon synthesized per carbon present),
250     \[
251     \mu_j = \pcarbon_j
252     \]
253     The carbon-specific photosynthesis rate
254     \[
255     \pcarbon_j = \pcm{,j} \begin{cases}
256     1 - e^{-\alphachl_j I \chltoc_j/\pcm{,j}} & \text{if }I>0.1 \\
257     0 & \text{otherwise}
258     \end{cases}
259     \]
260     depends on the carbon-specific, light-saturated photosynthesis rate
261     \[
262     \pcm{,j}=\pcmax{j} \gamma^N_j \gamma^T_j
263     \]
264     and the Chl $a$ to carbon ratio
265     \[
266     \chltoc_j = \left[ \frac{\chltocmax_j}
267     {1 + \chltocmax_j \alphachl_j I / (2 \pcm{,j})}
268     \right]^{\chltocmax_j}_{\chltocmin_j}
269     \]
270    
271     The chlorophyll concentration is
272     \[
273     \phychl_j=P_j \RPC_j \chltoc_j
274     \]
275    
276     The light limitation factor can be diagnosed
277     \[
278     \gamma^I_j=\pcarbon_j/\pcm{,j}
279     \]
280    
281     \[
282     \alphachl_j = \mQyield_j \aphychlave
283     \]
284    
285     Parameters:\\
286     \begin{tabular}{@{\qquad}r@{}l}
287     $\pcmax{j} ={}$& Maximum C-spec.\ photosynthesis rate at reference temperature of phytoplankton $j$\\
288     $\chltocmax_j ={}$& Maximum Chl a to C ratio if phytoplankton $j$\\
289     $\RPC_j ={}$& Carbon to phosphorus (!) ratio of phytoplankton $j$\\
290     $\alphachl_j ={}$& Chl a-specific initial slope of the photosynthesis-light curve\\
291     $\mQyield_j ={}$& slope of the photosynthesis-light curve per absorption\\
292     $\aphychlave ={}$& absorption ($m^{-1}$) per mg Chl a
293     \end{tabular}
294    
295    
296    
297     \newcommand{\Ptot}{P_{\mathrm{tot}}}
298    
299     {\it {\bf A2 Diagnostics:}}\\
300     Total phytoplankton biomass:
301     \[
302     \Ptot = \sum_j P_j
303     \]
304    
305     \begin{tabular}{llll}
306     name & definition && units \\
307     \hline
308     \texttt{PhyTot } & $\Ptot$ && $\mu\mathrm{M\,P}$ \\
309     \texttt{PhyGrp1 } & Total biomass of small phytoplankton with $\texttt{nsrc}=1$ && $\mu\mathrm{M\,P}$ \\
310     \texttt{PhyGrp2 } & Total biomass of small phytoplankton with $\texttt{nsrc}=2$ && $\mu\mathrm{M\,P}$ \\
311     \texttt{PhyGrp3 } & Total biomass of small phytoplankton with $\texttt{nsrc}=3$ && $\mu\mathrm{M\,P}$ \\
312     \texttt{PhyGrp4 } & Total biomass of large non-diatoms && $\mu\mathrm{M\,P}$ \\
313     \texttt{PhyGrp5 } & Total biomass of diatoms && $\mu\mathrm{M\,P}$ \\
314     \texttt{PP } & Primary production && $\mu\mathrm{M\,P}\, \mathrm{s}^{-1}$ \\
315     \texttt{Nfix } & Nitrogen fixation && $\mu\mathrm{M\,N}\, \mathrm{s}^{-1}$ \\
316     \texttt{PAR } & Photosynthetically active radiation && $\mu\mathrm{Ein}\, \mathrm{m}^{-2}\,\mathrm{s}^{-1}$ \\
317     \texttt{Rstar01 } & $R^*_{\mathrm{PO4}}$ of Phytoplankton species \#1, \dots && $\mu\mathrm{M\,P}$ \\
318     \texttt{Diver1 } & Number of species with $P_j > 10^{-8}\,\mu\mathrm{M\,P}$ & where $\Ptot>10^{-12}$ \\
319     \texttt{Diver2 } & Number of species with $P_j > 0.1\%\, \Ptot$ & where $\Ptot>10^{-12}$ \\
320     \texttt{Diver3 } & Number of species that constitute 99.9\% of $\Ptot$ & where $\Ptot>10^{-12}$ \\
321     \texttt{Diver4 } & Number of species with $P_j > 10^{-5} \cdot \max\limits_j P_j$ & where $\Ptot>10^{-12}$ \\
322     \end{tabular}
323    
324    
325     \end{document}

  ViewVC Help
Powered by ViewVC 1.1.22