1 |
jahn |
1.1 |
\documentclass[11pt,letterpaper,english]{article} |
2 |
|
|
\usepackage[T1]{fontenc} |
3 |
|
|
\usepackage[latin1]{inputenc} |
4 |
|
|
\setlength\parskip{\medskipamount} |
5 |
|
|
\setlength\parindent{0pt} |
6 |
|
|
\usepackage{amsmath} |
7 |
|
|
%\usepackage{graphicx} |
8 |
|
|
\usepackage{amssymb} |
9 |
|
|
\usepackage{babel} |
10 |
|
|
%use epsfig package for figs |
11 |
|
|
\usepackage{epsfig} |
12 |
|
|
\makeatother |
13 |
|
|
|
14 |
|
|
|
15 |
|
|
%MICK - STUFF TO USE HELVETICA FONTS IN TEX |
16 |
|
|
%%\usepackage[scaled=0.92]{helvet} |
17 |
|
|
\usepackage{helvet} |
18 |
|
|
\usepackage[sf]{titlesec} |
19 |
|
|
\renewcommand\familydefault{\sfdefault} |
20 |
|
|
|
21 |
|
|
%use lgrind to include code listing |
22 |
|
|
%\usepackage{lgrind} |
23 |
|
|
|
24 |
|
|
%other formatting stuff |
25 |
|
|
\oddsidemargin 0pt |
26 |
|
|
\flushbottom |
27 |
|
|
\parskip 10pt |
28 |
|
|
\parindent 0pt |
29 |
|
|
\textwidth 465pt |
30 |
|
|
\topmargin 10pt |
31 |
|
|
\textheight 610pt |
32 |
|
|
\renewcommand{\baselinestretch}{1.0} |
33 |
|
|
|
34 |
|
|
|
35 |
|
|
\begin{document} |
36 |
|
|
|
37 |
|
|
% SOME MACROS |
38 |
|
|
\newcommand{\etal}{{\em et al.}} |
39 |
|
|
\newcommand{\ux}{{\underline{x}}} |
40 |
|
|
\newcommand{\tdt}{{t}} |
41 |
|
|
|
42 |
|
|
|
43 |
|
|
{\bf {\large A1. Ecosystem Model Parametrization}} |
44 |
|
|
|
45 |
|
|
The ecosystem model equations are similar that used in Follows et al. (2007). |
46 |
|
|
Most significant change is that the grazing term is now includes variable |
47 |
|
|
palatibility of phytoplankton and sloppy feeding as treated in Dutkiewicz et al |
48 |
|
|
(2005), and the nitrogen limitation term has been slightly modified. For |
49 |
|
|
fuller discussions we refer the reader to the Online Supplemental material of |
50 |
|
|
Follows et al. (2007). |
51 |
|
|
|
52 |
|
|
Several nutrients $N_i$ nourish many phytoplankton types $P_j$ which are grazed |
53 |
|
|
by several zooplankton types $Z_k$. Mortality of and excretion from plankton, |
54 |
|
|
and sloppy feeding by zooplankton contribute to a dissolved organic matter |
55 |
|
|
$DOM_i$ pool and a sinking particulate organic matter pool $POM_i$. Subscript |
56 |
|
|
$i$ refers to a nutrient/element, $j$ for a specific phytoplankton type, and |
57 |
|
|
$k$ for a zooplankton type. |
58 |
|
|
|
59 |
|
|
\begin{eqnarray} |
60 |
|
|
\frac{\partial N_i}{\partial t} & = & |
61 |
|
|
-\nabla \cdot (\textbf{u} N_i) +\nabla \cdot (\kappa\nabla N_i)- |
62 |
|
|
\sum_j [\mu_j P_j M_{ij}]+S_{N_i} |
63 |
|
|
\nonumber \\ |
64 |
|
|
\frac{\partial P_j}{\partial t} & = & |
65 |
|
|
-\nabla \cdot (\textbf{u} P_j) + \nabla \cdot (\kappa\nabla P_j)+ |
66 |
|
|
\mu_j P_j - m_j^P P_j-\sum_k [g_{jk} Z_{k,i=1}] |
67 |
|
|
-\frac{\partial(w_j^P P_j)}{\partial z} |
68 |
|
|
\nonumber \\ |
69 |
|
|
\frac{\partial Z_{ki}}{\partial t} & = & |
70 |
|
|
- \nabla \cdot (\textbf{u} Z_{ki}) + \nabla \cdot (\kappa\nabla Z_{ki}) |
71 |
|
|
+Z_{ki}\sum_j [\zeta_{jk} g_{jk} M_{ij}] -m_k^Z Z_{ki} |
72 |
|
|
\nonumber \\ |
73 |
|
|
\frac{\partial POM_i}{\partial t} & = & |
74 |
|
|
-\nabla \cdot (\textbf{u} POM_i) + \nabla \cdot (\kappa\nabla POM_i)- |
75 |
|
|
r_{PO_i}POM_i-\frac{\partial(w_{POi} POM_i)}{\partial z}+S_{POM_i} |
76 |
|
|
\nonumber \\ |
77 |
|
|
\frac{\partial DOM_i}{\partial t} & = & |
78 |
|
|
-\nabla \cdot (\textbf{u} DOM_i) + \nabla \cdot (\kappa\nabla DOM_i)- |
79 |
|
|
r_{DO_i}DOM_i + S_{DOM_i} |
80 |
|
|
\nonumber |
81 |
|
|
\end{eqnarray} |
82 |
|
|
|
83 |
|
|
where:\\ |
84 |
|
|
\mbox{} \hspace{.5cm} $\textbf{u}=(u,v,w),$ velocity in physical model, \\ |
85 |
|
|
\mbox{} \hspace{.5cm} $\kappa=$Mixing coefficients used in physical model,\\ |
86 |
|
|
\mbox{} \hspace{.5cm} $\mu_j=$Growth rate of phytoplankton $j$ (see below),\\ |
87 |
|
|
\mbox{} \hspace{.5cm} $M_{ij}=$Matrix of Redfield ratio of element $i$ to P |
88 |
|
|
for phytoplankton $j$\\ |
89 |
|
|
\mbox{} \hspace{.5cm} $\zeta_{jk}=$ Grazing efficiency of zooplankton $k$ on phytoplankton $j$ (represents sloppy feeding), \\ |
90 |
|
|
\mbox{} \hspace{.5cm} $g_{jk}=$Grazing of zooplankton $k$ on phytoplankton $j$ (see below),\\ |
91 |
|
|
\mbox{} \hspace{.5cm} $m_j^P=$Mortality/Excretion rate for phytoplankton $j$,\\ |
92 |
|
|
\mbox{} \hspace{.5cm} $m_k^Z=$Mortality/Excretion rate for zooplankton $k$,\\ |
93 |
|
|
\mbox{} \hspace{.5cm} $w_j^P=$Sinking rate for phytoplankton $j$,\\ |
94 |
|
|
\mbox{} \hspace{.5cm} $w_{POi}=$Sinking rate for POM $i$,\\ |
95 |
|
|
\mbox{} \hspace{.5cm} $r_{DOM_i}=$Remineralization rate of DOM for element |
96 |
|
|
$i$,\\ |
97 |
|
|
\mbox{} \hspace{.5cm} $r_{POM_i}=$Remineralization rate of POM for element |
98 |
|
|
$i$,\\ |
99 |
|
|
\mbox{} \hspace{.5cm} $S_{N_i}=$Additional source or sink for nutrient $i$ |
100 |
|
|
(see below),\\ |
101 |
|
|
\mbox{} \hspace{.5cm} $S_{DOM_i}=$ Source of DOM $i$, |
102 |
|
|
for element $i$ (see below),\\ |
103 |
|
|
\mbox{} \hspace{.5cm} $S_{POM_i}=$ Source of POM $i$, |
104 |
|
|
for element $i$ (see below),\\ |
105 |
|
|
|
106 |
|
|
|
107 |
|
|
|
108 |
|
|
\vspace{.2cm} |
109 |
|
|
|
110 |
|
|
{\it {\bf A1.1. Phytoplankton growth:}}\\ |
111 |
|
|
\[ |
112 |
|
|
\mu_j = \mu_{max_{j}} \gamma_j^T \gamma_j^I \gamma_j^N |
113 |
|
|
\] |
114 |
|
|
where\\ |
115 |
|
|
\mbox{} \hspace{.5cm} $\mu_{max_{j}}=$ maximum growth rate of phytoplankton $j$,\\ |
116 |
|
|
\mbox{} \hspace{.5cm} $\gamma_j^T=$Modification of growth rate by |
117 |
|
|
temperature for phytoplankton $j$,\\ |
118 |
|
|
\mbox{} \hspace{.5cm} $\gamma_j^I=$Modification of growth rate by light for |
119 |
|
|
phytoplankton $j$,\\ |
120 |
|
|
\mbox{} \hspace{.5cm} $\gamma_j^N=$Modification of growth rate by nutrients |
121 |
|
|
for phytoplankton $j$.\\ |
122 |
|
|
|
123 |
|
|
Temperature modification (Fig. \ref{fig-growexp1}a):\\ |
124 |
|
|
\[ |
125 |
|
|
\gamma_j^T= \frac{1}{\tau_1} (A^T e^{-B(T-T_o)^c} - \tau_2 ) |
126 |
|
|
\] |
127 |
|
|
where coefficients $\tau_1$ and $\tau_2$ normalize the maximum |
128 |
|
|
value, and $A,B,T_o$ and $C$ regulate the form of the temperature |
129 |
|
|
modification function. $T$ is the local model ocean temperature. |
130 |
|
|
|
131 |
|
|
Light modification (Fig. \ref{fig-growexp1}b):\\ |
132 |
|
|
\[ |
133 |
|
|
\gamma_j^I= \frac{1}{F_o} (1-e^{k_{par} I} ) e^{-k_{inhib} I} |
134 |
|
|
\] |
135 |
|
|
where $F_{o}$ is a factor controlling the maximum value, $k_{par}$ is the |
136 |
|
|
PAR saturation coefficient and $k_{inhib}$ is the PAR inhibition factor. |
137 |
|
|
$I$ is the local PAR, that has been attenuated through the water column |
138 |
|
|
(including the effects of self-shading). |
139 |
|
|
|
140 |
|
|
Nutrient limitation is determined by the most limiting nutrient: |
141 |
|
|
\[ |
142 |
|
|
\gamma_j^N = \min(N_i^{lim}) |
143 |
|
|
\] |
144 |
|
|
where typically |
145 |
|
|
$N_i^{lim}=\frac{N_i}{N_i+\kappa_{N_{ij}}}$ |
146 |
|
|
(Fig. \ref{fig-growexp1}c) and $\kappa_{N_{ij}}$ is the half saturation constant of nutrient $i$ for phytoplankton $j$. |
147 |
|
|
|
148 |
|
|
When we include the nitrogen as a potential limiting nutrient (EXP2) we |
149 |
|
|
modify $N_i^{lim}$ to take into account the uptake inhibition caused by ammonium: |
150 |
|
|
\[ |
151 |
|
|
N_N^{lim} = \frac{NO_3 + NO_2}{NO_3+NO_2+\kappa_{IN}} e^{-\psi NH_4} |
152 |
|
|
+\frac{NH_4}{NH_4 + \kappa_{NH4}} |
153 |
|
|
\] |
154 |
|
|
where $\psi$ reflects the inhibition and $\kappa_{IN}$ and $ \kappa_{NH4}$ |
155 |
|
|
are the half saturation constant of $IN=NO_3+NO_2$ and $NH_4$ respectively. |
156 |
|
|
|
157 |
|
|
\vspace{.2cm} |
158 |
|
|
|
159 |
|
|
{\it {\bf A1.2. Zooplankton grazing:}}\\ |
160 |
|
|
\[ |
161 |
|
|
g_{jk} =g_{max_{jk}} \frac{\eta_{jk} P_j}{A_k} \frac{A_k}{A_k+\kappa^P_k} |
162 |
|
|
\] |
163 |
|
|
where\\ |
164 |
|
|
\mbox{} \hspace{.5cm} $g_{max_{jk}}=$ Maximum grazing rate of zooplankton $k$ on |
165 |
|
|
phytoplankton $j$,\\ |
166 |
|
|
\mbox{} \hspace{.5cm} $\eta_{jk}=$ Palatibility of plankton $j$ to zooplankton $k$,\\ |
167 |
|
|
\mbox{} \hspace{.5cm} $A_k=$ Palatibility (for zooplankton $k$) weighted total phytoplankton concentration,\\ |
168 |
|
|
\mbox{} \hspace{1.1cm} $=\sum_j [\eta_{jk} P_j$] \\ |
169 |
|
|
\mbox{} \hspace{.5cm} $\kappa^P_k=$Half-saturation constant for grazing of zooplankton $k$,\\ |
170 |
|
|
|
171 |
|
|
|
172 |
|
|
\vspace{.2cm} |
173 |
|
|
|
174 |
|
|
{\it {\bf A1.3. Inorganic nutrient Source/Sink terms:}}\\ |
175 |
|
|
$S_{N_i}$ depends on the specific nutrient, and includes the remineralization |
176 |
|
|
of organic matter, external sources and other non-biological transformations: |
177 |
|
|
\begin{eqnarray} |
178 |
|
|
S_{PO4} & = & r_{DOP} DOP + r_{POP} POP \nonumber \\ |
179 |
|
|
S_{Si} & = & r_{POSi} POSi \nonumber \\ |
180 |
|
|
S_{FeT} & = & r_{DOFe} DOFe + r_{POFe} POFe -c_{scav} Fe' + \alpha F_{atmos} \nonumber \\ |
181 |
|
|
S_{NO3} & = & \zeta_{NO3} NO_2 \nonumber \\ |
182 |
|
|
S_{NO2} & = & \zeta_{NO2} NH4 - \zeta_{NO3} NO_2 \nonumber \\ |
183 |
|
|
S_{NH4} & = & r_{DON} DON + r_{PON} PON - \zeta_{NO2} NH_4 \nonumber |
184 |
|
|
\end{eqnarray} |
185 |
|
|
|
186 |
|
|
where:\\ |
187 |
|
|
\mbox{} \hspace{.5cm} $r_{DOM_i}=$Remineralization rate of DOM for element |
188 |
|
|
$i$, here P, Fe, N,\\ |
189 |
|
|
\mbox{} \hspace{.5cm} $r_{POM_i}=$Remineralization rate of POM for element |
190 |
|
|
$i$, here P, Si, Fe, N,\\ |
191 |
|
|
\mbox{} \hspace{.5cm} $c_{scav}=$scavenging rate for free iron,\\ |
192 |
|
|
\mbox{} \hspace{.5cm} $Fe'=$free iron, modelled as in Parekh et al (2004), \\ |
193 |
|
|
\mbox{} \hspace{.5cm} $alpha=$solubility of iron dust in ocean water, \\ |
194 |
|
|
\mbox{} \hspace{.5cm} $F_{atmos}=$atmospheric deposition of iron dust on surface of model ocean,\\ |
195 |
|
|
\mbox{} \hspace{.5cm} $\zeta_{NO3}=\zeta_{NO3}^0(1-I/I_0)_+=$oxidation rate of NO$_2$ to NO$_3$,\\ |
196 |
|
|
\mbox{} \hspace{.5cm} $\zeta_{NO2}=\zeta_{NO2}^0(1-I/I_0)_+=$oxidation rate of NH$_4$ to NO$_2$ (is photoinhibited),\\ |
197 |
|
|
\mbox{} \hspace{.5cm} $I_0=$critical light level below which oxidation occurs,\\ |
198 |
|
|
|
199 |
|
|
The remineralization timescale $r_{DOi}$ and $r_{POi}$ parameterizes the break |
200 |
|
|
down of organic matter to an inorganic form through the microbial loop. |
201 |
|
|
|
202 |
|
|
|
203 |
|
|
{\it {\bf A1.3.1 Fe chemistry:}}\\ |
204 |
|
|
\begin{eqnarray} |
205 |
|
|
Fe' & = & FeT - FeL \nonumber \\ |
206 |
|
|
FeL & = & L_{tot} - |
207 |
|
|
\frac{ L_{stab} (L_{tot} - FeT) - 1 |
208 |
|
|
+\sqrt{(1 - L_{stab} (L_{tot} - FeT))^2 + 4 L_{stab} L_{tot}}} |
209 |
|
|
{2 L_{stab}} \nonumber |
210 |
|
|
\end{eqnarray} |
211 |
|
|
($Fe'$ may be constrained to be less than $Fe'_{max}$ while preserving $FeT$). |
212 |
|
|
|
213 |
|
|
|
214 |
|
|
{\it {\bf A1.4 DOM and POM Source terms:}}\\ |
215 |
|
|
$S_{DOM_i}$ and $S_{POM_i}$ are the sources of dissolved and particulate |
216 |
|
|
organic detritus arising from mortality, excretion and sloppy feeding of the |
217 |
|
|
plantkon. We simply define that a fixed fraction $\lambda_m$ of the the |
218 |
|
|
mortality/excretion term and the non-consumed grazed phytoplankton |
219 |
|
|
($\lambda_g$) go into the dissolved pool and the remainder into the particulate |
220 |
|
|
pool. |
221 |
|
|
\begin{eqnarray} |
222 |
|
|
S_{DOM_i} & = & \sum_{j} [\lambda_{mp_{ij}} m^p_j P_j M_{ij}] |
223 |
|
|
+ \sum_{k} [\lambda_{mz_{ik}} m^z_k Z_{ik}] |
224 |
|
|
+ \sum_{k} \sum_{j} [\lambda_{g_{ijk}} (1-\zeta_{jk}) |
225 |
|
|
g_{ij} M_{ij} Z_k ] |
226 |
|
|
\nonumber \\ |
227 |
|
|
S_{POM_i} & = & \sum_{j} [(1-\lambda_{m_{ij}}) m^p_j P_j M_{ij}] |
228 |
|
|
+ \sum_{k} [(1-\lambda_{mz_{ik}}) m^z_k Z_{ik}] |
229 |
|
|
+ \sum_{k} \sum_{j} [(1-\lambda_{g_{ijk}}) (1-\zeta_{jk}) |
230 |
|
|
g_{ij} M_{ij} Z_k ] |
231 |
|
|
\nonumber |
232 |
|
|
\end{eqnarray} |
233 |
|
|
|
234 |
|
|
|
235 |
|
|
\newcommand{\pcm}[1]{P^C_{m#1}} |
236 |
|
|
\newcommand{\pcmax}[1]{P^C_{\textrm{MAX}#1}} |
237 |
|
|
\newcommand{\pcarbon}{P^C} |
238 |
|
|
\newcommand{\chltoc}{\theta} |
239 |
|
|
\newcommand{\chltocmax}{\theta^{\textrm{max}}} |
240 |
|
|
\newcommand{\chltocmin}{\theta^{\textrm{min}}} |
241 |
|
|
\newcommand{\alphachl}{\alpha^{\textrm{Chl}}} |
242 |
|
|
\newcommand{\mQyield}{\mathit{mQ}^{\textrm{yield}}} |
243 |
|
|
\newcommand{\RPC}{R^{PC}} |
244 |
|
|
\newcommand{\phychl}{\mathit{Chl}} |
245 |
|
|
\newcommand{\aphychlave}{A^{\mathrm{phy}}_{\mathrm{Chl,ave}}} |
246 |
|
|
|
247 |
|
|
{\it {\bf A1.4 Geider light limitation model:}}\\ |
248 |
|
|
The phytoplankton growth rate is given by the carbon-specific photosynthesis rate |
249 |
|
|
(rate of carbon synthesized per carbon present), |
250 |
|
|
\[ |
251 |
|
|
\mu_j = \pcarbon_j |
252 |
|
|
\] |
253 |
|
|
The carbon-specific photosynthesis rate |
254 |
|
|
\[ |
255 |
|
|
\pcarbon_j = \pcm{,j} \begin{cases} |
256 |
|
|
1 - e^{-\alphachl_j I \chltoc_j/\pcm{,j}} & \text{if }I>0.1 \\ |
257 |
|
|
0 & \text{otherwise} |
258 |
|
|
\end{cases} |
259 |
|
|
\] |
260 |
|
|
depends on the carbon-specific, light-saturated photosynthesis rate |
261 |
|
|
\[ |
262 |
|
|
\pcm{,j}=\pcmax{j} \gamma^N_j \gamma^T_j |
263 |
|
|
\] |
264 |
|
|
and the Chl $a$ to carbon ratio |
265 |
|
|
\[ |
266 |
|
|
\chltoc_j = \left[ \frac{\chltocmax_j} |
267 |
|
|
{1 + \chltocmax_j \alphachl_j I / (2 \pcm{,j})} |
268 |
|
|
\right]^{\chltocmax_j}_{\chltocmin_j} |
269 |
|
|
\] |
270 |
|
|
|
271 |
|
|
The chlorophyll concentration is |
272 |
|
|
\[ |
273 |
|
|
\phychl_j=P_j \RPC_j \chltoc_j |
274 |
|
|
\] |
275 |
|
|
|
276 |
|
|
The light limitation factor can be diagnosed |
277 |
|
|
\[ |
278 |
|
|
\gamma^I_j=\pcarbon_j/\pcm{,j} |
279 |
|
|
\] |
280 |
|
|
|
281 |
|
|
\[ |
282 |
|
|
\alphachl_j = \mQyield_j \aphychlave |
283 |
|
|
\] |
284 |
|
|
|
285 |
|
|
Parameters:\\ |
286 |
|
|
\begin{tabular}{@{\qquad}r@{}l} |
287 |
|
|
$\pcmax{j} ={}$& Maximum C-spec.\ photosynthesis rate at reference temperature of phytoplankton $j$\\ |
288 |
|
|
$\chltocmax_j ={}$& Maximum Chl a to C ratio if phytoplankton $j$\\ |
289 |
|
|
$\RPC_j ={}$& Carbon to phosphorus (!) ratio of phytoplankton $j$\\ |
290 |
|
|
$\alphachl_j ={}$& Chl a-specific initial slope of the photosynthesis-light curve\\ |
291 |
|
|
$\mQyield_j ={}$& slope of the photosynthesis-light curve per absorption\\ |
292 |
|
|
$\aphychlave ={}$& absorption ($m^{-1}$) per mg Chl a |
293 |
|
|
\end{tabular} |
294 |
|
|
|
295 |
|
|
|
296 |
|
|
|
297 |
|
|
\newcommand{\Ptot}{P_{\mathrm{tot}}} |
298 |
|
|
|
299 |
|
|
{\it {\bf A2 Diagnostics:}}\\ |
300 |
|
|
Total phytoplankton biomass: |
301 |
|
|
\[ |
302 |
|
|
\Ptot = \sum_j P_j |
303 |
|
|
\] |
304 |
|
|
|
305 |
|
|
\begin{tabular}{llll} |
306 |
|
|
name & definition && units \\ |
307 |
|
|
\hline |
308 |
|
|
\texttt{PhyTot } & $\Ptot$ && $\mu\mathrm{M\,P}$ \\ |
309 |
|
|
\texttt{PhyGrp1 } & Total biomass of small phytoplankton with $\texttt{nsrc}=1$ && $\mu\mathrm{M\,P}$ \\ |
310 |
|
|
\texttt{PhyGrp2 } & Total biomass of small phytoplankton with $\texttt{nsrc}=2$ && $\mu\mathrm{M\,P}$ \\ |
311 |
|
|
\texttt{PhyGrp3 } & Total biomass of small phytoplankton with $\texttt{nsrc}=3$ && $\mu\mathrm{M\,P}$ \\ |
312 |
|
|
\texttt{PhyGrp4 } & Total biomass of large non-diatoms && $\mu\mathrm{M\,P}$ \\ |
313 |
|
|
\texttt{PhyGrp5 } & Total biomass of diatoms && $\mu\mathrm{M\,P}$ \\ |
314 |
|
|
\texttt{PP } & Primary production && $\mu\mathrm{M\,P}\, \mathrm{s}^{-1}$ \\ |
315 |
|
|
\texttt{Nfix } & Nitrogen fixation && $\mu\mathrm{M\,N}\, \mathrm{s}^{-1}$ \\ |
316 |
|
|
\texttt{PAR } & Photosynthetically active radiation && $\mu\mathrm{Ein}\, \mathrm{m}^{-2}\,\mathrm{s}^{-1}$ \\ |
317 |
|
|
\texttt{Rstar01 } & $R^*_{\mathrm{PO4}}$ of Phytoplankton species \#1, \dots && $\mu\mathrm{M\,P}$ \\ |
318 |
|
|
\texttt{Diver1 } & Number of species with $P_j > 10^{-8}\,\mu\mathrm{M\,P}$ & where $\Ptot>10^{-12}$ \\ |
319 |
|
|
\texttt{Diver2 } & Number of species with $P_j > 0.1\%\, \Ptot$ & where $\Ptot>10^{-12}$ \\ |
320 |
|
|
\texttt{Diver3 } & Number of species that constitute 99.9\% of $\Ptot$ & where $\Ptot>10^{-12}$ \\ |
321 |
|
|
\texttt{Diver4 } & Number of species with $P_j > 10^{-5} \cdot \max\limits_j P_j$ & where $\Ptot>10^{-12}$ \\ |
322 |
|
|
\end{tabular} |
323 |
|
|
|
324 |
|
|
|
325 |
|
|
\end{document} |