| 1 |
ce107 |
1.3 |
C $Id: cg2d.F,v 1.2 2006/05/12 22:21:21 ce107 Exp $ |
| 2 |
ce107 |
1.1 |
SUBROUTINE CG2D |
| 3 |
|
|
C /==========================================================\ |
| 4 |
|
|
C | SUBROUTINE CG2D | |
| 5 |
|
|
C | o Two-dimensional grid problem conjugate-gradient | |
| 6 |
|
|
C | inverter (with preconditioner). | |
| 7 |
|
|
C |==========================================================| |
| 8 |
|
|
C | Con. grad is an iterative procedure for solving Ax = b. | |
| 9 |
|
|
C | It requires the A be symmetric. | |
| 10 |
|
|
C | This implementation assumes A is a five-diagonal | |
| 11 |
|
|
C | matrix of the form that arises in the discrete | |
| 12 |
|
|
C | representation of the del^2 operator in a | |
| 13 |
|
|
C | two-dimensional space. | |
| 14 |
|
|
C | Notes: | |
| 15 |
|
|
C | ====== | |
| 16 |
|
|
C | This implementation can support shared-memory | |
| 17 |
|
|
C | multi-threaded execution. In order to do this COMMON | |
| 18 |
|
|
C | blocks are used for many of the arrays - even ones that | |
| 19 |
|
|
C | are only used for intermedaite results. This design is | |
| 20 |
|
|
C | OK if you want to all the threads to collaborate on | |
| 21 |
|
|
C | solving the same problem. On the other hand if you want | |
| 22 |
|
|
C | the threads to solve several different problems | |
| 23 |
|
|
C | concurrently this implementation will not work. | |
| 24 |
|
|
C \==========================================================/ |
| 25 |
|
|
IMPLICIT NONE |
| 26 |
|
|
|
| 27 |
|
|
C === Global data === |
| 28 |
|
|
#include "SIZE.h" |
| 29 |
|
|
#include "EEPARAMS.h" |
| 30 |
|
|
#include "PARAMS.h" |
| 31 |
|
|
#include "CG2D.h" |
| 32 |
ce107 |
1.2 |
#if defined(USE_PAPI_FLOPS) || defined(USE_PAPI_FLIPS) |
| 33 |
|
|
#if defined(PAPI_PER_ITERATION) || defined(PAPI_PER_TIMESTEP) |
| 34 |
|
|
#include "PAPI.h" |
| 35 |
|
|
#endif |
| 36 |
|
|
#endif |
| 37 |
ce107 |
1.1 |
|
| 38 |
|
|
C === Routine arguments === |
| 39 |
|
|
C myThid - Thread on which I am working. |
| 40 |
|
|
INTEGER myThid |
| 41 |
|
|
|
| 42 |
|
|
C === Local variables ==== |
| 43 |
|
|
C actualIts - Number of iterations taken |
| 44 |
|
|
C actualResidual - residual |
| 45 |
|
|
C bi - Block index in X and Y. |
| 46 |
|
|
C bj |
| 47 |
|
|
C etaN - Used in computing search directions |
| 48 |
|
|
C etaNM1 suffix N and NM1 denote current and |
| 49 |
|
|
C beta previous iterations respectively. |
| 50 |
|
|
C alpha |
| 51 |
|
|
C sumRHS - Sum of right-hand-side. Sometimes this is a |
| 52 |
|
|
C useful debuggin/trouble shooting diagnostic. |
| 53 |
|
|
C For neumann problems sumRHS needs to be ~0. |
| 54 |
|
|
C or they converge at a non-zero residual. |
| 55 |
|
|
C err - Measure of residual of Ax - b, usually the norm. |
| 56 |
|
|
C I, J, N - Loop counters ( N counts CG iterations ) |
| 57 |
|
|
INTEGER actualIts |
| 58 |
|
|
INTEGER bi, bj |
| 59 |
|
|
INTEGER I, J, N |
| 60 |
ce107 |
1.2 |
#ifdef USE_MIXED_PRECISION |
| 61 |
|
|
REAL*8 actualResidual |
| 62 |
|
|
REAL*8 err |
| 63 |
|
|
REAL*8 errSum |
| 64 |
|
|
REAL*8 etaN |
| 65 |
|
|
REAL*8 etaNM1 |
| 66 |
|
|
REAL*8 etaNSum |
| 67 |
|
|
REAL*8 beta |
| 68 |
|
|
REAL*8 alpha |
| 69 |
|
|
REAL*8 alphaSum |
| 70 |
|
|
REAL*8 sumRHS |
| 71 |
|
|
REAL*8 temp |
| 72 |
|
|
#else |
| 73 |
|
|
Real actualResidual |
| 74 |
|
|
Real err |
| 75 |
|
|
Real errSum |
| 76 |
|
|
Real etaN |
| 77 |
|
|
Real etaNM1 |
| 78 |
|
|
Real etaNSum |
| 79 |
|
|
Real beta |
| 80 |
|
|
Real alpha |
| 81 |
|
|
Real alphaSum |
| 82 |
|
|
Real sumRHS |
| 83 |
|
|
Real temp |
| 84 |
|
|
#endif |
| 85 |
ce107 |
1.1 |
|
| 86 |
|
|
C-- Initialise inverter |
| 87 |
ce107 |
1.2 |
etaNM1 = 1. _d 0 |
| 88 |
ce107 |
1.1 |
|
| 89 |
|
|
C-- Initial residual calculation |
| 90 |
|
|
err = 0. _d 0 |
| 91 |
|
|
sumRHS = 0. _d 0 |
| 92 |
|
|
DO J=1,sNy |
| 93 |
|
|
DO I=1,sNx |
| 94 |
ce107 |
1.2 |
cg2d_s(I,J) = 0. _d 0 |
| 95 |
ce107 |
1.1 |
cg2d_r(I,J) = cg2d_b(I,J) - |
| 96 |
|
|
& ( aW2d(I ,J )*cg2d_x(I-1,J )+aW2d(I+1,J )*cg2d_x(I+1,J ) |
| 97 |
|
|
& +aS2d(I ,J )*cg2d_x(I ,J-1)+aS2d(I ,J+1)*cg2d_x(I ,J+1) |
| 98 |
|
|
& -aW2d(I ,J )*cg2d_x(I ,J )-aW2d(I+1,J )*cg2d_x(I ,J ) |
| 99 |
|
|
& -aS2d(I ,J )*cg2d_x(I ,J )-aS2d(I ,J+1)*cg2d_x(I ,J ) |
| 100 |
|
|
& ) |
| 101 |
|
|
err = err + cg2d_r(I,J)*cg2d_r(I,J) |
| 102 |
|
|
sumRHS = sumRHS + cg2d_b(I,J) |
| 103 |
|
|
ENDDO |
| 104 |
|
|
ENDDO |
| 105 |
|
|
CALL EXCH_XY_R8( cg2d_r ) |
| 106 |
|
|
CALL EXCH_XY_R8( cg2d_s ) |
| 107 |
|
|
CALL GSUM_R8( temp, err ) |
| 108 |
|
|
err = temp |
| 109 |
|
|
CALL GSUM_R8( temp, sumRHS ) |
| 110 |
|
|
sumRHS = temp |
| 111 |
|
|
|
| 112 |
|
|
actualIts = 0 |
| 113 |
|
|
actualResidual = SQRT(err) |
| 114 |
|
|
WRITE(6,*) ' CG2D iters, err = ', actualIts, actualResidual |
| 115 |
ce107 |
1.2 |
IF ( actualResidual .EQ. 0. _d 0) STOP 'ABNORMAL END: RESIDUAL 0' |
| 116 |
ce107 |
1.1 |
|
| 117 |
|
|
C >>>>>>>>>>>>>>> BEGIN SOLVER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< |
| 118 |
|
|
DO 10 N=1, cg2dMaxIters |
| 119 |
|
|
C-- Solve preconditioning equation and update |
| 120 |
|
|
C-- conjugate direction vector "s". |
| 121 |
|
|
etaN = 0. _d 0 |
| 122 |
|
|
DO J=1,sNy |
| 123 |
|
|
DO I=1,sNx |
| 124 |
|
|
cg2d_q(I,J) = |
| 125 |
|
|
& pW(I ,J )*cg2d_r(I-1,J )+pW(I+1,J )*cg2d_r(I+1,J ) |
| 126 |
|
|
& +pS(I ,J )*cg2d_r(I ,J-1)+pS(I ,J+1)*cg2d_r(I ,J+1) |
| 127 |
|
|
& +pC(I ,J )*cg2d_r(I ,J ) |
| 128 |
|
|
etaN = etaN+cg2d_q(I,J)*cg2d_r(I,J) |
| 129 |
|
|
ENDDO |
| 130 |
|
|
ENDDO |
| 131 |
|
|
|
| 132 |
|
|
CALL GSUM_R8( temp, etaN ) |
| 133 |
|
|
etaN = temp |
| 134 |
|
|
beta = etaN/etaNM1 |
| 135 |
|
|
etaNM1 = etaN |
| 136 |
|
|
|
| 137 |
|
|
DO J=1,sNy |
| 138 |
|
|
DO I=1,sNx |
| 139 |
|
|
cg2d_s(I,J) = cg2d_q(I,J) + beta*cg2d_s(I,J) |
| 140 |
|
|
ENDDO |
| 141 |
|
|
ENDDO |
| 142 |
|
|
|
| 143 |
|
|
C-- Do exchanges that require messages i.e. between |
| 144 |
|
|
C-- processes. |
| 145 |
|
|
CALL EXCH_XY_R8( cg2d_s ) |
| 146 |
|
|
|
| 147 |
|
|
C-- Ten extra exchanges |
| 148 |
|
|
#ifdef TEN_EXTRA_EXCHS |
| 149 |
ce107 |
1.3 |
DO J=1,10 |
| 150 |
|
|
CALL EXCH_XY_R8( cg2d_s ) |
| 151 |
|
|
ENDDO |
| 152 |
ce107 |
1.1 |
#endif |
| 153 |
|
|
|
| 154 |
|
|
C== Evaluate laplace operator on conjugate gradient vector |
| 155 |
|
|
C== q = A.s |
| 156 |
|
|
alpha = 0. _d 0 |
| 157 |
|
|
DO J=1,sNy |
| 158 |
|
|
DO I=1,sNx |
| 159 |
|
|
cg2d_q(I,J) = |
| 160 |
|
|
& aW2d(I ,J )*cg2d_s(I-1,J )+aW2d(I+1,J )*cg2d_s(I+1,J ) |
| 161 |
|
|
& +aS2d(I ,J )*cg2d_s(I ,J-1)+aS2d(I ,J+1)*cg2d_s(I ,J+1) |
| 162 |
|
|
& -aW2d(I ,J )*cg2d_s(I ,J )-aW2d(I+1,J )*cg2d_s(I ,J ) |
| 163 |
|
|
& -aS2d(I ,J )*cg2d_s(I ,J )-aS2d(I ,J+1)*cg2d_s(I ,J ) |
| 164 |
|
|
alpha = alpha+cg2d_s(I,J)*cg2d_q(I,J) |
| 165 |
|
|
ENDDO |
| 166 |
|
|
ENDDO |
| 167 |
|
|
CALL GSUM_R8( temp, alpha ) |
| 168 |
|
|
|
| 169 |
|
|
#ifdef HUNDRED_EXTRA_SUMS |
| 170 |
|
|
C-- Hundred extra global sums |
| 171 |
ce107 |
1.3 |
DO J=1,100 |
| 172 |
|
|
CALL GSUM_R8( temp, alpha ) |
| 173 |
|
|
ENDDO |
| 174 |
ce107 |
1.1 |
#endif |
| 175 |
|
|
|
| 176 |
|
|
alpha = temp |
| 177 |
|
|
alpha = etaN/alpha |
| 178 |
|
|
|
| 179 |
|
|
C== Update solution and residual vectors |
| 180 |
|
|
C Now compute "interior" points. |
| 181 |
|
|
err = 0. _d 0 |
| 182 |
|
|
DO J=1,sNy |
| 183 |
|
|
DO I=1,sNx |
| 184 |
|
|
cg2d_x(I,J)=cg2d_x(I,J)+alpha*cg2d_s(I,J) |
| 185 |
|
|
cg2d_r(I,J)=cg2d_r(I,J)-alpha*cg2d_q(I,J) |
| 186 |
|
|
err = err+cg2d_r(I,J)*cg2d_r(I,J) |
| 187 |
|
|
ENDDO |
| 188 |
|
|
ENDDO |
| 189 |
|
|
|
| 190 |
|
|
CALL GSUM_R8( temp, err ) |
| 191 |
|
|
|
| 192 |
|
|
err = temp |
| 193 |
|
|
err = SQRT(err) |
| 194 |
|
|
actualIts = N |
| 195 |
|
|
actualResidual = err |
| 196 |
ce107 |
1.2 |
#ifdef RESIDUAL_PER_ITERATION |
| 197 |
|
|
WRITE(6,*) ' CG2D iters, err = ', actualIts, actualResidual |
| 198 |
|
|
#endif |
| 199 |
ce107 |
1.1 |
IF ( err .LT. cg2dTargetResidual ) GOTO 11 |
| 200 |
|
|
CALL EXCH_XY_R8(cg2d_r ) |
| 201 |
ce107 |
1.2 |
#ifdef PAPI_PER_ITERATION |
| 202 |
|
|
#ifdef USE_PAPI_FLOPS |
| 203 |
|
|
call PAPIF_flops(real_time, proc_time, flpops, mflops, check) |
| 204 |
|
|
WRITE(6,'(F10.3,A7,F10.3,A37,I8)') |
| 205 |
|
|
$ mflops, ' user ', mflops*proc_time/real_time, |
| 206 |
|
|
$ ' wallclock Mflop/s during iteration ', N |
| 207 |
|
|
#else |
| 208 |
|
|
#ifdef USE_PAPI_FLIPS |
| 209 |
|
|
call PAPIF_flips(real_time, proc_time, flpops, mflops, check) |
| 210 |
|
|
WRITE(6,'(F10.3,A7,F10.3,A37,I8)') |
| 211 |
|
|
$ mflops, ' user ', mflops*proc_time/real_time, |
| 212 |
|
|
$ ' wallclock Mflip/s during iteration ', N |
| 213 |
|
|
#endif |
| 214 |
|
|
#endif |
| 215 |
|
|
#endif |
| 216 |
ce107 |
1.1 |
10 CONTINUE |
| 217 |
|
|
11 CONTINUE |
| 218 |
|
|
CALL EXCH_XY_R8(cg2d_x ) |
| 219 |
ce107 |
1.2 |
#ifdef PAPI_PER_TIMESTEP |
| 220 |
|
|
#ifdef USE_PAPI_FLOPS |
| 221 |
|
|
call PAPIF_flops(real_time, proc_time, flpops, mflops, check) |
| 222 |
|
|
WRITE(6,'(F10.3,A7,F10.3,A37,I8)') |
| 223 |
|
|
$ mflops, ' user ', mflops*proc_time/real_time, |
| 224 |
|
|
$ ' wallclock Mflop/s during iteration ', N |
| 225 |
|
|
#else |
| 226 |
|
|
#ifdef USE_PAPI_FLIPS |
| 227 |
|
|
call PAPIF_flips(real_time, proc_time, flpops, mflops, check) |
| 228 |
|
|
WRITE(6,'(F10.3,A7,F10.3,A37,I8)') |
| 229 |
|
|
$ mflops, ' user ', mflops*proc_time/real_time, |
| 230 |
|
|
$ ' wallclock Mflip/s during iteration ', N |
| 231 |
|
|
#endif |
| 232 |
|
|
#endif |
| 233 |
|
|
#endif |
| 234 |
ce107 |
1.1 |
WRITE(6,*) ' CG2D iters, err = ', actualIts, actualResidual |
| 235 |
|
|
|
| 236 |
|
|
C Calc Ax to check result |
| 237 |
|
|
DO J=1,sNy |
| 238 |
|
|
DO I=1,sNx |
| 239 |
|
|
cg2d_Ax(I,J) = |
| 240 |
|
|
& ( aW2d(I ,J )*cg2d_x(I-1,J )+aW2d(I+1,J )*cg2d_x(I+1,J ) |
| 241 |
|
|
& +aS2d(I ,J )*cg2d_x(I ,J-1)+aS2d(I ,J+1)*cg2d_x(I ,J+1) |
| 242 |
|
|
& -aW2d(I ,J )*cg2d_x(I ,J )-aW2d(I+1,J )*cg2d_x(I ,J ) |
| 243 |
|
|
& -aS2d(I ,J )*cg2d_x(I ,J )-aS2d(I ,J+1)*cg2d_x(I ,J ) |
| 244 |
|
|
& ) |
| 245 |
|
|
cg2d_r(I,J) = cg2d_b(I,J)-cg2d_Ax(I,J) |
| 246 |
|
|
ENDDO |
| 247 |
|
|
ENDDO |
| 248 |
|
|
CALL EXCH_XY_R8(cg2d_Ax ) |
| 249 |
|
|
CALL EXCH_XY_R8(cg2d_r ) |
| 250 |
|
|
|
| 251 |
|
|
END |