1 |
C $Header: $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "BLING_OPTIONS.h" |
5 |
|
6 |
CBOP |
7 |
subroutine BLING_REMIN( |
8 |
I PTR_O2, PTR_FE, |
9 |
O POM_prod, Fe_uptake, CaCO3_prod, |
10 |
O POM_remin, POM_diss, Fe_remin, CaCO3_diss, |
11 |
I bi, bj, imin, imax, jmin, jmax, |
12 |
I myIter, myTime, myThid) |
13 |
|
14 |
C ================================================================= |
15 |
C | subroutine bling_remin |
16 |
C | o Calculate the nutrient flux to depth from bio activity. |
17 |
C | Includes iron export and calcium carbonate (dissolution of |
18 |
C | CaCO3 returns carbonate ions and changes alkalinity). |
19 |
C | - Instant remineralization is assumed. |
20 |
C | - A fraction of POM becomes DOM |
21 |
C ================================================================= |
22 |
|
23 |
implicit none |
24 |
|
25 |
C === Global variables === |
26 |
C irr_inst :: instantaneous irradiance |
27 |
|
28 |
#include "SIZE.h" |
29 |
#include "DYNVARS.h" |
30 |
#include "EEPARAMS.h" |
31 |
#include "PARAMS.h" |
32 |
#include "GRID.h" |
33 |
#include "BLING_VARS.h" |
34 |
#include "PTRACERS_SIZE.h" |
35 |
#include "PTRACERS_PARAMS.h" |
36 |
#ifdef ALLOW_AUTODIFF_TAMC |
37 |
# include "tamc.h" |
38 |
#endif |
39 |
|
40 |
C === Routine arguments === |
41 |
C myTime :: current time |
42 |
C myIter :: current timestep |
43 |
C myThid :: thread number |
44 |
_RL dt |
45 |
_RL myTime |
46 |
INTEGER myIter |
47 |
INTEGER myThid |
48 |
C === Input === |
49 |
C POM_prod :: biological production of sinking particles |
50 |
C Fe_uptake :: biological production of particulate iron |
51 |
C CaCO3_prod :: biological production of CaCO3 shells |
52 |
_RL POM_prod (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
53 |
_RL Fe_uptake (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
54 |
_RL CaCO3_prod (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
55 |
_RL PTR_O2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
56 |
_RL PTR_FE (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
57 |
INTEGER imin, imax, jmin, jmax, bi, bj |
58 |
C === Output === |
59 |
C POM_remin :: remineralization of sinking particles |
60 |
C Fe_remin :: remineralization of particulate iron |
61 |
C CaCO3_diss :: dissolution of CaCO3 shells |
62 |
_RL POM_remin (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
63 |
_RL POM_diss (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
64 |
_RL Fe_remin (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
65 |
_RL CaCO3_diss (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
66 |
|
67 |
C === Local variables === |
68 |
C i,j,k :: loop indices |
69 |
C depth_l :: depth of lower interface |
70 |
C deltaPOM :: change in POM due to remin & dissolution |
71 |
C *flux_u, *flux_l :: "*" flux through upper and lower interfaces |
72 |
C *_export :: vertically-integrated export of "*" |
73 |
C zremin :: remineralization lengthscale for nutrients |
74 |
C zremin_caco3 :: remineralization lengthscale for CaCO3 |
75 |
C wsink :: speed of sinking particles |
76 |
C fe_sed_source :: iron source from sediments |
77 |
C FreeFe :: ligand-free iron |
78 |
INTEGER i,j,k |
79 |
_RL depth_l |
80 |
_RL deltaPOM |
81 |
_RL POMflux_u |
82 |
_RL POMflux_l |
83 |
_RL PFEflux_u |
84 |
_RL PFEflux_l |
85 |
_RL CaCO3flux_u |
86 |
_RL CaCO3flux_l |
87 |
_RL POM_export (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
88 |
_RL PFE_export (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
89 |
_RL CaCO3_export(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
90 |
_RL zremin |
91 |
_RL zremin_caco3 |
92 |
_RL wsink |
93 |
_RL fe_sed_source |
94 |
_RL lig_stability |
95 |
_RL FreeFe |
96 |
CEOP |
97 |
|
98 |
c --------------------------------------------------------------------- |
99 |
c Initialize output and diagnostics |
100 |
DO k=1,Nr |
101 |
DO j=jmin,jmax |
102 |
DO i=imin,imax |
103 |
POM_remin(i,j,k) = 0. _d 0 |
104 |
Fe_remin(i,j,k) = 0. _d 0 |
105 |
CaCO3_diss(i,j,k) = 0. _d 0 |
106 |
ENDDO |
107 |
ENDDO |
108 |
ENDDO |
109 |
DO j=jmin,jmax |
110 |
DO i=imin,imax |
111 |
POM_export(i,j) = 0. _d 0 |
112 |
PFE_export(i,j) = 0. _d 0 |
113 |
CaCO3_export(i,j) = 0. _d 0 |
114 |
ENDDO |
115 |
ENDDO |
116 |
POMflux_u = 0. _d 0 |
117 |
PFEflux_u = 0. _d 0 |
118 |
CaCO3flux_u = 0. _d 0 |
119 |
|
120 |
c --------------------------------------------------------------------- |
121 |
c Nutrients export/remineralization, CaCO3 export/dissolution |
122 |
c |
123 |
c The flux at the bottom of a grid cell equals |
124 |
C Fb = (Ft + prod*dz) / (1 + zremin*dz) |
125 |
C where Ft is the flux at the top, and prod*dz is the integrated |
126 |
C production of new sinking particles within the layer. |
127 |
C Ft = 0 in the first layer. |
128 |
|
129 |
CADJ STORE Fe_uptake = comlev1, key = ikey_dynamics |
130 |
|
131 |
C$TAF LOOP = parallel |
132 |
DO j=jmin,jmax |
133 |
C$TAF LOOP = parallel |
134 |
DO i=imin,imax |
135 |
C$TAF init upper_flux = static, Nr |
136 |
DO k=1,Nr |
137 |
C$TAF STORE POMflux_u = upper_flux |
138 |
C$TAF STORE PFEflux_u = upper_flux |
139 |
C$TAF STORE CaCO3flux_u = upper_flux |
140 |
|
141 |
IF ( hFacC(i,j,k,bi,bj).gt.0. _d 0 ) THEN |
142 |
|
143 |
C Sinking speed is evaluated at the bottom of the cell |
144 |
depth_l=-rF(k+1) |
145 |
IF (depth_l .LE. wsink0z) THEN |
146 |
wsink = wsink0 |
147 |
ELSE |
148 |
wsink = wsinkacc * (depth_l - wsink0z) + wsink0 |
149 |
ENDIF |
150 |
|
151 |
C Nutrient remineralization lengthscale |
152 |
C Not an e-folding scale: this term increases with remineralization. |
153 |
zremin = gamma_POM * ( PTR_O2(i,j,k)**2 / |
154 |
& (k_O2**2 + PTR_O2(i,j,k)**2) * (1-remin_min) |
155 |
& + remin_min )/(wsink + epsln) |
156 |
|
157 |
C Calcium remineralization relaxed toward the inverse of the |
158 |
C ca_remin_depth constant value as the calcite saturation approaches 0. |
159 |
zremin_caco3 = 1. _d 0/ca_remin_depth*(1. _d 0-min(1. _d 0, |
160 |
& omegaC(i,j,k,bi,bj))) |
161 |
|
162 |
C POM flux leaving the cell |
163 |
POMflux_l = (POMflux_u+POM_prod(i,j,k)*drF(k) |
164 |
& *hFacC(i,j,k,bi,bj))/(1+zremin*drF(k) |
165 |
& *hFacC(i,j,k,bi,bj)) |
166 |
|
167 |
C CaCO3 flux leaving the cell |
168 |
CaCO3flux_l = (caco3flux_u+CaCO3_prod(i,j,k)*drF(k) |
169 |
& *hFacC(i,j,k,bi,bj))/(1+zremin_caco3*drF(k) |
170 |
& *hFacC(i,j,k,bi,bj)) |
171 |
|
172 |
C Start with cells that are not the deepest cells |
173 |
IF ((k.LT.Nr) .AND. (hFacC(i,j,k+1,bi,bj).GT.0)) THEN |
174 |
|
175 |
C Nutrient accumulation in a cell is given by the biological production |
176 |
C (and instant remineralization) of particulate organic matter |
177 |
C plus flux thought upper interface minus flux through lower interface. |
178 |
C (Since not deepest cell: hFacC=1) |
179 |
deltaPOM = (POMflux_u + POM_prod(i,j,k)*drF(k) |
180 |
& - POMflux_l)*recip_drF(k) |
181 |
|
182 |
CaCO3_diss(i,j,k) = (CaCO3flux_u + CaCO3_prod(i,j,k)*drF(k) |
183 |
& - CaCO3flux_l)*recip_drF(k) |
184 |
|
185 |
fe_sed_source = 0. _d 0 |
186 |
|
187 |
ELSE |
188 |
C If this layer is adjacent to bottom topography or it is the deepest |
189 |
C cell of the domain, then remineralize/dissolve in this grid cell |
190 |
C i.e. don't subtract off lower boundary fluxes when calculating remin |
191 |
deltaPOM = POMflux_u*recip_drF(k) |
192 |
& *recip_hFacC(i,j,k,bi,bj)+POM_prod(i,j,k) |
193 |
|
194 |
CaCO3_diss(i,j,k) = caco3flux_u*recip_drF(k) |
195 |
& *recip_hFacC(i,j,k,bi,bj)+CaCO3_prod(i,j,k) |
196 |
|
197 |
C Iron from sediments: the phosphate flux hitting the bottom boundary |
198 |
C is used to scale the return of iron to the water column. |
199 |
C Maximum value added for numerical stability. |
200 |
fe_sed_source = min(1. _d -11, |
201 |
& max(0. _d 0,FetoPsed/NUTfac*POMflux_l*recip_drF(k) |
202 |
& *recip_hFacC(i,j,k,bi,bj))) |
203 |
#ifdef BLING_ADJOINT_SAFE |
204 |
fe_sed_source = 0. _d 0 |
205 |
#endif |
206 |
ENDIF |
207 |
|
208 |
C A fraction of POM becomes DOM |
209 |
POM_diss(i,j,k) = deltaPOM*phi_DOM |
210 |
POM_remin(i,j,k) = deltaPOM*(1-phi_DOM) |
211 |
|
212 |
C Begin iron uptake calculations by determining ligand bound and free iron. |
213 |
C Both forms are available for biology, but only free iron is scavenged |
214 |
C onto particles and forms colloids. |
215 |
lig_stability = KFeLeq_max-(KFeLeq_max-KFeLeq_min) |
216 |
& *(irr_inst(i,j,k,bi,bj)**2 |
217 |
& /(IFeL**2+irr_inst(i,j,k,bi,bj)**2)) |
218 |
& *max(0. _d 0,min(1. _d 0,(PTR_FE(i,j,k)-Fe_min)/ |
219 |
& (PTR_FE(i,j,k)+epsln)*b_const)) |
220 |
|
221 |
C Use the quadratic equation to solve for binding between iron and ligands |
222 |
|
223 |
FreeFe = (-(1+lig_stability*(ligand-PTR_FE(i,j,k))) |
224 |
& +((1+lig_stability*(ligand-PTR_FE(i,j,k)))**2+4* |
225 |
& lig_stability*PTR_FE(i,j,k))**(0.5))/(2* |
226 |
& lig_stability) |
227 |
|
228 |
C Iron scavenging doesn't occur in anoxic water (Fe2+ is soluble), so set |
229 |
C FreeFe = 0 when anoxic. FreeFe should be interpreted the free iron that |
230 |
C participates in scavenging. |
231 |
#ifndef BLING_ADJOINT_SAFE |
232 |
IF (PTR_O2(i,j,k) .LT. O2_min) THEN |
233 |
FreeFe = 0 |
234 |
ENDIF |
235 |
#endif |
236 |
|
237 |
c Two mechanisms for iron uptake, in addition to biological production: |
238 |
c colloidal scavenging and scavenging by organic matter. |
239 |
|
240 |
c Colloidal scavenging: |
241 |
c Minimum function for numerical stability |
242 |
c Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
243 |
c & min(0.5/PTRACERS_dTLev(1), kFe_inorg*FreeFe**(0.5))*FreeFe |
244 |
|
245 |
Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
246 |
& kFe_inorg*FreeFe**(0.5)*FreeFe |
247 |
|
248 |
C Scavenging of iron by organic matter: |
249 |
c The POM value used is the bottom boundary flux. This doesn't occur in |
250 |
c oxic waters, but FreeFe is set to 0 in such waters earlier. |
251 |
IF ( POMflux_l .GT. 0. _d 0 ) THEN |
252 |
|
253 |
c Minimum function for numerical stability |
254 |
c Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
255 |
c & min(0.5/PTRACERS_dTLev(1), kFE_org*(POMflux_l |
256 |
c & *CtoP/NUTfac*12.01/wsink)**(0.58)*FreeFe |
257 |
|
258 |
#ifndef BLING_ADJOINT_SAFE |
259 |
Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
260 |
& kFE_org*(POMflux_l*CtoP/NUTfac |
261 |
& *12.01/wsink)**(0.58)*FreeFe |
262 |
#else |
263 |
Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
264 |
& kFE_org*(POMflux_l*CtoP/NUTfac |
265 |
& *12.01/wsink0)**(0.58)*FreeFe |
266 |
#endif |
267 |
ENDIF |
268 |
|
269 |
C If water is oxic then the iron is remineralized normally. Otherwise |
270 |
C it is completely remineralized (fe 2+ is soluble, but unstable |
271 |
C in oxidizing environments). |
272 |
|
273 |
pfeflux_l = (pfeflux_u+Fe_uptake(i,j,k)*drF(k) |
274 |
& *hFacC(i,j,k,bi,bj))/(1+zremin*drF(k) |
275 |
& *hFacC(i,j,k,bi,bj)) |
276 |
|
277 |
#ifndef BLING_ADJOINT_SAFE |
278 |
IF ( PTR_O2(i,j,k) .LT. O2_min ) THEN |
279 |
pfeflux_l = 0 |
280 |
ENDIF |
281 |
#endif |
282 |
|
283 |
Fe_remin(i,j,k) = (pfeflux_u+Fe_uptake(i,j,k)*drF(k) |
284 |
& *hFacC(i,j,k,bi,bj)-pfeflux_l)*recip_drF(k) |
285 |
& *recip_hFacC(i,j,k,bi,bj) |
286 |
|
287 |
C Add sediment source |
288 |
Fe_remin(i,j,k) = Fe_remin(i,j,k) + fe_sed_source |
289 |
|
290 |
C Prepare the tracers for the next layer down |
291 |
POMflux_u = POMflux_l |
292 |
PFEflux_u = PFEflux_l |
293 |
CaCO3flux_u = CaCO3flux_l |
294 |
|
295 |
C Depth-integrated export (through bottom of water column) |
296 |
C This is calculated last for the deepest cell |
297 |
POM_export(i,j) = POMflux_l |
298 |
PFE_export(i,j) = PFEflux_l |
299 |
CACO3_export(i,j) = CaCO3flux_l |
300 |
|
301 |
ENDIF |
302 |
|
303 |
ENDDO |
304 |
|
305 |
C Reset for next location (i,j) |
306 |
POMflux_u = 0. _d 0 |
307 |
PFEflux_u = 0. _d 0 |
308 |
CaCO3flux_u = 0. _d 0 |
309 |
|
310 |
ENDDO |
311 |
ENDDO |
312 |
|
313 |
RETURN |
314 |
END |