1 |
C $Header$ |
C $Header$ |
2 |
C $Name$ |
C $Name$ |
3 |
|
|
4 |
#include "BLING_OPTIONS.h" |
#include "BLING_OPTIONS.h" |
5 |
|
|
6 |
CBOP |
CBOP |
7 |
subroutine BLING_REMIN( |
subroutine BLING_REMIN( |
8 |
I PTR_O2, PTR_FE, |
I PTR_NO3, PTR_FE, PTR_O2, irr_inst, |
9 |
O POM_prod, Fe_uptake, CaCO3_prod, |
I N_spm, P_spm, Fe_spm, CaCO3_uptake, |
10 |
O POM_remin, POM_diss, Fe_remin, CaCO3_diss, |
O N_reminp, P_reminp, Fe_reminsum, |
11 |
I bi, bj, imin, imax, jmin, jmax, |
O N_den_benthic, CaCO3_diss, |
12 |
I myIter, myTime, myThid) |
I bi, bj, imin, imax, jmin, jmax, |
13 |
|
I myIter, myTime, myThid ) |
14 |
C ================================================================= |
|
15 |
C | subroutine bling_remin |
C ================================================================= |
16 |
C | o Calculate the nutrient flux to depth from bio activity. |
C | subroutine bling_remin |
17 |
C | Includes iron export and calcium carbonate (dissolution of |
C | o Organic matter export and remineralization |
18 |
C | CaCO3 returns carbonate ions and changes alkalinity). |
C | - Sinking particulate flux and diel migration contribute to |
19 |
C | - Instant remineralization is assumed. |
C | export. |
20 |
C | - A fraction of POM becomes DOM |
C | - Denitrification xxx |
21 |
C ================================================================= |
C | o Sediments |
22 |
|
C ================================================================= |
23 |
implicit none |
|
24 |
|
implicit none |
25 |
C === Global variables === |
|
26 |
C irr_inst :: instantaneous irradiance |
C === Global variables === |
27 |
|
|
28 |
#include "SIZE.h" |
#include "SIZE.h" |
29 |
#include "DYNVARS.h" |
#include "DYNVARS.h" |
30 |
#include "EEPARAMS.h" |
#include "EEPARAMS.h" |
31 |
#include "PARAMS.h" |
#include "PARAMS.h" |
32 |
#include "GRID.h" |
#include "GRID.h" |
33 |
#include "BLING_VARS.h" |
#include "BLING_VARS.h" |
34 |
#include "PTRACERS_SIZE.h" |
#include "PTRACERS_SIZE.h" |
35 |
#include "PTRACERS_PARAMS.h" |
#include "PTRACERS_PARAMS.h" |
36 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF |
37 |
# include "tamc.h" |
# include "tamc.h" |
38 |
#endif |
#endif |
39 |
|
|
40 |
C === Routine arguments === |
C === Routine arguments === |
41 |
C myTime :: current time |
C bi,bj :: tile indices |
42 |
C myIter :: current timestep |
C iMin,iMax :: computation domain: 1rst index range |
43 |
C myThid :: thread number |
C jMin,jMax :: computation domain: 2nd index range |
44 |
_RL dt |
C myTime :: current time |
45 |
_RL myTime |
C myIter :: current timestep |
46 |
INTEGER myIter |
C myThid :: thread Id. number |
47 |
INTEGER myThid |
INTEGER bi, bj, imin, imax, jmin, jmax |
48 |
C === Input === |
_RL myTime |
49 |
C POM_prod :: biological production of sinking particles |
INTEGER myIter |
50 |
C Fe_uptake :: biological production of particulate iron |
INTEGER myThid |
51 |
C CaCO3_prod :: biological production of CaCO3 shells |
C === Input === |
52 |
_RL POM_prod (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
C PTR_NO3 :: nitrate concentration |
53 |
_RL Fe_uptake (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
C PTR_FE :: iron concentration |
54 |
_RL CaCO3_prod (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
C PTR_O2 :: oxygen concentration |
55 |
_RL PTR_O2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
_RL PTR_NO3(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
56 |
_RL PTR_FE (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
_RL PTR_FE(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
57 |
INTEGER imin, imax, jmin, jmax, bi, bj |
_RL PTR_O2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
58 |
C === Output === |
_RL irr_inst(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
59 |
C POM_remin :: remineralization of sinking particles |
_RL N_spm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
60 |
C Fe_remin :: remineralization of particulate iron |
_RL P_spm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
61 |
C CaCO3_diss :: dissolution of CaCO3 shells |
_RL Fe_spm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
62 |
_RL POM_remin (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
_RL CaCO3_uptake(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
63 |
_RL POM_diss (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
C === Output === |
64 |
_RL Fe_remin (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
C |
65 |
_RL CaCO3_diss (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
_RL N_reminp(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
66 |
|
_RL N_den_benthic(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
67 |
C === Local variables === |
_RL P_reminp(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
68 |
C i,j,k :: loop indices |
_RL Fe_reminsum(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
69 |
C depth_l :: depth of lower interface |
_RL CaCO3_diss(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
70 |
C deltaPOM :: change in POM due to remin & dissolution |
|
71 |
C *flux_u, *flux_l :: "*" flux through upper and lower interfaces |
#ifdef ALLOW_BLING |
72 |
C *_export :: vertically-integrated export of "*" |
C === Local variables === |
73 |
C zremin :: remineralization lengthscale for nutrients |
C i,j,k :: loop indices |
74 |
C zremin_caco3 :: remineralization lengthscale for CaCO3 |
C irr_eff :: effective irradiance |
75 |
C wsink :: speed of sinking particles |
C NO3_lim :: nitrate limitation |
76 |
C fe_sed_source :: iron source from sediments |
C PO4_lim :: phosphate limitation |
77 |
C FreeFe :: ligand-free iron |
C Fe_lim :: iron limitation for phytoplankton |
78 |
INTEGER i,j,k |
C Fe_lim_diaz :: iron limitation for diazotrophs |
79 |
_RL depth_l |
C alpha_Fe :: initial slope of the P-I curve |
80 |
_RL deltaPOM |
C theta_Fe :: Chl:C ratio |
81 |
_RL POMflux_u |
C theta_Fe_max :: Fe-replete maximum Chl:C ratio |
82 |
_RL POMflux_l |
C irrk :: nut-limited efficiency of algal photosystems |
83 |
_RL PFEflux_u |
C Pc_m :: light-saturated max photosynthesis rate for phyt |
84 |
_RL PFEflux_l |
C Pc_m_diaz :: light-saturated max photosynthesis rate for diaz |
85 |
_RL CaCO3flux_u |
C Pc_tot :: carbon-specific photosynthesis rate |
86 |
_RL CaCO3flux_l |
C expkT :: temperature function |
87 |
_RL POM_export (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
C mu :: net carbon-specific growth rate for phyt |
88 |
_RL PFE_export (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
C mu_diaz :: net carbon-specific growth rate for diaz |
89 |
_RL CaCO3_export(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
C biomass_sm :: nitrogen concentration in small phyto biomass |
90 |
_RL zremin |
C biomass_lg :: nitrogen concentration in large phyto biomass |
91 |
_RL zremin_caco3 |
C N_uptake :: nitrogen uptake |
92 |
_RL wsink |
C N_fix :: nitrogen fixation |
93 |
_RL fe_sed_source |
C P_uptake :: phosphorus uptake |
94 |
_RL lig_stability |
C POC_flux :: carbon export flux 3d field |
95 |
_RL FreeFe |
C chl :: chlorophyll diagnostic |
96 |
CEOP |
C PtoN :: variable ratio of phosphorus to nitrogen |
97 |
|
C FetoN :: variable ratio of iron to nitrogen |
98 |
c --------------------------------------------------------------------- |
C N_spm :: particulate sinking of nitrogen |
99 |
c Initialize output and diagnostics |
C P_spm :: particulate sinking of phosphorus |
100 |
DO k=1,Nr |
C Fe_spm :: particulate sinking of iron |
101 |
DO j=jmin,jmax |
C N_dvm :: vertical transport of nitrogen by DVM |
102 |
DO i=imin,imax |
C P_dvm :: vertical transport of phosphorus by DVM |
103 |
POM_remin(i,j,k) = 0. _d 0 |
C Fe_dvm :: vertical transport of iron by DVM |
104 |
Fe_remin(i,j,k) = 0. _d 0 |
C N_recycle :: recycling of newly-produced organic nitrogen |
105 |
CaCO3_diss(i,j,k) = 0. _d 0 |
C P_recycle :: recycling of newly-produced organic phosphorus |
106 |
ENDDO |
C Fe_recycle :: recycling of newly-produced organic iron |
107 |
ENDDO |
c xxx to be completed |
108 |
ENDDO |
INTEGER i,j,k |
109 |
DO j=jmin,jmax |
_RL PONflux_u |
110 |
DO i=imin,imax |
_RL POPflux_u |
111 |
POM_export(i,j) = 0. _d 0 |
_RL PFEflux_u |
112 |
PFE_export(i,j) = 0. _d 0 |
_RL CaCO3flux_u |
113 |
CaCO3_export(i,j) = 0. _d 0 |
_RL PONflux_l |
114 |
ENDDO |
_RL POPflux_l |
115 |
ENDDO |
_RL PFEflux_l |
116 |
POMflux_u = 0. _d 0 |
_RL CaCO3flux_l |
117 |
PFEflux_u = 0. _d 0 |
_RL depth_l |
118 |
CaCO3flux_u = 0. _d 0 |
_RL zremin |
119 |
|
_RL zremin_caco3 |
120 |
c --------------------------------------------------------------------- |
_RL wsink |
121 |
c Nutrients export/remineralization, CaCO3 export/dissolution |
_RL POC_sed |
122 |
c |
_RL Fe_sed(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
123 |
c The flux at the bottom of a grid cell equals |
_RL NO3_sed(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
124 |
C Fb = (Ft + prod*dz) / (1 + zremin*dz) |
_RL PO4_sed(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
125 |
C where Ft is the flux at the top, and prod*dz is the integrated |
_RL O2_sed(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
126 |
C production of new sinking particles within the layer. |
_RL lig_stability |
127 |
C Ft = 0 in the first layer. |
_RL FreeFe |
128 |
|
_RL Fe_ads_inorg(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
129 |
CADJ STORE Fe_uptake = comlev1, key = ikey_dynamics |
_RL Fe_ads_org(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
130 |
|
_RL log_btm_flx |
131 |
C$TAF LOOP = parallel |
_RL Fe_reminp(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
132 |
DO j=jmin,jmax |
_RL o2_upper |
133 |
C$TAF LOOP = parallel |
_RL o2_lower |
134 |
DO i=imin,imax |
_RL dz_upper |
135 |
C$TAF init upper_flux = static, Nr |
_RL dz_lower |
136 |
DO k=1,Nr |
_RL temp_upper |
137 |
C$TAF STORE POMflux_u = upper_flux |
_RL temp_lower |
138 |
C$TAF STORE PFEflux_u = upper_flux |
_RL z_dvm_regr |
139 |
C$TAF STORE CaCO3flux_u = upper_flux |
_RL frac_migr |
140 |
|
_RL fdvm_migr |
141 |
IF ( hFacC(i,j,k,bi,bj).gt.0. _d 0 ) THEN |
_RL fdvm_stat |
142 |
|
_RL fdvmn_vint |
143 |
C Sinking speed is evaluated at the bottom of the cell |
_RL fdvmp_vint |
144 |
depth_l=-rF(k+1) |
_RL fdvmfe_vint |
145 |
IF (depth_l .LE. wsink0z) THEN |
_RL z_dvm |
146 |
wsink = wsink0 |
_RL N_remindvm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
147 |
ELSE |
_RL P_remindvm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
148 |
wsink = wsinkacc * (depth_l - wsink0z) + wsink0 |
_RL Fe_remindvm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
149 |
ENDIF |
_RL dvm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
150 |
|
_RL mld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
151 |
C Nutrient remineralization lengthscale |
_RL Fe_burial(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
152 |
C Not an e-folding scale: this term increases with remineralization. |
_RL x_erfcc,z_erfcc,t_erfcc,erfcc |
153 |
zremin = gamma_POM * ( PTR_O2(i,j,k)**2 / |
cxx order |
154 |
& (k_O2**2 + PTR_O2(i,j,k)**2) * (1-remin_min) |
CEOP |
155 |
& + remin_min )/(wsink + epsln) |
|
156 |
|
c --------------------------------------------------------------------- |
157 |
C Calcium remineralization relaxed toward the inverse of the |
c Initialize output and diagnostics |
158 |
C ca_remin_depth constant value as the calcite saturation approaches 0. |
DO k=1,Nr |
159 |
zremin_caco3 = 1. _d 0/ca_remin_depth*(1. _d 0-min(1. _d 0, |
DO j=jmin,jmax |
160 |
& omegaC(i,j,k,bi,bj))) |
DO i=imin,imax |
161 |
|
Fe_ads_org(i,j,k) = 0. _d 0 |
162 |
C POM flux leaving the cell |
Fe_ads_inorg(i,j,k) = 0. _d 0 |
163 |
POMflux_l = (POMflux_u+POM_prod(i,j,k)*drF(k) |
N_reminp(i,j,k) = 0. _d 0 |
164 |
& *hFacC(i,j,k,bi,bj))/(1+zremin*drF(k) |
P_reminp(i,j,k) = 0. _d 0 |
165 |
& *hFacC(i,j,k,bi,bj)) |
Fe_reminp(i,j,k) = 0. _d 0 |
166 |
|
Fe_reminsum(i,j,k) = 0. _d 0 |
167 |
C CaCO3 flux leaving the cell |
N_remindvm(i,j,k) = 0. _d 0 |
168 |
CaCO3flux_l = (caco3flux_u+CaCO3_prod(i,j,k)*drF(k) |
P_remindvm(i,j,k) = 0. _d 0 |
169 |
& *hFacC(i,j,k,bi,bj))/(1+zremin_caco3*drF(k) |
Fe_remindvm(i,j,k) = 0. _d 0 |
170 |
& *hFacC(i,j,k,bi,bj)) |
N_den_benthic(i,j,k)= 0. _d 0 |
171 |
|
CaCO3_diss(i,j,k) = 0. _d 0 |
172 |
C Start with cells that are not the deepest cells |
ENDDO |
173 |
IF ((k.LT.Nr) .AND. (hFacC(i,j,k+1,bi,bj).GT.0)) THEN |
ENDDO |
174 |
|
ENDDO |
175 |
C Nutrient accumulation in a cell is given by the biological production |
DO j=jmin,jmax |
176 |
C (and instant remineralization) of particulate organic matter |
DO i=imin,imax |
177 |
C plus flux thought upper interface minus flux through lower interface. |
Fe_burial(i,j) = 0. _d 0 |
178 |
C (Since not deepest cell: hFacC=1) |
NO3_sed(i,j) = 0. _d 0 |
179 |
deltaPOM = (POMflux_u + POM_prod(i,j,k)*drF(k) |
PO4_sed(i,j) = 0. _d 0 |
180 |
& - POMflux_l)*recip_drF(k) |
O2_sed(i,j) = 0. _d 0 |
181 |
|
ENDDO |
182 |
CaCO3_diss(i,j,k) = (CaCO3flux_u + CaCO3_prod(i,j,k)*drF(k) |
ENDDO |
183 |
& - CaCO3flux_l)*recip_drF(k) |
|
184 |
|
c --------------------------------------------------------------------- |
185 |
fe_sed_source = 0. _d 0 |
c Remineralization |
186 |
|
|
187 |
ELSE |
CADJ STORE Fe_ads_org = comlev1, key = ikey_dynamics |
188 |
C If this layer is adjacent to bottom topography or it is the deepest |
cxx needed? |
189 |
C cell of the domain, then remineralize/dissolve in this grid cell |
|
190 |
C i.e. don't subtract off lower boundary fluxes when calculating remin |
C$TAF LOOP = parallel |
191 |
deltaPOM = POMflux_u*recip_drF(k) |
DO j=jmin,jmax |
192 |
& *recip_hFacC(i,j,k,bi,bj)+POM_prod(i,j,k) |
C$TAF LOOP = parallel |
193 |
|
DO i=imin,imax |
194 |
CaCO3_diss(i,j,k) = caco3flux_u*recip_drF(k) |
cmm C$TAF init upper_flux = static, Nr |
195 |
& *recip_hFacC(i,j,k,bi,bj)+CaCO3_prod(i,j,k) |
|
196 |
|
C Initialize upper flux |
197 |
C Iron from sediments: the phosphate flux hitting the bottom boundary |
PONflux_u = 0. _d 0 |
198 |
C is used to scale the return of iron to the water column. |
POPflux_u = 0. _d 0 |
199 |
C Maximum value added for numerical stability. |
PFEflux_u = 0. _d 0 |
200 |
fe_sed_source = min(1. _d -11, |
CaCO3flux_u = 0. _d 0 |
201 |
& max(0. _d 0,FetoPsed/NUTfac*POMflux_l*recip_drF(k) |
|
202 |
& *recip_hFacC(i,j,k,bi,bj))) |
DO k=1,Nr |
203 |
#ifdef BLING_ADJOINT_SAFE |
c C$TAF STORE PONflux_u = upper_flux |
204 |
fe_sed_source = 0. _d 0 |
c C$TAF STORE POPflux_u = upper_flux |
205 |
#endif |
c C$TAF STORE PFEflux_u = upper_flux |
206 |
ENDIF |
c C$TAF STORE CaCO3flux_u = upper_flux |
207 |
|
CADJ STORE PONflux_u, POPflux_u, PFEflux_u, CaCO3flux_u = |
208 |
C A fraction of POM becomes DOM |
CADJ & comlev1, key = ikey_dynamics, kind = isbyte |
209 |
POM_diss(i,j,k) = deltaPOM*phi_DOM |
CADJ STORE Fe_ads_org = |
210 |
POM_remin(i,j,k) = deltaPOM*(1-phi_DOM) |
CADJ & comlev1, key = ikey_dynamics, kind = isbyte |
211 |
|
CMM) |
212 |
C Begin iron uptake calculations by determining ligand bound and free iron. |
|
213 |
C Both forms are available for biology, but only free iron is scavenged |
IF ( hFacC(i,j,k,bi,bj).gt.0. _d 0 ) THEN |
214 |
C onto particles and forms colloids. |
|
215 |
lig_stability = KFeLeq_max-(KFeLeq_max-KFeLeq_min) |
C Sinking speed is evaluated at the bottom of the cell |
216 |
& *(irr_inst(i,j,k,bi,bj)**2 |
depth_l=-rF(k+1) |
217 |
& /(IFeL**2+irr_inst(i,j,k,bi,bj)**2)) |
IF (depth_l .LE. wsink0z) THEN |
218 |
& *max(0. _d 0,min(1. _d 0,(PTR_FE(i,j,k)-Fe_min)/ |
wsink = wsink0 |
219 |
& (PTR_FE(i,j,k)+epsln)*b_const)) |
ELSE |
220 |
|
wsink = wsinkacc * (depth_l - wsink0z) + wsink0 |
221 |
C Use the quadratic equation to solve for binding between iron and ligands |
ENDIF |
222 |
|
|
223 |
FreeFe = (-(1+lig_stability*(ligand-PTR_FE(i,j,k))) |
C Nutrient remineralization lengthscale |
224 |
& +((1+lig_stability*(ligand-PTR_FE(i,j,k)))**2+4* |
C Not an e-folding scale: this term increases with remineralization. |
225 |
& lig_stability*PTR_FE(i,j,k))**(0.5))/(2* |
zremin = gamma_POM * ( PTR_O2(i,j,k)**2 / |
226 |
& lig_stability) |
& (k_O2**2 + PTR_O2(i,j,k)**2) * (1-remin_min) |
227 |
|
& + remin_min )/(wsink + epsln) |
228 |
C Iron scavenging doesn't occur in anoxic water (Fe2+ is soluble), so set |
|
229 |
C FreeFe = 0 when anoxic. FreeFe should be interpreted the free iron that |
C Calcium remineralization relaxed toward the inverse of the |
230 |
C participates in scavenging. |
C ca_remin_depth constant value as the calcite saturation approaches 0. |
231 |
#ifndef BLING_ADJOINT_SAFE |
zremin_caco3 = 1. _d 0/ca_remin_depth*(1. _d 0 - min(1. _d 0, |
232 |
IF (PTR_O2(i,j,k) .LT. O2_min) THEN |
& omegaC(i,j,k,bi,bj) + epsln )) |
233 |
FreeFe = 0 |
|
234 |
ENDIF |
|
235 |
#endif |
C POM flux leaving the cell |
236 |
|
PONflux_l = (PONflux_u+N_spm(i,j,k)*drF(k) |
237 |
c Two mechanisms for iron uptake, in addition to biological production: |
& *hFacC(i,j,k,bi,bj))/(1+zremin*drF(k) |
238 |
c colloidal scavenging and scavenging by organic matter. |
& *hFacC(i,j,k,bi,bj)) |
239 |
|
C!! multiply by intercept_frac ??? |
240 |
c Colloidal scavenging: |
|
241 |
c Minimum function for numerical stability |
POPflux_l = (POPflux_u+P_spm(i,j,k)*drF(k) |
242 |
c Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
& *hFacC(i,j,k,bi,bj))/(1+zremin*drF(k) |
243 |
c & min(0.5/PTRACERS_dTLev(1), kFe_inorg*FreeFe**(0.5))*FreeFe |
& *hFacC(i,j,k,bi,bj)) |
244 |
|
C!! multiply by intercept_frac ??? |
245 |
Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
|
246 |
& kFe_inorg*FreeFe**(0.5)*FreeFe |
C CaCO3 flux leaving the cell |
247 |
|
CaCO3flux_l = (caco3flux_u+CaCO3_uptake(i,j,k)*drF(k) |
248 |
C Scavenging of iron by organic matter: |
& *hFacC(i,j,k,bi,bj))/(1+zremin_caco3*drF(k) |
249 |
c The POM value used is the bottom boundary flux. This doesn't occur in |
& *hFacC(i,j,k,bi,bj)) |
250 |
c oxic waters, but FreeFe is set to 0 in such waters earlier. |
C!! multiply by intercept_frac ??? |
251 |
IF ( POMflux_l .GT. 0. _d 0 ) THEN |
|
252 |
|
|
253 |
c Minimum function for numerical stability |
C Start with cells that are not the deepest cells |
254 |
c Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
IF ((k.LT.Nr) .AND. (hFacC(i,j,k+1,bi,bj).GT.0)) THEN |
255 |
c & min(0.5/PTRACERS_dTLev(1), kFE_org*(POMflux_l |
|
256 |
c & *CtoP/NUTfac*12.01/wsink)**(0.58)*FreeFe |
C Nutrient accumulation in a cell is given by the biological production |
257 |
|
C (and instant remineralization) of particulate organic matter |
258 |
#ifndef BLING_ADJOINT_SAFE |
C plus flux thought upper interface minus flux through lower interface. |
259 |
Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
C (Since not deepest cell: hFacC=1) |
260 |
& kFE_org*(POMflux_l*CtoP/NUTfac |
N_reminp(i,j,k) = (PONflux_u + N_spm(i,j,k)*drF(k) |
261 |
& *12.01/wsink)**(0.58)*FreeFe |
& - PONflux_l)*recip_drF(k) |
262 |
#else |
|
263 |
Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
P_reminp(i,j,k) = (POPflux_u + P_spm(i,j,k)*drF(k) |
264 |
& kFE_org*(POMflux_l*CtoP/NUTfac |
& - POPflux_l)*recip_drF(k) |
265 |
& *12.01/wsink0)**(0.58)*FreeFe |
|
266 |
#endif |
CaCO3_diss(i,j,k) = (CaCO3flux_u + CaCO3_uptake(i,j,k) |
267 |
ENDIF |
& *drF(k) - CaCO3flux_l)*recip_drF(k) |
268 |
|
|
269 |
C If water is oxic then the iron is remineralized normally. Otherwise |
Fe_sed(i,j,k) = 0. _d 0 |
270 |
C it is completely remineralized (fe 2+ is soluble, but unstable |
|
271 |
C in oxidizing environments). |
|
272 |
|
ELSE |
273 |
pfeflux_l = (pfeflux_u+Fe_uptake(i,j,k)*drF(k) |
C If this layer is adjacent to bottom topography or it is the deepest |
274 |
& *hFacC(i,j,k,bi,bj))/(1+zremin*drF(k) |
C cell of the domain, then remineralize/dissolve in this grid cell |
275 |
& *hFacC(i,j,k,bi,bj)) |
C i.e. don't subtract off lower boundary fluxes when calculating remin |
276 |
|
|
277 |
#ifndef BLING_ADJOINT_SAFE |
N_reminp(i,j,k) = PONflux_u*recip_drF(k) |
278 |
IF ( PTR_O2(i,j,k) .LT. O2_min ) THEN |
& *recip_hFacC(i,j,k,bi,bj) + N_spm(i,j,k) |
279 |
pfeflux_l = 0 |
|
280 |
ENDIF |
P_reminp(i,j,k) = POPflux_u*recip_drF(k) |
281 |
#endif |
& *recip_hFacC(i,j,k,bi,bj) + P_spm(i,j,k) |
282 |
|
|
283 |
Fe_remin(i,j,k) = (pfeflux_u+Fe_uptake(i,j,k)*drF(k) |
CaCO3_diss(i,j,k) = CaCO3flux_u*recip_drF(k) |
284 |
& *hFacC(i,j,k,bi,bj)-pfeflux_l)*recip_drF(k) |
& *recip_hFacC(i,j,k,bi,bj) + CaCO3_uptake(i,j,k) |
285 |
& *recip_hFacC(i,j,k,bi,bj) |
|
286 |
|
|
287 |
C Add sediment source |
c Efflux Fed out of sediments |
288 |
Fe_remin(i,j,k) = Fe_remin(i,j,k) + fe_sed_source |
C The phosphate flux hitting the bottom boundary |
289 |
|
C is used to scale the return of iron to the water column. |
290 |
C Prepare the tracers for the next layer down |
C Maximum value added for numerical stability. |
291 |
POMflux_u = POMflux_l |
|
292 |
PFEflux_u = PFEflux_l |
POC_sed = PONflux_l * CtoN |
293 |
CaCO3flux_u = CaCO3flux_l |
|
294 |
|
Fe_sed(i,j,k) = min(1. _d -11, |
295 |
C Depth-integrated export (through bottom of water column) |
& max(epsln, FetoC_sed * POC_sed * recip_drF(k) |
296 |
C This is calculated last for the deepest cell |
& *recip_hFacC(i,j,k,bi,bj))) |
297 |
POM_export(i,j) = POMflux_l |
|
298 |
PFE_export(i,j) = PFEflux_l |
#ifdef BLING_ADJOINT_SAFE |
299 |
CACO3_export(i,j) = CaCO3flux_l |
Fe_sed(i,j,k) = 0. _d 0 |
300 |
|
#endif |
301 |
ENDIF |
|
302 |
|
|
303 |
ENDDO |
cav temporary until I figure out why this is problematic for adjoint |
304 |
|
#ifndef BLING_ADJOINT_SAFE |
305 |
C Reset for next location (i,j) |
|
306 |
POMflux_u = 0. _d 0 |
#ifndef USE_SGS_SED |
307 |
PFEflux_u = 0. _d 0 |
c Calculate benthic denitrification and Fe efflux here, if the subgridscale sediment module is not being used. |
308 |
CaCO3flux_u = 0. _d 0 |
|
309 |
|
IF (POC_sed .gt. 0. _d 0) THEN |
310 |
ENDDO |
|
311 |
ENDDO |
log_btm_flx = 0. _d 0 |
312 |
|
|
313 |
RETURN |
c Convert from mol N m-2 s-1 to umol C cm-2 d-1 and take the log |
314 |
END |
|
315 |
|
log_btm_flx = log10(min(43.0 _d 0, POC_sed * |
316 |
|
& 86400. _d 0 * 100.0 _d 0)) |
317 |
|
|
318 |
|
c Metamodel gives units of umol C cm-2 d-1, convert to mol N m-2 s-1 and multiply by |
319 |
|
c no3_2_n to give NO3 consumption rate |
320 |
|
|
321 |
|
N_den_benthic(i,j,k) = min (POC_sed * NO3toN / CtoN, |
322 |
|
& (10 _d 0)**(-0.9543 _d 0 + 0.7662 _d 0 * |
323 |
|
& log_btm_flx - 0.235 _d 0 * log_btm_flx * log_btm_flx) |
324 |
|
& / (CtoN * 86400. _d 0 * 100.0 _d 0) * NO3toN * |
325 |
|
& PTR_NO3(i,j,k) / (k_no3 + PTR_NO3(i,j,k)) ) * |
326 |
|
& recip_drF(k) |
327 |
|
|
328 |
|
endif |
329 |
|
|
330 |
|
#endif |
331 |
|
|
332 |
|
#endif |
333 |
|
|
334 |
|
c --------------------------------------------------------------------- |
335 |
|
c Calculate external bottom fluxes for tracer_vertdiff. Positive fluxes are into the water |
336 |
|
c column from the seafloor. For P, the bottom flux puts the sinking flux reaching the bottom |
337 |
|
c cell into the water column through diffusion. For iron, the sinking flux disappears into the |
338 |
|
c sediments if bottom waters are oxic (assumed adsorbed as oxides). If bottom waters are anoxic, |
339 |
|
c the sinking flux of Fe is returned to the water column. |
340 |
|
c |
341 |
|
c For oxygen, the consumption of oxidant required to respire |
342 |
|
c the settling flux of organic matter (in support of the |
343 |
|
c no3 bottom flux) diffuses from the bottom water into the sediment. |
344 |
|
|
345 |
|
c Assume all NO3 for benthic denitrification is supplied from the bottom water, and that |
346 |
|
c all organic N is also consumed under denitrification (Complete Denitrification, sensu |
347 |
|
c Paulmier, Biogeosciences 2009). Therefore, no NO3 is regenerated from organic matter |
348 |
|
c respired by benthic denitrification (necessitating the second term in b_no3). |
349 |
|
|
350 |
|
NO3_sed(i,j) = PONflux_l*drF(k)*hFacC(i,j,k,bi,bj) |
351 |
|
& - N_den_benthic(i,j,k) / NO3toN |
352 |
|
|
353 |
|
PO4_sed(i,j) = POPflux_l*drF(k)*hFacC(i,j,k,bi,bj) |
354 |
|
|
355 |
|
c Oxygen flux into sediments is that required to support non-denitrification respiration, |
356 |
|
c assuming a 4/5 oxidant ratio of O2 to NO3. Oxygen consumption is allowed to continue |
357 |
|
c at negative oxygen concentrations, representing sulphate reduction. |
358 |
|
|
359 |
|
O2_sed(i,j) = -(O2toN * PONflux_l*drF(k)*hFacC(i,j,k,bi,bj) |
360 |
|
& - N_den_benthic(i,j,k)* 1.25) |
361 |
|
|
362 |
|
ENDIF |
363 |
|
|
364 |
|
|
365 |
|
C Begin iron uptake calculations by determining ligand bound and free iron. |
366 |
|
C Both forms are available for biology, but only free iron is scavenged |
367 |
|
C onto particles and forms colloids. |
368 |
|
|
369 |
|
lig_stability = kFe_eq_lig_max-(KFe_eq_lig_max-kFe_eq_lig_min) |
370 |
|
& *(irr_inst(i,j,k)**2 |
371 |
|
& /(kFe_eq_lig_irr**2+irr_inst(i,j,k)**2)) |
372 |
|
& *max(epsln,min(1. _d 0,(PTR_FE(i,j,k) |
373 |
|
& -kFe_eq_lig_Femin)/ |
374 |
|
& (PTR_FE(i,j,k)+epsln)*1.2 _d 0)) |
375 |
|
|
376 |
|
C Use the quadratic equation to solve for binding between iron and ligands |
377 |
|
|
378 |
|
FreeFe = (-(1+lig_stability*(ligand-PTR_FE(i,j,k))) |
379 |
|
& +((1+lig_stability*(ligand-PTR_FE(i,j,k)))**2+4* |
380 |
|
& lig_stability*PTR_FE(i,j,k))**(0.5))/(2* |
381 |
|
& lig_stability) |
382 |
|
|
383 |
|
C Iron scavenging doesn't occur in anoxic water (Fe2+ is soluble), so set |
384 |
|
C FreeFe = 0 when anoxic. FreeFe should be interpreted the free iron that |
385 |
|
C participates in scavenging. |
386 |
|
|
387 |
|
#ifndef BLING_ADJOINT_SAFE |
388 |
|
IF (PTR_O2(i,j,k) .LT. oxic_min) THEN |
389 |
|
FreeFe = 0. _d 0 |
390 |
|
ENDIF |
391 |
|
#endif |
392 |
|
|
393 |
|
c Two mechanisms for iron uptake, in addition to biological production: |
394 |
|
c colloidal scavenging and scavenging by organic matter. |
395 |
|
|
396 |
|
c Colloidal scavenging: |
397 |
|
c Minimum function for numerical stability |
398 |
|
c Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
399 |
|
c & min(0.5/PTRACERS_dTLev(1), kFe_inorg*FreeFe**(0.5))*FreeFe |
400 |
|
|
401 |
|
Fe_ads_inorg(i,j,k) = |
402 |
|
& kFe_inorg*(max(1. _d -8,FreeFe))**(1.5) |
403 |
|
|
404 |
|
C Scavenging of iron by organic matter: |
405 |
|
c The POM value used is the bottom boundary flux. This doesn't occur in |
406 |
|
c oxic waters, but FreeFe is set to 0 in such waters earlier. |
407 |
|
IF ( PONflux_l .GT. 0. _d 0 ) THEN |
408 |
|
|
409 |
|
c Minimum function for numerical stability |
410 |
|
c Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
411 |
|
c & min(0.5/PTRACERS_dTLev(1), kFE_org*(POMflux_l |
412 |
|
c & *CtoP/NUTfac*12.01/wsink)**(0.58)*FreeFe |
413 |
|
|
414 |
|
#ifndef BLING_ADJOINT_SAFE |
415 |
|
Fe_ads_org(i,j,k) = |
416 |
|
& kFE_org*(PONflux_l/(epsln + wsink) |
417 |
|
& * MasstoN)**(0.58)*FreeFe |
418 |
|
#else |
419 |
|
Fe_ads_org(i,j,k) = |
420 |
|
& kFE_org*(PONflux_l/(epsln + wsink0) |
421 |
|
& * MasstoN)**(0.58)*FreeFe |
422 |
|
#endif |
423 |
|
ENDIF |
424 |
|
|
425 |
|
|
426 |
|
|
427 |
|
C If water is oxic then the iron is remineralized normally. Otherwise |
428 |
|
C it is completely remineralized (fe 2+ is soluble, but unstable |
429 |
|
C in oxidizing environments). |
430 |
|
|
431 |
|
PFEflux_l = (PFEflux_u+(Fe_spm(i,j,k)+Fe_ads_inorg(i,j,k) |
432 |
|
& +Fe_ads_org(i,j,k))*drF(k) |
433 |
|
& *hFacC(i,j,k,bi,bj))/(1+zremin*drF(k) |
434 |
|
& *hFacC(i,j,k,bi,bj)) |
435 |
|
|
436 |
|
|
437 |
|
c Added the burial flux of sinking particulate iron here as a |
438 |
|
c diagnostic, needed to calculate mass balance of iron. |
439 |
|
c this is calculated last for the deepest cell |
440 |
|
|
441 |
|
Fe_burial(i,j) = PFeflux_l |
442 |
|
|
443 |
|
|
444 |
|
#ifndef BLING_ADJOINT_SAFE |
445 |
|
IF ( PTR_O2(i,j,k) .LT. oxic_min ) THEN |
446 |
|
pfeflux_l = 0 |
447 |
|
ENDIF |
448 |
|
#endif |
449 |
|
|
450 |
|
Fe_reminp(i,j,k) = (pfeflux_u+(Fe_spm(i,j,k) |
451 |
|
& +Fe_ads_inorg(i,j,k) |
452 |
|
& +Fe_ads_org(i,j,k))*drF(k) |
453 |
|
& *hFacC(i,j,k,bi,bj)-pfeflux_l)*recip_drF(k) |
454 |
|
& *recip_hFacC(i,j,k,bi,bj) |
455 |
|
C!! there's an intercept_frac here... need to add |
456 |
|
|
457 |
|
|
458 |
|
C Prepare the tracers for the next layer down |
459 |
|
PONflux_u = PONflux_l |
460 |
|
POPflux_u = POPflux_l |
461 |
|
PFEflux_u = PFEflux_l |
462 |
|
CaCO3flux_u = CaCO3flux_l |
463 |
|
|
464 |
|
c |
465 |
|
Fe_reminsum(i,j,k) = Fe_reminp(i,j,k) + Fe_sed(i,j,k) |
466 |
|
& - Fe_ads_org(i,j,k) - Fe_ads_inorg(i,j,k) |
467 |
|
cc Fe_reminsum(i,j,k) = 0. _d 0 |
468 |
|
|
469 |
|
ENDIF |
470 |
|
|
471 |
|
ENDDO |
472 |
|
ENDDO |
473 |
|
ENDDO |
474 |
|
|
475 |
|
CADJ STORE Fe_ads_org = comlev1, key = ikey_dynamics |
476 |
|
cxx needed? |
477 |
|
|
478 |
|
|
479 |
|
c --------------------------------------------------------------------- |
480 |
|
|
481 |
|
#ifdef ALLOW_DIAGNOSTICS |
482 |
|
IF ( useDiagnostics ) THEN |
483 |
|
|
484 |
|
c 3d local variables |
485 |
|
c CALL DIAGNOSTICS_FILL(POC_flux,'BLGPOCF ',0,Nr,2,bi,bj,myThid) |
486 |
|
CALL DIAGNOSTICS_FILL(Fe_ads_inorg,'BLGFEAI',0,Nr,2,bi,bj, |
487 |
|
& myThid) |
488 |
|
CALL DIAGNOSTICS_FILL(Fe_sed,'BLGFESED',0,Nr,2,bi,bj,myThid) |
489 |
|
CALL DIAGNOSTICS_FILL(Fe_reminp,'BLGFEREM',0,Nr,2,bi,bj,myThid) |
490 |
|
CALL DIAGNOSTICS_FILL(N_den_benthic,'BLGNDENB',0,Nr,2,bi,bj, |
491 |
|
& myThid) |
492 |
|
c CALL DIAGNOSTICS_FILL(N_den_pelag,'BLGNDENP',0,Nr,2,bi,bj,myThid) |
493 |
|
CALL DIAGNOSTICS_FILL(N_reminp,'BLGNREM ',0,Nr,2,bi,bj,myThid) |
494 |
|
CALL DIAGNOSTICS_FILL(P_reminp,'BLGPREM ',0,Nr,2,bi,bj,myThid) |
495 |
|
c 2d local variables |
496 |
|
CALL DIAGNOSTICS_FILL(Fe_burial,'BLGFEBUR',0,1,2,bi,bj,myThid) |
497 |
|
CALL DIAGNOSTICS_FILL(NO3_sed,'BLGNSED ',0,1,2,bi,bj,myThid) |
498 |
|
CALL DIAGNOSTICS_FILL(PO4_sed,'BLGPSED ',0,1,2,bi,bj,myThid) |
499 |
|
CALL DIAGNOSTICS_FILL(O2_sed,'BLGO2SED',0,1,2,bi,bj,myThid) |
500 |
|
c these variables are currently 1d, could be 3d for diagnostics |
501 |
|
c (or diag_fill could be called inside loop - which is faster?) |
502 |
|
c CALL DIAGNOSTICS_FILL(zremin,'BLGZREM ',0,Nr,2,bi,bj,myThid) |
503 |
|
|
504 |
|
ENDIF |
505 |
|
#endif /* ALLOW_DIAGNOSTICS */ |
506 |
|
|
507 |
|
|
508 |
|
|
509 |
|
#endif /* ALLOW_BLING */ |
510 |
|
|
511 |
|
RETURN |
512 |
|
END |