| 1 |
mmazloff |
1.1 |
C $Header: $ |
| 2 |
|
|
C $Name: $ |
| 3 |
|
|
|
| 4 |
|
|
#include "BLING_OPTIONS.h" |
| 5 |
|
|
|
| 6 |
|
|
CBOP |
| 7 |
|
|
subroutine BLING_REMIN( |
| 8 |
|
|
I PTR_O2, PTR_FE, |
| 9 |
|
|
O POM_prod, Fe_uptake, CaCO3_prod, |
| 10 |
|
|
O POM_remin, POM_diss, Fe_remin, CaCO3_diss, |
| 11 |
|
|
I bi, bj, imin, imax, jmin, jmax, |
| 12 |
|
|
I myIter, myTime, myThid) |
| 13 |
|
|
|
| 14 |
|
|
C ================================================================= |
| 15 |
|
|
C | subroutine bling_remin |
| 16 |
|
|
C | o Calculate the nutrient flux to depth from bio activity. |
| 17 |
|
|
C | Includes iron export and calcium carbonate (dissolution of |
| 18 |
|
|
C | CaCO3 returns carbonate ions and changes alkalinity). |
| 19 |
|
|
C | - Instant remineralization is assumed. |
| 20 |
|
|
C | - A fraction of POM becomes DOM |
| 21 |
|
|
C ================================================================= |
| 22 |
|
|
|
| 23 |
|
|
implicit none |
| 24 |
|
|
|
| 25 |
|
|
C === Global variables === |
| 26 |
|
|
C irr_inst :: instantaneous irradiance |
| 27 |
|
|
|
| 28 |
|
|
#include "SIZE.h" |
| 29 |
|
|
#include "DYNVARS.h" |
| 30 |
|
|
#include "EEPARAMS.h" |
| 31 |
|
|
#include "PARAMS.h" |
| 32 |
|
|
#include "GRID.h" |
| 33 |
|
|
#include "BLING_VARS.h" |
| 34 |
|
|
#include "PTRACERS_SIZE.h" |
| 35 |
|
|
#include "PTRACERS_PARAMS.h" |
| 36 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 37 |
|
|
# include "tamc.h" |
| 38 |
|
|
#endif |
| 39 |
|
|
|
| 40 |
|
|
C === Routine arguments === |
| 41 |
|
|
C myTime :: current time |
| 42 |
|
|
C myIter :: current timestep |
| 43 |
|
|
C myThid :: thread number |
| 44 |
|
|
_RL dt |
| 45 |
|
|
_RL myTime |
| 46 |
|
|
INTEGER myIter |
| 47 |
|
|
INTEGER myThid |
| 48 |
|
|
C === Input === |
| 49 |
|
|
C POM_prod :: biological production of sinking particles |
| 50 |
|
|
C Fe_uptake :: biological production of particulate iron |
| 51 |
|
|
C CaCO3_prod :: biological production of CaCO3 shells |
| 52 |
|
|
_RL POM_prod (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 53 |
|
|
_RL Fe_uptake (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 54 |
|
|
_RL CaCO3_prod (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 55 |
|
|
_RL PTR_O2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 56 |
|
|
_RL PTR_FE (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 57 |
|
|
INTEGER imin, imax, jmin, jmax, bi, bj |
| 58 |
|
|
C === Output === |
| 59 |
|
|
C POM_remin :: remineralization of sinking particles |
| 60 |
|
|
C Fe_remin :: remineralization of particulate iron |
| 61 |
|
|
C CaCO3_diss :: dissolution of CaCO3 shells |
| 62 |
|
|
_RL POM_remin (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 63 |
|
|
_RL POM_diss (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 64 |
|
|
_RL Fe_remin (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 65 |
|
|
_RL CaCO3_diss (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 66 |
|
|
|
| 67 |
|
|
C === Local variables === |
| 68 |
|
|
C i,j,k :: loop indices |
| 69 |
|
|
C depth_l :: depth of lower interface |
| 70 |
|
|
C deltaPOM :: change in POM due to remin & dissolution |
| 71 |
|
|
C *flux_u, *flux_l :: "*" flux through upper and lower interfaces |
| 72 |
|
|
C *_export :: vertically-integrated export of "*" |
| 73 |
|
|
C zremin :: remineralization lengthscale for nutrients |
| 74 |
|
|
C zremin_caco3 :: remineralization lengthscale for CaCO3 |
| 75 |
|
|
C wsink :: speed of sinking particles |
| 76 |
|
|
C fe_sed_source :: iron source from sediments |
| 77 |
|
|
C FreeFe :: ligand-free iron |
| 78 |
|
|
INTEGER i,j,k |
| 79 |
|
|
_RL depth_l |
| 80 |
|
|
_RL deltaPOM |
| 81 |
|
|
_RL POMflux_u |
| 82 |
|
|
_RL POMflux_l |
| 83 |
|
|
_RL PFEflux_u |
| 84 |
|
|
_RL PFEflux_l |
| 85 |
|
|
_RL CaCO3flux_u |
| 86 |
|
|
_RL CaCO3flux_l |
| 87 |
|
|
_RL POM_export (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 88 |
|
|
_RL PFE_export (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 89 |
|
|
_RL CaCO3_export(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 90 |
|
|
_RL zremin |
| 91 |
|
|
_RL zremin_caco3 |
| 92 |
|
|
_RL wsink |
| 93 |
|
|
_RL fe_sed_source |
| 94 |
|
|
_RL lig_stability |
| 95 |
|
|
_RL FreeFe |
| 96 |
|
|
CEOP |
| 97 |
|
|
|
| 98 |
|
|
c --------------------------------------------------------------------- |
| 99 |
|
|
c Initialize output and diagnostics |
| 100 |
|
|
DO k=1,Nr |
| 101 |
|
|
DO j=jmin,jmax |
| 102 |
|
|
DO i=imin,imax |
| 103 |
|
|
POM_remin(i,j,k) = 0. _d 0 |
| 104 |
|
|
Fe_remin(i,j,k) = 0. _d 0 |
| 105 |
|
|
CaCO3_diss(i,j,k) = 0. _d 0 |
| 106 |
|
|
ENDDO |
| 107 |
|
|
ENDDO |
| 108 |
|
|
ENDDO |
| 109 |
|
|
DO j=jmin,jmax |
| 110 |
|
|
DO i=imin,imax |
| 111 |
|
|
POM_export(i,j) = 0. _d 0 |
| 112 |
|
|
PFE_export(i,j) = 0. _d 0 |
| 113 |
|
|
CaCO3_export(i,j) = 0. _d 0 |
| 114 |
|
|
ENDDO |
| 115 |
|
|
ENDDO |
| 116 |
|
|
POMflux_u = 0. _d 0 |
| 117 |
|
|
PFEflux_u = 0. _d 0 |
| 118 |
|
|
CaCO3flux_u = 0. _d 0 |
| 119 |
|
|
|
| 120 |
|
|
c --------------------------------------------------------------------- |
| 121 |
|
|
c Nutrients export/remineralization, CaCO3 export/dissolution |
| 122 |
|
|
c |
| 123 |
|
|
c The flux at the bottom of a grid cell equals |
| 124 |
|
|
C Fb = (Ft + prod*dz) / (1 + zremin*dz) |
| 125 |
|
|
C where Ft is the flux at the top, and prod*dz is the integrated |
| 126 |
|
|
C production of new sinking particles within the layer. |
| 127 |
|
|
C Ft = 0 in the first layer. |
| 128 |
|
|
|
| 129 |
|
|
CADJ STORE Fe_uptake = comlev1, key = ikey_dynamics |
| 130 |
|
|
|
| 131 |
|
|
C$TAF LOOP = parallel |
| 132 |
|
|
DO j=jmin,jmax |
| 133 |
|
|
C$TAF LOOP = parallel |
| 134 |
|
|
DO i=imin,imax |
| 135 |
|
|
C$TAF init upper_flux = static, Nr |
| 136 |
|
|
DO k=1,Nr |
| 137 |
|
|
C$TAF STORE POMflux_u = upper_flux |
| 138 |
|
|
C$TAF STORE PFEflux_u = upper_flux |
| 139 |
|
|
C$TAF STORE CaCO3flux_u = upper_flux |
| 140 |
|
|
|
| 141 |
|
|
IF ( hFacC(i,j,k,bi,bj).gt.0. _d 0 ) THEN |
| 142 |
|
|
|
| 143 |
|
|
C Sinking speed is evaluated at the bottom of the cell |
| 144 |
|
|
depth_l=-rF(k+1) |
| 145 |
|
|
IF (depth_l .LE. wsink0z) THEN |
| 146 |
|
|
wsink = wsink0 |
| 147 |
|
|
ELSE |
| 148 |
|
|
wsink = wsinkacc * (depth_l - wsink0z) + wsink0 |
| 149 |
|
|
ENDIF |
| 150 |
|
|
|
| 151 |
|
|
C Nutrient remineralization lengthscale |
| 152 |
|
|
C Not an e-folding scale: this term increases with remineralization. |
| 153 |
|
|
zremin = gamma_POM * ( PTR_O2(i,j,k)**2 / |
| 154 |
|
|
& (k_O2**2 + PTR_O2(i,j,k)**2) * (1-remin_min) |
| 155 |
|
|
& + remin_min )/(wsink + epsln) |
| 156 |
|
|
|
| 157 |
|
|
C Calcium remineralization relaxed toward the inverse of the |
| 158 |
|
|
C ca_remin_depth constant value as the calcite saturation approaches 0. |
| 159 |
|
|
zremin_caco3 = 1. _d 0/ca_remin_depth*(1. _d 0-min(1. _d 0, |
| 160 |
|
|
& omegaC(i,j,k,bi,bj))) |
| 161 |
|
|
|
| 162 |
|
|
C POM flux leaving the cell |
| 163 |
|
|
POMflux_l = (POMflux_u+POM_prod(i,j,k)*drF(k) |
| 164 |
|
|
& *hFacC(i,j,k,bi,bj))/(1+zremin*drF(k) |
| 165 |
|
|
& *hFacC(i,j,k,bi,bj)) |
| 166 |
|
|
|
| 167 |
|
|
C CaCO3 flux leaving the cell |
| 168 |
|
|
CaCO3flux_l = (caco3flux_u+CaCO3_prod(i,j,k)*drF(k) |
| 169 |
|
|
& *hFacC(i,j,k,bi,bj))/(1+zremin_caco3*drF(k) |
| 170 |
|
|
& *hFacC(i,j,k,bi,bj)) |
| 171 |
|
|
|
| 172 |
|
|
C Start with cells that are not the deepest cells |
| 173 |
|
|
IF ((k.LT.Nr) .AND. (hFacC(i,j,k+1,bi,bj).GT.0)) THEN |
| 174 |
|
|
|
| 175 |
|
|
C Nutrient accumulation in a cell is given by the biological production |
| 176 |
|
|
C (and instant remineralization) of particulate organic matter |
| 177 |
|
|
C plus flux thought upper interface minus flux through lower interface. |
| 178 |
|
|
C (Since not deepest cell: hFacC=1) |
| 179 |
|
|
deltaPOM = (POMflux_u + POM_prod(i,j,k)*drF(k) |
| 180 |
|
|
& - POMflux_l)*recip_drF(k) |
| 181 |
|
|
|
| 182 |
|
|
CaCO3_diss(i,j,k) = (CaCO3flux_u + CaCO3_prod(i,j,k)*drF(k) |
| 183 |
|
|
& - CaCO3flux_l)*recip_drF(k) |
| 184 |
|
|
|
| 185 |
|
|
fe_sed_source = 0. _d 0 |
| 186 |
|
|
|
| 187 |
|
|
ELSE |
| 188 |
|
|
C If this layer is adjacent to bottom topography or it is the deepest |
| 189 |
|
|
C cell of the domain, then remineralize/dissolve in this grid cell |
| 190 |
|
|
C i.e. don't subtract off lower boundary fluxes when calculating remin |
| 191 |
|
|
deltaPOM = POMflux_u*recip_drF(k) |
| 192 |
|
|
& *recip_hFacC(i,j,k,bi,bj)+POM_prod(i,j,k) |
| 193 |
|
|
|
| 194 |
|
|
CaCO3_diss(i,j,k) = caco3flux_u*recip_drF(k) |
| 195 |
|
|
& *recip_hFacC(i,j,k,bi,bj)+CaCO3_prod(i,j,k) |
| 196 |
|
|
|
| 197 |
|
|
C Iron from sediments: the phosphate flux hitting the bottom boundary |
| 198 |
|
|
C is used to scale the return of iron to the water column. |
| 199 |
|
|
C Maximum value added for numerical stability. |
| 200 |
|
|
fe_sed_source = min(1. _d -11, |
| 201 |
|
|
& max(0. _d 0,FetoPsed/NUTfac*POMflux_l*recip_drF(k) |
| 202 |
|
|
& *recip_hFacC(i,j,k,bi,bj))) |
| 203 |
|
|
#ifdef BLING_ADJOINT_SAFE |
| 204 |
|
|
fe_sed_source = 0. _d 0 |
| 205 |
|
|
#endif |
| 206 |
|
|
ENDIF |
| 207 |
|
|
|
| 208 |
|
|
C A fraction of POM becomes DOM |
| 209 |
|
|
POM_diss(i,j,k) = deltaPOM*phi_DOM |
| 210 |
|
|
POM_remin(i,j,k) = deltaPOM*(1-phi_DOM) |
| 211 |
|
|
|
| 212 |
|
|
C Begin iron uptake calculations by determining ligand bound and free iron. |
| 213 |
|
|
C Both forms are available for biology, but only free iron is scavenged |
| 214 |
|
|
C onto particles and forms colloids. |
| 215 |
|
|
lig_stability = KFeLeq_max-(KFeLeq_max-KFeLeq_min) |
| 216 |
|
|
& *(irr_inst(i,j,k,bi,bj)**2 |
| 217 |
|
|
& /(IFeL**2+irr_inst(i,j,k,bi,bj)**2)) |
| 218 |
|
|
& *max(0. _d 0,min(1. _d 0,(PTR_FE(i,j,k)-Fe_min)/ |
| 219 |
|
|
& (PTR_FE(i,j,k)+epsln)*b_const)) |
| 220 |
|
|
|
| 221 |
|
|
C Use the quadratic equation to solve for binding between iron and ligands |
| 222 |
|
|
|
| 223 |
|
|
FreeFe = (-(1+lig_stability*(ligand-PTR_FE(i,j,k))) |
| 224 |
|
|
& +((1+lig_stability*(ligand-PTR_FE(i,j,k)))**2+4* |
| 225 |
|
|
& lig_stability*PTR_FE(i,j,k))**(0.5))/(2* |
| 226 |
|
|
& lig_stability) |
| 227 |
|
|
|
| 228 |
|
|
C Iron scavenging doesn't occur in anoxic water (Fe2+ is soluble), so set |
| 229 |
|
|
C FreeFe = 0 when anoxic. FreeFe should be interpreted the free iron that |
| 230 |
|
|
C participates in scavenging. |
| 231 |
|
|
#ifndef BLING_ADJOINT_SAFE |
| 232 |
|
|
IF (PTR_O2(i,j,k) .LT. O2_min) THEN |
| 233 |
|
|
FreeFe = 0 |
| 234 |
|
|
ENDIF |
| 235 |
|
|
#endif |
| 236 |
|
|
|
| 237 |
|
|
c Two mechanisms for iron uptake, in addition to biological production: |
| 238 |
|
|
c colloidal scavenging and scavenging by organic matter. |
| 239 |
|
|
|
| 240 |
|
|
c Colloidal scavenging: |
| 241 |
|
|
c Minimum function for numerical stability |
| 242 |
|
|
c Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
| 243 |
|
|
c & min(0.5/PTRACERS_dTLev(1), kFe_inorg*FreeFe**(0.5))*FreeFe |
| 244 |
|
|
|
| 245 |
|
|
Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
| 246 |
|
|
& kFe_inorg*FreeFe**(0.5)*FreeFe |
| 247 |
|
|
|
| 248 |
|
|
C Scavenging of iron by organic matter: |
| 249 |
|
|
c The POM value used is the bottom boundary flux. This doesn't occur in |
| 250 |
|
|
c oxic waters, but FreeFe is set to 0 in such waters earlier. |
| 251 |
|
|
IF ( POMflux_l .GT. 0. _d 0 ) THEN |
| 252 |
|
|
|
| 253 |
|
|
c Minimum function for numerical stability |
| 254 |
|
|
c Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
| 255 |
|
|
c & min(0.5/PTRACERS_dTLev(1), kFE_org*(POMflux_l |
| 256 |
|
|
c & *CtoP/NUTfac*12.01/wsink)**(0.58)*FreeFe |
| 257 |
|
|
|
| 258 |
|
|
#ifndef BLING_ADJOINT_SAFE |
| 259 |
|
|
Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
| 260 |
|
|
& kFE_org*(POMflux_l*CtoP/NUTfac |
| 261 |
|
|
& *12.01/wsink)**(0.58)*FreeFe |
| 262 |
|
|
#else |
| 263 |
|
|
Fe_uptake(i,j,k) = Fe_uptake(i,j,k)+ |
| 264 |
|
|
& kFE_org*(POMflux_l*CtoP/NUTfac |
| 265 |
|
|
& *12.01/wsink0)**(0.58)*FreeFe |
| 266 |
|
|
#endif |
| 267 |
|
|
ENDIF |
| 268 |
|
|
|
| 269 |
|
|
C If water is oxic then the iron is remineralized normally. Otherwise |
| 270 |
|
|
C it is completely remineralized (fe 2+ is soluble, but unstable |
| 271 |
|
|
C in oxidizing environments). |
| 272 |
|
|
|
| 273 |
|
|
pfeflux_l = (pfeflux_u+Fe_uptake(i,j,k)*drF(k) |
| 274 |
|
|
& *hFacC(i,j,k,bi,bj))/(1+zremin*drF(k) |
| 275 |
|
|
& *hFacC(i,j,k,bi,bj)) |
| 276 |
|
|
|
| 277 |
|
|
#ifndef BLING_ADJOINT_SAFE |
| 278 |
|
|
IF ( PTR_O2(i,j,k) .LT. O2_min ) THEN |
| 279 |
|
|
pfeflux_l = 0 |
| 280 |
|
|
ENDIF |
| 281 |
|
|
#endif |
| 282 |
|
|
|
| 283 |
|
|
Fe_remin(i,j,k) = (pfeflux_u+Fe_uptake(i,j,k)*drF(k) |
| 284 |
|
|
& *hFacC(i,j,k,bi,bj)-pfeflux_l)*recip_drF(k) |
| 285 |
|
|
& *recip_hFacC(i,j,k,bi,bj) |
| 286 |
|
|
|
| 287 |
|
|
C Add sediment source |
| 288 |
|
|
Fe_remin(i,j,k) = Fe_remin(i,j,k) + fe_sed_source |
| 289 |
|
|
|
| 290 |
|
|
C Prepare the tracers for the next layer down |
| 291 |
|
|
POMflux_u = POMflux_l |
| 292 |
|
|
PFEflux_u = PFEflux_l |
| 293 |
|
|
CaCO3flux_u = CaCO3flux_l |
| 294 |
|
|
|
| 295 |
|
|
C Depth-integrated export (through bottom of water column) |
| 296 |
|
|
C This is calculated last for the deepest cell |
| 297 |
|
|
POM_export(i,j) = POMflux_l |
| 298 |
|
|
PFE_export(i,j) = PFEflux_l |
| 299 |
|
|
CACO3_export(i,j) = CaCO3flux_l |
| 300 |
|
|
|
| 301 |
|
|
ENDIF |
| 302 |
|
|
|
| 303 |
|
|
ENDDO |
| 304 |
|
|
|
| 305 |
|
|
C Reset for next location (i,j) |
| 306 |
|
|
POMflux_u = 0. _d 0 |
| 307 |
|
|
PFEflux_u = 0. _d 0 |
| 308 |
|
|
CaCO3flux_u = 0. _d 0 |
| 309 |
|
|
|
| 310 |
|
|
ENDDO |
| 311 |
|
|
ENDDO |
| 312 |
|
|
|
| 313 |
|
|
RETURN |
| 314 |
|
|
END |