| 1 |
mmazloff |
1.1 |
C $Header: $ |
| 2 |
|
|
C $Name: $ |
| 3 |
|
|
|
| 4 |
|
|
#include "BLING_OPTIONS.h" |
| 5 |
|
|
|
| 6 |
|
|
CBOP |
| 7 |
|
|
subroutine BLING_MAIN( PTR_DIC, PTR_ALK, PTR_NUT, |
| 8 |
|
|
& PTR_DOM, PTR_O2, PTR_FE, |
| 9 |
|
|
& bi, bj, imin, imax, jmin, jmax, |
| 10 |
|
|
& myIter, myTime, myThid) |
| 11 |
|
|
|
| 12 |
|
|
C ========================================================== |
| 13 |
|
|
C | subroutine bling_main |
| 14 |
|
|
C | o updates all the tracers for the effects of air-sea exchange, |
| 15 |
|
|
C | biological production, and remineralization. |
| 16 |
|
|
C ========================================================== |
| 17 |
|
|
|
| 18 |
|
|
implicit none |
| 19 |
|
|
|
| 20 |
|
|
C === Global variables === |
| 21 |
|
|
#include "SIZE.h" |
| 22 |
|
|
#include "EEPARAMS.h" |
| 23 |
|
|
#include "PARAMS.h" |
| 24 |
|
|
#include "GRID.h" |
| 25 |
|
|
#include "BLING_VARS.h" |
| 26 |
|
|
#include "PTRACERS_SIZE.h" |
| 27 |
|
|
#include "PTRACERS_PARAMS.h" |
| 28 |
|
|
#ifdef ALLOW_EXF |
| 29 |
|
|
# include "EXF_FIELDS.h" |
| 30 |
|
|
#endif |
| 31 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
| 32 |
|
|
# include "tamc.h" |
| 33 |
|
|
#endif |
| 34 |
|
|
|
| 35 |
|
|
C === Routine arguments === |
| 36 |
|
|
C bi,bj :: tile indices |
| 37 |
|
|
C iMin,iMax :: computation domain: 1rst index range |
| 38 |
|
|
C jMin,jMax :: computation domain: 2nd index range |
| 39 |
|
|
C myTime :: current time |
| 40 |
|
|
C myIter :: current timestep |
| 41 |
|
|
C myThid :: thread Id. number |
| 42 |
|
|
INTEGER bi, bj, imin, imax, jmin, jmax |
| 43 |
|
|
_RL myTime |
| 44 |
|
|
INTEGER myIter |
| 45 |
|
|
INTEGER myThid |
| 46 |
|
|
C === Input === |
| 47 |
|
|
C PTR_DIC :: dissolved inorganic carbon |
| 48 |
|
|
C PTR_ALK :: alkalinity |
| 49 |
|
|
C PTR_NUT :: macro-nutrient concentration |
| 50 |
|
|
C PTR_DOM :: dissolved organic matter concentration |
| 51 |
|
|
C PTR_O2 :: oxygen concentration |
| 52 |
|
|
C PTR_FE :: iron concentration |
| 53 |
|
|
_RL PTR_DIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 54 |
|
|
_RL PTR_ALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 55 |
|
|
_RL PTR_NUT(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 56 |
|
|
_RL PTR_DOM(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 57 |
|
|
_RL PTR_O2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 58 |
|
|
_RL PTR_FE (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 59 |
|
|
|
| 60 |
|
|
|
| 61 |
|
|
C === Local variables === |
| 62 |
|
|
C i,j,k :: loop indices |
| 63 |
|
|
C G* :: tendency term for the tracers |
| 64 |
|
|
C SURC :: tendency of DIC due to air-sea exchange |
| 65 |
|
|
C SURO :: tendency of O2 due to air-sea exchange |
| 66 |
|
|
C NUT_uptake :: nutrient uptake for biological production |
| 67 |
|
|
C POM_prod :: nutrient converted to particulate |
| 68 |
|
|
C organic matter |
| 69 |
|
|
C DOM_prod :: nutrient converted to dissolved organic |
| 70 |
|
|
C matter |
| 71 |
|
|
C DOM_remin :: DOM remineralization |
| 72 |
|
|
C POM_remin :: POM sinking and instant remineralization |
| 73 |
|
|
C NUT_remin :: Total nutrient remineralization |
| 74 |
|
|
C NUT_recyc :: Fast nutrient recycling |
| 75 |
|
|
C Fe_uptake :: iron converted to particulate organic or |
| 76 |
|
|
C inorganic (colloidal) iron |
| 77 |
|
|
C Fe_remin :: particulate iron converted to total iron |
| 78 |
|
|
C CaCO3_prod :: uptake of carbonate ions for CaCO3 formation |
| 79 |
|
|
C CaCO3_diss :: dissolution of CaCO3 |
| 80 |
|
|
C Car :: carbonate ion biological production |
| 81 |
|
|
C BioUp :: DIC biological production (<0) |
| 82 |
|
|
C Remin :: DIC remineralization |
| 83 |
|
|
C runoff* :: tendency due to river runoff |
| 84 |
|
|
|
| 85 |
|
|
INTEGER i,j,k |
| 86 |
|
|
_RL GDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 87 |
|
|
_RL GALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 88 |
|
|
_RL GNUT(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 89 |
|
|
_RL GDOM(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 90 |
|
|
_RL GO2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 91 |
|
|
_RL GFE (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 92 |
|
|
_RL SURC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 93 |
|
|
_RL SURO(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 94 |
|
|
_RL NUT_uptake(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 95 |
|
|
_RL NUT_remin (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 96 |
|
|
_RL NUT_recyc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 97 |
|
|
_RL POM_remin (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 98 |
|
|
_RL POM_diss (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 99 |
|
|
_RL POM_prod (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 100 |
|
|
_RL DOM_prod (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 101 |
|
|
_RL DOM_remin (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 102 |
|
|
_RL CaCO3_prod(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 103 |
|
|
_RL CaCO3_diss(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 104 |
|
|
_RL Fe_uptake (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 105 |
|
|
_RL Fe_remin (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 106 |
|
|
_RL runoff_dic(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 107 |
|
|
_RL runoff_alk(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 108 |
|
|
_RL runoff_nut(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 109 |
|
|
_RL runoff_dom(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 110 |
|
|
_RL runoff_o2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 111 |
|
|
_RL runoff_fe (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 112 |
|
|
_RL BioUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 113 |
|
|
_RL Remin (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 114 |
|
|
_RL Car (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 115 |
|
|
|
| 116 |
|
|
CEOP |
| 117 |
|
|
|
| 118 |
|
|
C----------------------------------------------------------- |
| 119 |
|
|
C Initialize local variables |
| 120 |
|
|
|
| 121 |
|
|
DO k=1,Nr |
| 122 |
|
|
DO j=1-OLy,sNy+OLy |
| 123 |
|
|
DO i=1-OLx,sNx+OLx |
| 124 |
|
|
GDIC(i,j,k) = 0. _d 0 |
| 125 |
|
|
GALK(i,j,k) = 0. _d 0 |
| 126 |
|
|
GNUT(i,j,k) = 0. _d 0 |
| 127 |
|
|
GDOM(i,j,k) = 0. _d 0 |
| 128 |
|
|
GO2(i,j,k) = 0. _d 0 |
| 129 |
|
|
GFE(i,j,k) = 0. _d 0 |
| 130 |
|
|
NUT_uptake(i,j,k) = 0. _d 0 |
| 131 |
|
|
NUT_remin(i,j,k) = 0. _d 0 |
| 132 |
|
|
NUT_recyc(i,j,k) = 0. _d 0 |
| 133 |
|
|
DOM_remin(i,j,k) = 0. _d 0 |
| 134 |
|
|
POM_remin(i,j,k) = 0. _d 0 |
| 135 |
|
|
DOM_prod(i,j,k) = 0. _d 0 |
| 136 |
|
|
POM_prod(i,j,k) = 0. _d 0 |
| 137 |
|
|
CaCO3_prod(i,j,k) = 0. _d 0 |
| 138 |
|
|
CaCO3_diss(i,j,k) = 0. _d 0 |
| 139 |
|
|
Fe_uptake(i,j,k) = 0. _d 0 |
| 140 |
|
|
Fe_remin(i,j,k) = 0. _d 0 |
| 141 |
|
|
BioUp(i,j,k) = 0. _d 0 |
| 142 |
|
|
Remin(i,j,k) = 0. _d 0 |
| 143 |
|
|
Car(i,j,k) = 0. _d 0 |
| 144 |
|
|
ENDDO |
| 145 |
|
|
ENDDO |
| 146 |
|
|
ENDDO |
| 147 |
|
|
DO j=1-OLy,sNy+OLy |
| 148 |
|
|
DO i=1-OLx,sNx+OLx |
| 149 |
|
|
SURC(i,j) = 0. _d 0 |
| 150 |
|
|
SURO(i,j) = 0. _d 0 |
| 151 |
|
|
runoff_dic(i,j) = 0. _d 0 |
| 152 |
|
|
runoff_alk(i,j) = 0. _d 0 |
| 153 |
|
|
runoff_NUT(i,j) = 0. _d 0 |
| 154 |
|
|
runoff_DOM(i,j) = 0. _d 0 |
| 155 |
|
|
runoff_o2(i,j) = 0. _d 0 |
| 156 |
|
|
runoff_fe(i,j) = 0. _d 0 |
| 157 |
|
|
ENDDO |
| 158 |
|
|
ENDDO |
| 159 |
|
|
|
| 160 |
|
|
C----------------------------------------------------------- |
| 161 |
|
|
C carbon and oxygen air-sea interaction |
| 162 |
|
|
CALL BLING_AIRSEAFLUX( |
| 163 |
|
|
I PTR_DIC, PTR_ALK, PTR_NUT, PTR_O2, |
| 164 |
|
|
U SURC, SURO, |
| 165 |
|
|
I bi, bj, imin, imax, jmin, jmax, |
| 166 |
|
|
I myIter, myTime, myThid) |
| 167 |
|
|
|
| 168 |
|
|
C$TAF STORE irr_mem = comlev1, key = ikey_dynamics, kind=isbyte |
| 169 |
|
|
C$TAF STORE irr_inst = comlev1, key = ikey_dynamics, kind=isbyte |
| 170 |
|
|
C$TAF STORE P_sm = comlev1, key = ikey_dynamics, kind=isbyte |
| 171 |
|
|
C$TAF STORE P_lg = comlev1, key = ikey_dynamics, kind=isbyte |
| 172 |
|
|
|
| 173 |
|
|
C----------------------------------------------------------- |
| 174 |
|
|
C biological production of organic matter |
| 175 |
|
|
CALL BLING_PROD( |
| 176 |
|
|
I PTR_NUT, PTR_FE, PTR_DOM, PTR_O2, |
| 177 |
|
|
U NUT_uptake, POM_prod, DOM_prod, |
| 178 |
|
|
U Fe_uptake, CaCO3_prod, |
| 179 |
|
|
I bi, bj, imin, imax, jmin, jmax, |
| 180 |
|
|
I myIter, myTime, myThid) |
| 181 |
|
|
|
| 182 |
|
|
C----------------------------------------------------------- |
| 183 |
|
|
C determine calcite saturation for use in bling_remin |
| 184 |
|
|
CALL BLING_CARBONATE_SYS( |
| 185 |
|
|
I PTR_DIC, PTR_ALK, PTR_NUT, |
| 186 |
|
|
I bi, bj, imin, imax, jmin, jmax, |
| 187 |
|
|
I myIter, myTime, myThid) |
| 188 |
|
|
|
| 189 |
|
|
C----------------------------------------------------------- |
| 190 |
|
|
C flux of NUT, CaCO3, and Fe from remineralization |
| 191 |
|
|
CALL BLING_REMIN( |
| 192 |
|
|
I PTR_O2, PTR_FE, |
| 193 |
|
|
U POM_prod, Fe_uptake, CaCO3_prod, |
| 194 |
|
|
U POM_remin, POM_diss, Fe_remin, CaCO3_diss, |
| 195 |
|
|
I bi, bj, imin, imax, jmin, jmax, |
| 196 |
|
|
I myIter, myTime, myThid) |
| 197 |
|
|
|
| 198 |
|
|
C$TAF STORE P_sm = comlev1, key = ikey_dynamics, kind=isbyte |
| 199 |
|
|
C$TAF STORE P_lg = comlev1, key = ikey_dynamics, kind=isbyte |
| 200 |
|
|
|
| 201 |
|
|
C----------------------------------------------------------- |
| 202 |
|
|
C Calculate river runoff source |
| 203 |
|
|
C Tracers are already diluted by freswater input, P-E+R |
| 204 |
|
|
C This accounts for tracer concentration in river runoff |
| 205 |
|
|
DO j=jmin,jmax |
| 206 |
|
|
DO i=imin,imax |
| 207 |
|
|
#ifdef ALLOW_EXF |
| 208 |
|
|
runoff_dic(i,j) = riverconc_DIC*runoff(i,j,bi,bj) |
| 209 |
|
|
& *recip_drF(1)*recip_hFacC(i,j,1,bi,bj) |
| 210 |
|
|
runoff_alk(i,j) = riverconc_ALK*runoff(i,j,bi,bj) |
| 211 |
|
|
& *recip_drF(1)*recip_hFacC(i,j,1,bi,bj) |
| 212 |
|
|
runoff_nut(i,j) = riverconc_NUT*runoff(i,j,bi,bj) |
| 213 |
|
|
& *recip_drF(1)*recip_hFacC(i,j,1,bi,bj) |
| 214 |
|
|
runoff_dom(i,j) = riverconc_DOM*runoff(i,j,bi,bj) |
| 215 |
|
|
& *recip_drF(1)*recip_hFacC(i,j,1,bi,bj) |
| 216 |
|
|
runoff_o2(i,j) = riverconc_O2 *runoff(i,j,bi,bj) |
| 217 |
|
|
& *recip_drF(1)*recip_hFacC(i,j,1,bi,bj) |
| 218 |
|
|
runoff_fe(i,j) = riverconc_FE *runoff(i,j,bi,bj) |
| 219 |
|
|
& *recip_drF(1)*recip_hFacC(i,j,1,bi,bj) |
| 220 |
|
|
C else it is 0 as initialized |
| 221 |
|
|
#endif |
| 222 |
|
|
ENDDO |
| 223 |
|
|
ENDDO |
| 224 |
|
|
|
| 225 |
|
|
C----------------------------------------------------------- |
| 226 |
|
|
C add all tendencies |
| 227 |
|
|
DO k=1,Nr |
| 228 |
|
|
DO j=jmin,jmax |
| 229 |
|
|
DO i=imin,imax |
| 230 |
|
|
|
| 231 |
|
|
C Dissolved organic matter slow remineralization |
| 232 |
|
|
#ifdef BLING_NO_NEG |
| 233 |
|
|
DOM_remin(i,j,k) = MAX(maskC(i,j,k,bi,bj)*gamma_DOM |
| 234 |
|
|
& *PTR_DOM(i,j,k),0. _d 0) |
| 235 |
|
|
#else |
| 236 |
|
|
DOM_remin(i,j,k) = maskC(i,j,k,bi,bj)*gamma_DOM |
| 237 |
|
|
& *PTR_DOM(i,j,k) |
| 238 |
|
|
#endif |
| 239 |
|
|
C Total nutrient remin, recycling |
| 240 |
|
|
NUT_remin(i,j,k) = POM_remin(i,j,k) + DOM_remin(i,j,k) |
| 241 |
|
|
NUT_recyc(i,j,k) = NUT_uptake(i,j,k) - POM_prod(i,j,k) |
| 242 |
|
|
& - DOM_prod(i,j,k) |
| 243 |
|
|
|
| 244 |
|
|
C Carbon system diagnostics |
| 245 |
|
|
C Change in DIC from primary production, from recycling and |
| 246 |
|
|
C remineralization, change in carbonate ions concentration |
| 247 |
|
|
C from biological activity: |
| 248 |
|
|
BioUp(i,j,k) = -NUT_uptake(i,j,k)*CtoP/NUTfac |
| 249 |
|
|
Remin(i,j,k) = (DOM_remin(i,j,k) + NUT_recyc(i,j,k) |
| 250 |
|
|
& + POM_remin(i,j,k))*CtoP/NUTfac |
| 251 |
|
|
Car(i,j,k) = CaCO3_diss(i,j,k) - CaCO3_prod(i,j,k) |
| 252 |
|
|
|
| 253 |
|
|
C Tendencies |
| 254 |
|
|
GNUT(i,j,k) = -NUT_uptake(i,j,k) + NUT_recyc(i,j,k) |
| 255 |
|
|
& + DOM_remin(i,j,k) + POM_remin(i,j,k) |
| 256 |
|
|
|
| 257 |
|
|
GDOM(i,j,k) = DOM_prod(i,j,k) - DOM_remin(i,j,k) |
| 258 |
|
|
& + POM_diss(i,j,k) |
| 259 |
|
|
|
| 260 |
|
|
GALK(i,j,k) = 2. _d 0*Car(i,j,k) - NtoP/NUTfac*GNUT(i,j,k) |
| 261 |
|
|
|
| 262 |
|
|
GDIC(i,j,k) = BioUp(i,j,k) + Remin(i,j,k) + Car(i,j,k) |
| 263 |
|
|
|
| 264 |
|
|
if ( PTR_O2(i,j,k) .GT. O2_min ) then |
| 265 |
|
|
GO2(i,j,k) = O2toP/NUTfac*GNUT(i,j,k) |
| 266 |
|
|
else |
| 267 |
|
|
GO2(i,j,k) = 0. _d 0 |
| 268 |
|
|
endif |
| 269 |
|
|
|
| 270 |
|
|
GFE(i,j,k) = Fe_remin(i,j,k) - Fe_uptake(i,j,k) |
| 271 |
|
|
|
| 272 |
|
|
ENDDO |
| 273 |
|
|
ENDDO |
| 274 |
|
|
ENDDO |
| 275 |
|
|
|
| 276 |
|
|
C----------------------------------------------------------- |
| 277 |
|
|
C adding surface tendencies due to air-sea exchange |
| 278 |
|
|
C adding surface tendencies due to river runoff |
| 279 |
|
|
C adding aeolian iron source |
| 280 |
|
|
DO j=jmin,jmax |
| 281 |
|
|
DO i=imin,imax |
| 282 |
|
|
GDIC(i,j,1)=GDIC(i,j,1)+runoff_dic(i,j)+SURC(i,j) |
| 283 |
|
|
GALK(i,j,1)=GALK(i,j,1)+runoff_alk(i,j) |
| 284 |
|
|
GNUT(i,j,1)=GNUT(i,j,1)+runoff_nut(i,j) |
| 285 |
|
|
GDOM(i,j,1)=GDOM(i,j,1)+runoff_dom(i,j) |
| 286 |
|
|
GO2(i,j,1) =GO2(i,j,1) +runoff_o2(i,j) +SURO(i,j) |
| 287 |
|
|
GFE(i,j,1) =GFE(i,j,1) +runoff_fe(i,j) |
| 288 |
|
|
& +alpfe*InputFe(i,j,bi,bj)*recip_drF(1) |
| 289 |
|
|
& *recip_hFacC(i,j,1,bi,bj) |
| 290 |
|
|
ENDDO |
| 291 |
|
|
ENDDO |
| 292 |
|
|
|
| 293 |
|
|
C----------------------------------------------------------- |
| 294 |
|
|
C update |
| 295 |
|
|
DO k=1,Nr |
| 296 |
|
|
DO j=jmin,jmax |
| 297 |
|
|
DO i=imin,imax |
| 298 |
|
|
PTR_DIC(i,j,k)= PTR_DIC(i,j,k)+GDIC(i,j,k)*PTRACERS_dTLev(k) |
| 299 |
|
|
PTR_ALK(i,j,k)= PTR_ALK(i,j,k)+GALK(i,j,k)*PTRACERS_dTLev(k) |
| 300 |
|
|
PTR_NUT(i,j,k)= PTR_NUT(i,j,k)+GNUT(i,j,k)*PTRACERS_dTLev(k) |
| 301 |
|
|
PTR_DOM(i,j,k)= PTR_DOM(i,j,k)+GDOM(i,j,k)*PTRACERS_dTLev(k) |
| 302 |
|
|
PTR_O2(i,j,k) = PTR_O2(i,j,k) +GO2(i,j,k) *PTRACERS_dTLev(k) |
| 303 |
|
|
PTR_FE(i,j,k) = PTR_FE(i,j,k) +GFE(i,j,k) *PTRACERS_dTLev(k) |
| 304 |
|
|
ENDDO |
| 305 |
|
|
ENDDO |
| 306 |
|
|
ENDDO |
| 307 |
|
|
|
| 308 |
|
|
C----------------------------------------------------------- |
| 309 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
| 310 |
|
|
IF ( useDiagnostics ) THEN |
| 311 |
|
|
CALL DIAGNOSTICS_FILL(BioUp ,'BLGBIOA ',0,Nr,2,bi,bj,myThid) |
| 312 |
|
|
CALL DIAGNOSTICS_FILL(Remin ,'BLGREMI ',0,Nr,2,bi,bj,myThid) |
| 313 |
|
|
CALL DIAGNOSTICS_FILL(Car ,'BLGCARB ',0,Nr,2,bi,bj,myThid) |
| 314 |
|
|
CALL DIAGNOSTICS_FILL(pH ,'BLGPH3D ',0,Nr,1,bi,bj,myThid) |
| 315 |
|
|
CALL DIAGNOSTICS_FILL(OmegaAr ,'BLGOMAR ',0,Nr,1,bi,bj,myThid) |
| 316 |
|
|
CALL DIAGNOSTICS_FILL(pCO2 ,'BLGPCO2 ',0,1 ,1,bi,bj,myThid) |
| 317 |
|
|
CALL DIAGNOSTICS_FILL(fluxCO2 ,'BLGCFLX ',0,1 ,1,bi,bj,myThid) |
| 318 |
|
|
CALL DIAGNOSTICS_FILL(SURC ,'BLGTFLX ',0,1 ,2,bi,bj,myThid) |
| 319 |
|
|
CALL DIAGNOSTICS_FILL(SURO ,'BLGOFLX ',0,1 ,2,bi,bj,myThid) |
| 320 |
|
|
ENDIF |
| 321 |
|
|
#endif /* ALLOW_DIAGNOSTICS */ |
| 322 |
|
|
|
| 323 |
|
|
RETURN |
| 324 |
|
|
END |
| 325 |
|
|
|
| 326 |
|
|
|
| 327 |
|
|
|