1 |
C $Header: $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "BLING_OPTIONS.h" |
5 |
|
6 |
CBOP |
7 |
subroutine BLING_LIGHT( |
8 |
I mld, |
9 |
U irr_inst, irr_eff, |
10 |
I bi, bj, imin, imax, jmin, jmax, |
11 |
I myIter, myTime, myThid ) |
12 |
|
13 |
C ================================================================= |
14 |
C | subroutine bling_light |
15 |
C | o calculate effective light for phytoplankton growth |
16 |
C | There are multiple types of light. |
17 |
C | - irr_inst is the instantaneous irradiance field. |
18 |
C | - irr_mix is the same, but with the irr_inst averaged throughout |
19 |
C | the mixed layer. This quantity is intended to represent the |
20 |
C | light to which phytoplankton subject to turbulent transport in |
21 |
C | the mixed-layer would be exposed. |
22 |
C | - irr_mem is a temporally smoothed field carried between |
23 |
C | timesteps, to represent photoadaptation. |
24 |
C | - irr_eff is the effective irradiance for photosynthesis, |
25 |
C | given either by irr_inst or irr_mix, depending on model |
26 |
C | options and location. |
27 |
C ================================================================= |
28 |
|
29 |
implicit none |
30 |
|
31 |
C === Global variables === |
32 |
C irr_inst :: Instantaneous irradiance |
33 |
C irr_mem :: Phyto irradiance memory |
34 |
|
35 |
#include "SIZE.h" |
36 |
#include "EEPARAMS.h" |
37 |
#include "PARAMS.h" |
38 |
#include "FFIELDS.h" |
39 |
#include "GRID.h" |
40 |
#include "DYNVARS.h" |
41 |
#include "BLING_VARS.h" |
42 |
#include "PTRACERS_SIZE.h" |
43 |
#include "PTRACERS_PARAMS.h" |
44 |
#ifdef ALLOW_AUTODIFF |
45 |
# include "tamc.h" |
46 |
#endif |
47 |
|
48 |
C === Routine arguments === |
49 |
C bi,bj :: tile indices |
50 |
C iMin,iMax :: computation domain: 1rst index range |
51 |
C jMin,jMax :: computation domain: 2nd index range |
52 |
C myTime :: current time |
53 |
C myIter :: current timestep |
54 |
C myThid :: thread Id. number |
55 |
INTEGER bi, bj, imin, imax, jmin, jmax |
56 |
INTEGER myThid |
57 |
INTEGER myIter |
58 |
_RL myTime |
59 |
C === Input === |
60 |
_RL mld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
61 |
C === Output === |
62 |
C irr_inst :: instantaneous light |
63 |
C irr_eff :: effective light for photosynthesis |
64 |
_RL irr_inst (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
65 |
_RL irr_eff (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
66 |
|
67 |
C === Local variables === |
68 |
_RL solar, albedo |
69 |
_RL dayfrac, yday, delta |
70 |
_RL lat, sun1, dayhrs |
71 |
_RL cosz, frac, fluxi |
72 |
_RL atten |
73 |
_RL irr_surf (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
74 |
#ifdef ML_MEAN_LIGHT |
75 |
_RL irr_mix (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
76 |
_RL SumMLIrr |
77 |
_RL tmp_ML |
78 |
#endif |
79 |
#ifndef READ_PAR |
80 |
#ifndef USE_QSW |
81 |
_RL sfac (1-OLy:sNy+OLy) |
82 |
#endif |
83 |
#endif |
84 |
integer i,j,k |
85 |
CEOP |
86 |
|
87 |
DO k=1,Nr |
88 |
DO j=jmin,jmax |
89 |
DO i=imin,imax |
90 |
irr_eff(i,j,k) = 0. _d 0 |
91 |
ENDDO |
92 |
ENDDO |
93 |
ENDDO |
94 |
|
95 |
c --------------------------------------------------------------------- |
96 |
c Surface insolation |
97 |
|
98 |
#ifndef USE_EXFQSW |
99 |
c From pkg/dic/dic_insol |
100 |
c find light as function of date and latitude |
101 |
c based on paltridge and parson |
102 |
|
103 |
solar = 1360. _d 0 !solar constant |
104 |
albedo = 0.6 _d 0 !planetary albedo |
105 |
|
106 |
C Case where a 2-d output array is needed: for now, stop here. |
107 |
IF ( usingCurvilinearGrid .OR. rotateGrid ) THEN |
108 |
STOP 'ABNORMAL END: S/R INSOL: 2-D output not implemented' |
109 |
ENDIF |
110 |
|
111 |
C find day (****NOTE for year starting in winter*****) |
112 |
dayfrac=mod(myTime,360. _d 0*86400. _d 0) |
113 |
& /(360. _d 0*86400. _d 0) !fraction of year |
114 |
yday = 2. _d 0*PI*dayfrac !convert to radians |
115 |
delta = (0.006918 _d 0 |
116 |
& -(0.399912 _d 0*cos(yday)) !cosine zenith angle |
117 |
& +(0.070257 _d 0*sin(yday)) !(paltridge+platt) |
118 |
& -(0.006758 _d 0*cos(2. _d 0*yday)) |
119 |
& +(0.000907 _d 0*sin(2. _d 0*yday)) |
120 |
& -(0.002697 _d 0*cos(3. _d 0*yday)) |
121 |
& +(0.001480 _d 0*sin(3. _d 0*yday)) ) |
122 |
DO j=1-OLy,sNy+OLy |
123 |
C latitude in radians |
124 |
lat=YC(1,j,1,bj)*deg2rad |
125 |
C latitute in radians, backed out from coriolis parameter |
126 |
C (makes latitude independent of grid) |
127 |
IF ( usingCartesianGrid .OR. usingCylindricalGrid ) |
128 |
& lat = asin( fCori(1,j,1,bj)/(2. _d 0*omega) ) |
129 |
sun1 = -sin(delta)/cos(delta) * sin(lat)/cos(lat) |
130 |
IF (sun1.LE.-0.999 _d 0) sun1=-0.999 _d 0 |
131 |
IF (sun1.GE. 0.999 _d 0) sun1= 0.999 _d 0 |
132 |
dayhrs = abs(acos(sun1)) |
133 |
cosz = ( sin(delta)*sin(lat)+ !average zenith angle |
134 |
& (cos(delta)*cos(lat)*sin(dayhrs)/dayhrs) ) |
135 |
IF (cosz.LE.5. _d -3) cosz= 5. _d -3 |
136 |
frac = dayhrs/PI !fraction of daylight in day |
137 |
C daily average photosynthetically active solar radiation just below surface |
138 |
fluxi = solar*(1. _d 0-albedo)*cosz*frac*parfrac |
139 |
|
140 |
C convert to sfac |
141 |
sfac(j) = MAX(1. _d -5,fluxi) |
142 |
ENDDO !j |
143 |
|
144 |
#endif |
145 |
|
146 |
c --------------------------------------------------------------------- |
147 |
c instantaneous light, mixed layer averaged light |
148 |
|
149 |
C$TAF LOOP = parallel |
150 |
DO j=jmin,jmax |
151 |
C$TAF LOOP = parallel |
152 |
DO i=imin,imax |
153 |
|
154 |
c Photosynthetically-available radiations (PAR) |
155 |
#ifdef USE_EXFQSW |
156 |
irr_surf(i,j) = max(epsln, |
157 |
& -parfrac*Qsw(i,j,bi,bj)*maskC(i,j,1,bi,bj)) |
158 |
#else |
159 |
irr_surf(i,j) = sfac(j) |
160 |
#endif |
161 |
cav IF ( .NOT. QSW_underice ) THEN |
162 |
c if using Qsw but not seaice/thsice or coupled, then |
163 |
c ice fraction needs to be taken into account |
164 |
cav irr_surf(i,j) = irr_surf(i,j)*(1. _d 0 - FIce(i,j,bi,bj)) |
165 |
cav ENDIF |
166 |
|
167 |
#ifdef ML_MEAN_LIGHT |
168 |
SumMLIrr = 0. _d 0 |
169 |
tmp_ML = 0. _d 0 |
170 |
#endif |
171 |
|
172 |
c C$TAF init ml_stuff = static, Nr |
173 |
DO k=1,Nr |
174 |
c C$TAF STORE SumMLDepth = ml_stuff |
175 |
|
176 |
IF (hFacC(i,j,k,bi,bj).gt.0) THEN |
177 |
|
178 |
IF (k.eq.1) THEN |
179 |
c Light attenuation in middle of top layer |
180 |
atten = k0*drF(1)/2. _d 0*hFacC(i,j,1,bi,bj) |
181 |
irr_inst(i,j,1) = irr_surf(i,j)*exp(-atten) |
182 |
ELSE |
183 |
c Attenuation from one more layer |
184 |
atten = k0*drF(k)/2. _d 0*hFacC(i,j,k,bi,bj) |
185 |
& + k0*drF(k-1)/2. _d 0*hFacC(i,j,k-1,bi,bj) |
186 |
irr_inst(i,j,k) = |
187 |
& irr_inst(i,j,k-1)*exp(-atten) |
188 |
ENDIF |
189 |
|
190 |
#ifdef ML_MEAN_LIGHT |
191 |
c Mean irradiance in the mixed layer |
192 |
IF ((-rf(k+1) .le. mld(i,j)).and. |
193 |
& (-rf(k+1).lt.200. _d 0)) THEN |
194 |
SumMLIrr = SumMLIrr+drF(k)*irr_inst(i,j,k) |
195 |
tmp_ML = tmp_ML + drF(k) |
196 |
irr_mix(i,j) = SumMLIrr/tmp_ML |
197 |
ENDIF |
198 |
#endif |
199 |
|
200 |
ENDIF |
201 |
|
202 |
ENDDO |
203 |
ENDDO |
204 |
ENDDO |
205 |
|
206 |
|
207 |
DO k=1,Nr |
208 |
DO j=jmin,jmax |
209 |
DO i=imin,imax |
210 |
|
211 |
IF (hFacC(i,j,k,bi,bj) .gt. 0. _d 0) THEN |
212 |
|
213 |
irr_eff(i,j,k) = irr_inst(i,j,k) |
214 |
#ifdef ML_MEAN_LIGHT |
215 |
c Inside mixed layer, effective light is set to mean mixed layer light |
216 |
IF ((-rf(k+1) .le. mld(i,j)).and. |
217 |
& (-rf(k+1).lt.200. _d 0)) THEN |
218 |
irr_eff(i,j,k) = irr_mix(i,j) |
219 |
ENDIF |
220 |
#endif |
221 |
|
222 |
ENDIF |
223 |
|
224 |
ENDDO |
225 |
ENDDO |
226 |
ENDDO |
227 |
|
228 |
#ifdef ALLOW_DIAGNOSTICS |
229 |
IF ( useDiagnostics ) THEN |
230 |
CALL DIAGNOSTICS_FILL(Qsw,'BLGQSW ',0,1,1,bi,bj,myThid) |
231 |
CALL DIAGNOSTICS_FILL(irr_inst,'BLGIRRIS',0,Nr,2,bi,bj,myThid) |
232 |
ENDIF |
233 |
#endif |
234 |
|
235 |
RETURN |
236 |
END |
237 |
|