1 |
C $Header: $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "BLING_OPTIONS.h" |
5 |
|
6 |
CBOP |
7 |
subroutine BLING_LIGHT( |
8 |
U irr_eff, |
9 |
I bi, bj, imin, imax, jmin, jmax, |
10 |
I myIter, myTime, myThid ) |
11 |
C ================================================================= |
12 |
C | subroutine bling_light |
13 |
C | o calculate effective light for phytoplankton growth |
14 |
C | There are multiple types of light. |
15 |
C | - irr_inst is the instantaneous irradiance field. |
16 |
C | - irr_mix is the same, but with the irr_inst averaged throughout |
17 |
C | the mixed layer. This quantity is intended to represent the |
18 |
C | light to which phytoplankton subject to turbulent transport in |
19 |
C | the mixed-layer would be exposed. |
20 |
C | - irr_mem is a temporally smoothed field carried between |
21 |
C | timesteps, to represent photoadaptation. |
22 |
C | - irr_eff is the effective irradiance for photosynthesis, |
23 |
C | given either by irr_inst or irr_mix, depending on model |
24 |
C | options and location. |
25 |
C ================================================================= |
26 |
|
27 |
implicit none |
28 |
|
29 |
C === Global variables === |
30 |
C irr_inst :: Instantaneous irradiance |
31 |
C irr_mem :: Phyto irradiance memory |
32 |
|
33 |
#include "SIZE.h" |
34 |
#include "EEPARAMS.h" |
35 |
#include "PARAMS.h" |
36 |
#include "FFIELDS.h" |
37 |
#include "GRID.h" |
38 |
#include "DYNVARS.h" |
39 |
#include "BLING_VARS.h" |
40 |
#include "PTRACERS_SIZE.h" |
41 |
#include "PTRACERS_PARAMS.h" |
42 |
#ifdef ALLOW_AUTODIFF_TAMC |
43 |
# include "tamc.h" |
44 |
#endif |
45 |
|
46 |
C === Routine arguments === |
47 |
C bi,bj :: tile indices |
48 |
C iMin,iMax :: computation domain: 1rst index range |
49 |
C jMin,jMax :: computation domain: 2nd index range |
50 |
C myTime :: current time |
51 |
C myIter :: current timestep |
52 |
C myThid :: thread Id. number |
53 |
INTEGER bi, bj, imin, imax, jmin, jmax |
54 |
INTEGER myThid |
55 |
INTEGER myIter |
56 |
_RL myTime |
57 |
C === Output === |
58 |
C irr_eff :: effective light for photosynthesis |
59 |
_RL irr_eff (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
60 |
|
61 |
C === Local variables === |
62 |
_RL solar, albedo |
63 |
_RL dayfrac, yday, delta |
64 |
_RL lat, sun1, dayhrs |
65 |
_RL cosz, frac, fluxi |
66 |
_RL atten |
67 |
_RL irr_surf (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
68 |
#ifdef ML_MEAN_LIGHT |
69 |
_RL irr_mix (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
70 |
_RL SumMLIrr |
71 |
_RL SumMLDepth |
72 |
_RL dens_surf (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
73 |
_RL dens_z (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
74 |
_RL delta_dens(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
75 |
#endif |
76 |
#ifndef READ_PAR |
77 |
#ifndef USE_QSW |
78 |
_RL sfac (1-OLy:sNy+OLy) |
79 |
#endif |
80 |
#endif |
81 |
integer i,j,k |
82 |
CEOP |
83 |
|
84 |
#ifdef ML_MEAN_LIGHT |
85 |
c --------------------------------------------------------------------- |
86 |
c Mixed layer depth |
87 |
|
88 |
c Surface density |
89 |
CALL FIND_RHO_2D( |
90 |
I 1-OLx, sNx+OLx, 1-OLy, sNy+OLy, 1, |
91 |
I theta(1-OLx,1-OLy,1,bi,bj), salt(1-OLx,1-OLy,1,bi,bj), |
92 |
O dens_surf, |
93 |
I 1, bi, bj, myThid ) |
94 |
|
95 |
DO k=1,Nr |
96 |
DO j=jmin,jmax |
97 |
DO i=imin,imax |
98 |
if (k.eq.1) then |
99 |
delta_dens(i,j,1) = 0. _d 0 |
100 |
else |
101 |
delta_dens(i,j,k) = 9999. _d 0 |
102 |
endif |
103 |
ENDDO |
104 |
ENDDO |
105 |
ENDDO |
106 |
|
107 |
DO k = 2,Nr |
108 |
|
109 |
c Potential density |
110 |
CALL FIND_RHO_2D( |
111 |
I 1-OLx, sNx+OLx, 1-OLy, sNy+OLy, 1, |
112 |
I theta(1-OLx,1-OLy,k,bi,bj), salt(1-OLx,1-OLy,k,bi,bj), |
113 |
O dens_z, |
114 |
I k, bi, bj, myThid ) |
115 |
|
116 |
DO j=jmin,jmax |
117 |
DO i=imin,imax |
118 |
IF (hFacC(i,j,k,bi,bj) .gt. 0. _d 0) THEN |
119 |
delta_dens(i,j,k) = dens_z(i,j)-dens_surf(i,j) |
120 |
ENDIF |
121 |
ENDDO |
122 |
ENDDO |
123 |
ENDDO |
124 |
#endif |
125 |
|
126 |
c --------------------------------------------------------------------- |
127 |
c Surface insolation |
128 |
|
129 |
#ifndef USE_EXFQSW |
130 |
c From pkg/dic/dic_insol |
131 |
c find light as function of date and latitude |
132 |
c based on paltridge and parson |
133 |
|
134 |
solar = 1360. _d 0 !solar constant |
135 |
albedo = 0.6 _d 0 !planetary albedo |
136 |
|
137 |
C Case where a 2-d output array is needed: for now, stop here. |
138 |
IF ( usingCurvilinearGrid .OR. rotateGrid ) THEN |
139 |
STOP 'ABNORMAL END: S/R INSOL: 2-D output not implemented' |
140 |
ENDIF |
141 |
|
142 |
C find day (****NOTE for year starting in winter*****) |
143 |
dayfrac=mod(myTime,360. _d 0*86400. _d 0) |
144 |
& /(360. _d 0*86400. _d 0) !fraction of year |
145 |
yday = 2. _d 0*PI*dayfrac !convert to radians |
146 |
delta = (0.006918 _d 0 |
147 |
& -(0.399912 _d 0*cos(yday)) !cosine zenith angle |
148 |
& +(0.070257 _d 0*sin(yday)) !(paltridge+platt) |
149 |
& -(0.006758 _d 0*cos(2. _d 0*yday)) |
150 |
& +(0.000907 _d 0*sin(2. _d 0*yday)) |
151 |
& -(0.002697 _d 0*cos(3. _d 0*yday)) |
152 |
& +(0.001480 _d 0*sin(3. _d 0*yday)) ) |
153 |
DO j=1-OLy,sNy+OLy |
154 |
C latitude in radians |
155 |
lat=YC(1,j,1,bj)*deg2rad |
156 |
C latitute in radians, backed out from coriolis parameter |
157 |
C (makes latitude independent of grid) |
158 |
IF ( usingCartesianGrid .OR. usingCylindricalGrid ) |
159 |
& lat = asin( fCori(1,j,1,bj)/(2. _d 0*omega) ) |
160 |
sun1 = -sin(delta)/cos(delta) * sin(lat)/cos(lat) |
161 |
IF (sun1.LE.-0.999 _d 0) sun1=-0.999 _d 0 |
162 |
IF (sun1.GE. 0.999 _d 0) sun1= 0.999 _d 0 |
163 |
dayhrs = abs(acos(sun1)) |
164 |
cosz = ( sin(delta)*sin(lat)+ !average zenith angle |
165 |
& (cos(delta)*cos(lat)*sin(dayhrs)/dayhrs) ) |
166 |
IF (cosz.LE.5. _d -3) cosz= 5. _d -3 |
167 |
frac = dayhrs/PI !fraction of daylight in day |
168 |
C daily average photosynthetically active solar radiation just below surface |
169 |
fluxi = solar*(1. _d 0-albedo)*cosz*frac*parfrac |
170 |
|
171 |
C convert to sfac |
172 |
sfac(j) = MAX(1. _d -5,fluxi) |
173 |
ENDDO !j |
174 |
|
175 |
#endif |
176 |
|
177 |
c --------------------------------------------------------------------- |
178 |
c instantaneous light, mixed layer averaged light |
179 |
|
180 |
C$TAF LOOP = parallel |
181 |
DO j=jmin,jmax |
182 |
C$TAF LOOP = parallel |
183 |
DO i=imin,imax |
184 |
|
185 |
c Photosynthetically-available radiations (PAR) |
186 |
#ifdef USE_EXFQSW |
187 |
irr_surf(i,j) = max(0. _d 0, |
188 |
& -parfrac*Qsw(i,j,bi,bj)*maskC(i,j,1,bi,bj)) |
189 |
#else |
190 |
irr_surf(i,j) = sfac(j) |
191 |
#endif |
192 |
IF ( .NOT. QSW_underice ) THEN |
193 |
c if using Qsw but not seaice/thsice or coupled, then |
194 |
c ice fraction needs to be taken into account |
195 |
irr_surf(i,j) = irr_surf(i,j)*(1. _d 0 - FIce(i,j,bi,bj)) |
196 |
ENDIF |
197 |
|
198 |
#ifdef ML_MEAN_LIGHT |
199 |
SumMLIrr = 0. _d 0 |
200 |
SumMLDepth = 0. _d 0 |
201 |
#endif |
202 |
|
203 |
c C$TAF init ml_stuff = static, Nr |
204 |
DO k=1,Nr |
205 |
c C$TAF STORE SumMLDepth = ml_stuff |
206 |
|
207 |
IF (hFacC(i,j,k,bi,bj).gt.0) THEN |
208 |
|
209 |
IF (k.eq.1) THEN |
210 |
c Light attenuation in middle of top layer |
211 |
atten = k0*drF(1)/2. _d 0*hFacC(i,j,1,bi,bj) |
212 |
irr_inst(i,j,1,bi,bj) = irr_surf(i,j)*exp(-atten) |
213 |
ELSE |
214 |
c Attenuation from one more layer |
215 |
atten = k0*drF(k)/2. _d 0*hFacC(i,j,k,bi,bj) |
216 |
& + k0*drF(k-1)/2. _d 0*hFacC(i,j,k-1,bi,bj) |
217 |
irr_inst(i,j,k,bi,bj) = |
218 |
& irr_inst(i,j,k-1,bi,bj)*exp(-atten) |
219 |
ENDIF |
220 |
|
221 |
#ifdef ML_MEAN_LIGHT |
222 |
c Mean irradiance in the mixed layer |
223 |
IF (delta_dens(i,j,k) .LT. 0.03 _d 0) then |
224 |
SumMLIrr = SumMLIrr+drF(k)*irr_inst(i,j,k,bi,bj) |
225 |
SumMLDepth = SumMLDepth+drF(k) |
226 |
irr_mix(i,j) = SumMLIrr/SumMLDepth |
227 |
ENDIF |
228 |
#endif |
229 |
|
230 |
ENDIF |
231 |
|
232 |
ENDDO |
233 |
ENDDO |
234 |
ENDDO |
235 |
|
236 |
c --------------------------------------------------------------------- |
237 |
C Phytoplankton photoadaptation to local light level |
238 |
DO k=1,Nr |
239 |
DO j=jmin,jmax |
240 |
DO i=imin,imax |
241 |
|
242 |
irr_eff(i,j,k) = irr_inst(i,j,k,bi,bj) |
243 |
#ifdef ML_MEAN_LIGHT |
244 |
c Inside mixed layer, effective light is set to mean mixed layer light |
245 |
IF (delta_dens(i,j,k) .LT. 0.03 _d 0) THEN |
246 |
irr_eff(i,j,k) = irr_mix(i,j) |
247 |
ENDIF |
248 |
#endif |
249 |
|
250 |
irr_mem(i,j,k,bi,bj) = irr_mem(i,j,k,bi,bj) + |
251 |
& (irr_eff(i,j,k) - irr_mem(i,j,k,bi,bj))* |
252 |
& min( 1. _d 0, gamma_irr_mem*PTRACERS_dTLev(k) ) |
253 |
|
254 |
ENDDO |
255 |
ENDDO |
256 |
ENDDO |
257 |
|
258 |
RETURN |
259 |
END |