5 |
|
|
6 |
CBOP |
CBOP |
7 |
subroutine BLING_LIGHT( |
subroutine BLING_LIGHT( |
8 |
U irr_eff, |
I mld, |
9 |
|
U irr_inst, irr_eff, |
10 |
I bi, bj, imin, imax, jmin, jmax, |
I bi, bj, imin, imax, jmin, jmax, |
11 |
I myIter, myTime, myThid ) |
I myIter, myTime, myThid ) |
12 |
|
|
13 |
C ================================================================= |
C ================================================================= |
14 |
C | subroutine bling_light |
C | subroutine bling_light |
15 |
C | o calculate effective light for phytoplankton growth |
C | o calculate effective light for phytoplankton growth |
41 |
#include "BLING_VARS.h" |
#include "BLING_VARS.h" |
42 |
#include "PTRACERS_SIZE.h" |
#include "PTRACERS_SIZE.h" |
43 |
#include "PTRACERS_PARAMS.h" |
#include "PTRACERS_PARAMS.h" |
44 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF |
45 |
# include "tamc.h" |
# include "tamc.h" |
46 |
#endif |
#endif |
47 |
|
|
56 |
INTEGER myThid |
INTEGER myThid |
57 |
INTEGER myIter |
INTEGER myIter |
58 |
_RL myTime |
_RL myTime |
59 |
|
C === Input === |
60 |
|
_RL mld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
61 |
C === Output === |
C === Output === |
62 |
|
C irr_inst :: instantaneous light |
63 |
C irr_eff :: effective light for photosynthesis |
C irr_eff :: effective light for photosynthesis |
64 |
|
_RL irr_inst (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
65 |
_RL irr_eff (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
_RL irr_eff (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
66 |
|
|
67 |
C === Local variables === |
C === Local variables === |
74 |
#ifdef ML_MEAN_LIGHT |
#ifdef ML_MEAN_LIGHT |
75 |
_RL irr_mix (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL irr_mix (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
76 |
_RL SumMLIrr |
_RL SumMLIrr |
77 |
_RL SumMLDepth |
_RL tmp_ML |
|
_RL dens_surf (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
|
_RL dens_z (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
|
|
_RL delta_dens(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
|
78 |
#endif |
#endif |
79 |
#ifndef READ_PAR |
#ifndef READ_PAR |
80 |
#ifndef USE_QSW |
#ifndef USE_QSW |
84 |
integer i,j,k |
integer i,j,k |
85 |
CEOP |
CEOP |
86 |
|
|
87 |
#ifdef ML_MEAN_LIGHT |
DO k=1,Nr |
|
c --------------------------------------------------------------------- |
|
|
c Mixed layer depth |
|
|
|
|
|
c Surface density |
|
|
CALL FIND_RHO_2D( |
|
|
I 1-OLx, sNx+OLx, 1-OLy, sNy+OLy, 1, |
|
|
I theta(1-OLx,1-OLy,1,bi,bj), salt(1-OLx,1-OLy,1,bi,bj), |
|
|
O dens_surf, |
|
|
I 1, bi, bj, myThid ) |
|
|
|
|
|
DO k=1,Nr |
|
|
DO j=jmin,jmax |
|
|
DO i=imin,imax |
|
|
if (k.eq.1) then |
|
|
delta_dens(i,j,1) = 0. _d 0 |
|
|
else |
|
|
delta_dens(i,j,k) = 9999. _d 0 |
|
|
endif |
|
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
|
|
|
|
DO k = 2,Nr |
|
|
|
|
|
c Potential density |
|
|
CALL FIND_RHO_2D( |
|
|
I 1-OLx, sNx+OLx, 1-OLy, sNy+OLy, 1, |
|
|
I theta(1-OLx,1-OLy,k,bi,bj), salt(1-OLx,1-OLy,k,bi,bj), |
|
|
O dens_z, |
|
|
I k, bi, bj, myThid ) |
|
|
|
|
88 |
DO j=jmin,jmax |
DO j=jmin,jmax |
89 |
DO i=imin,imax |
DO i=imin,imax |
90 |
IF (hFacC(i,j,k,bi,bj) .gt. 0. _d 0) THEN |
irr_eff(i,j,k) = 0. _d 0 |
|
delta_dens(i,j,k) = dens_z(i,j)-dens_surf(i,j) |
|
|
ENDIF |
|
91 |
ENDDO |
ENDDO |
92 |
ENDDO |
ENDDO |
93 |
ENDDO |
ENDDO |
|
#endif |
|
94 |
|
|
95 |
c --------------------------------------------------------------------- |
c --------------------------------------------------------------------- |
96 |
c Surface insolation |
c Surface insolation |
135 |
IF (cosz.LE.5. _d -3) cosz= 5. _d -3 |
IF (cosz.LE.5. _d -3) cosz= 5. _d -3 |
136 |
frac = dayhrs/PI !fraction of daylight in day |
frac = dayhrs/PI !fraction of daylight in day |
137 |
C daily average photosynthetically active solar radiation just below surface |
C daily average photosynthetically active solar radiation just below surface |
138 |
fluxi = solar*(1. _d 0-albedo)*cosz*frac*parfrac |
fluxi = solar*(1. _d 0-albedo)*cosz*frac*parfrac |
139 |
|
|
140 |
C convert to sfac |
C convert to sfac |
141 |
sfac(j) = MAX(1. _d -5,fluxi) |
sfac(j) = MAX(1. _d -5,fluxi) |
153 |
|
|
154 |
c Photosynthetically-available radiations (PAR) |
c Photosynthetically-available radiations (PAR) |
155 |
#ifdef USE_EXFQSW |
#ifdef USE_EXFQSW |
156 |
irr_surf(i,j) = max(0. _d 0, |
irr_surf(i,j) = max(epsln, |
157 |
& -parfrac*Qsw(i,j,bi,bj)*maskC(i,j,1,bi,bj)) |
& -parfrac*Qsw(i,j,bi,bj)*maskC(i,j,1,bi,bj)) |
158 |
#else |
#else |
159 |
irr_surf(i,j) = sfac(j) |
irr_surf(i,j) = sfac(j) |
160 |
#endif |
#endif |
161 |
IF ( .NOT. QSW_underice ) THEN |
cav IF ( .NOT. QSW_underice ) THEN |
162 |
c if using Qsw but not seaice/thsice or coupled, then |
c if using Qsw but not seaice/thsice or coupled, then |
163 |
c ice fraction needs to be taken into account |
c ice fraction needs to be taken into account |
164 |
irr_surf(i,j) = irr_surf(i,j)*(1. _d 0 - FIce(i,j,bi,bj)) |
cav irr_surf(i,j) = irr_surf(i,j)*(1. _d 0 - FIce(i,j,bi,bj)) |
165 |
ENDIF |
cav ENDIF |
166 |
|
|
167 |
#ifdef ML_MEAN_LIGHT |
#ifdef ML_MEAN_LIGHT |
168 |
SumMLIrr = 0. _d 0 |
SumMLIrr = 0. _d 0 |
169 |
SumMLDepth = 0. _d 0 |
tmp_ML = 0. _d 0 |
170 |
#endif |
#endif |
171 |
|
|
172 |
c C$TAF init ml_stuff = static, Nr |
c C$TAF init ml_stuff = static, Nr |
178 |
IF (k.eq.1) THEN |
IF (k.eq.1) THEN |
179 |
c Light attenuation in middle of top layer |
c Light attenuation in middle of top layer |
180 |
atten = k0*drF(1)/2. _d 0*hFacC(i,j,1,bi,bj) |
atten = k0*drF(1)/2. _d 0*hFacC(i,j,1,bi,bj) |
181 |
irr_inst(i,j,1,bi,bj) = irr_surf(i,j)*exp(-atten) |
irr_inst(i,j,1) = irr_surf(i,j)*exp(-atten) |
182 |
ELSE |
ELSE |
183 |
c Attenuation from one more layer |
c Attenuation from one more layer |
184 |
atten = k0*drF(k)/2. _d 0*hFacC(i,j,k,bi,bj) |
atten = k0*drF(k)/2. _d 0*hFacC(i,j,k,bi,bj) |
185 |
& + k0*drF(k-1)/2. _d 0*hFacC(i,j,k-1,bi,bj) |
& + k0*drF(k-1)/2. _d 0*hFacC(i,j,k-1,bi,bj) |
186 |
irr_inst(i,j,k,bi,bj) = |
irr_inst(i,j,k) = |
187 |
& irr_inst(i,j,k-1,bi,bj)*exp(-atten) |
& irr_inst(i,j,k-1)*exp(-atten) |
188 |
ENDIF |
ENDIF |
189 |
|
|
190 |
#ifdef ML_MEAN_LIGHT |
#ifdef ML_MEAN_LIGHT |
191 |
c Mean irradiance in the mixed layer |
c Mean irradiance in the mixed layer |
192 |
IF (delta_dens(i,j,k) .LT. 0.03 _d 0) then |
IF ((-rf(k+1) .le. mld(i,j)).and. |
193 |
SumMLIrr = SumMLIrr+drF(k)*irr_inst(i,j,k,bi,bj) |
& (-rf(k+1).lt.200. _d 0)) THEN |
194 |
SumMLDepth = SumMLDepth+drF(k) |
SumMLIrr = SumMLIrr+drF(k)*irr_inst(i,j,k) |
195 |
irr_mix(i,j) = SumMLIrr/SumMLDepth |
tmp_ML = tmp_ML + drF(k) |
196 |
|
irr_mix(i,j) = SumMLIrr/tmp_ML |
197 |
ENDIF |
ENDIF |
198 |
#endif |
#endif |
199 |
|
|
203 |
ENDDO |
ENDDO |
204 |
ENDDO |
ENDDO |
205 |
|
|
206 |
c --------------------------------------------------------------------- |
|
|
C Phytoplankton photoadaptation to local light level |
|
207 |
DO k=1,Nr |
DO k=1,Nr |
208 |
DO j=jmin,jmax |
DO j=jmin,jmax |
209 |
DO i=imin,imax |
DO i=imin,imax |
210 |
|
|
211 |
irr_eff(i,j,k) = irr_inst(i,j,k,bi,bj) |
IF (hFacC(i,j,k,bi,bj) .gt. 0. _d 0) THEN |
212 |
|
|
213 |
|
irr_eff(i,j,k) = irr_inst(i,j,k) |
214 |
#ifdef ML_MEAN_LIGHT |
#ifdef ML_MEAN_LIGHT |
215 |
c Inside mixed layer, effective light is set to mean mixed layer light |
c Inside mixed layer, effective light is set to mean mixed layer light |
216 |
IF (delta_dens(i,j,k) .LT. 0.03 _d 0) THEN |
IF ((-rf(k+1) .le. mld(i,j)).and. |
217 |
|
& (-rf(k+1).lt.200. _d 0)) THEN |
218 |
irr_eff(i,j,k) = irr_mix(i,j) |
irr_eff(i,j,k) = irr_mix(i,j) |
219 |
ENDIF |
ENDIF |
220 |
#endif |
#endif |
221 |
|
|
222 |
irr_mem(i,j,k,bi,bj) = irr_mem(i,j,k,bi,bj) + |
ENDIF |
|
& (irr_eff(i,j,k) - irr_mem(i,j,k,bi,bj))* |
|
|
& min( 1. _d 0, gamma_irr_mem*PTRACERS_dTLev(k) ) |
|
223 |
|
|
224 |
ENDDO |
ENDDO |
225 |
ENDDO |
ENDDO |
226 |
ENDDO |
ENDDO |
227 |
|
|
228 |
|
#ifdef ALLOW_DIAGNOSTICS |
229 |
|
IF ( useDiagnostics ) THEN |
230 |
|
CALL DIAGNOSTICS_FILL(Qsw,'BLGQSW ',0,1,1,bi,bj,myThid) |
231 |
|
CALL DIAGNOSTICS_FILL(irr_inst,'BLGIRRIS',0,Nr,2,bi,bj,myThid) |
232 |
|
ENDIF |
233 |
|
#endif |
234 |
|
|
235 |
RETURN |
RETURN |
236 |
END |
END |
237 |
|
|