| 1 |
C $Header: /u/gcmpack/MITgcm_contrib/bling/pkg/bling_dvm.F,v 1.3 2016/05/19 16:30:00 mmazloff Exp $ |
| 2 |
C $Name: $ |
| 3 |
|
| 4 |
#include "BLING_OPTIONS.h" |
| 5 |
|
| 6 |
CBOP |
| 7 |
subroutine BLING_DVM( |
| 8 |
I N_dvm,P_dvm,Fe_dvm, |
| 9 |
I PTR_O2, mld, |
| 10 |
O N_remindvm, P_remindvm, Fe_remindvm, |
| 11 |
I bi, bj, imin, imax, jmin, jmax, |
| 12 |
I myIter, myTime, myThid ) |
| 13 |
|
| 14 |
C ================================================================= |
| 15 |
C | subroutine bling_prod |
| 16 |
C | o Nutrient uptake and partitioning between organic pools. |
| 17 |
C | - Phytoplankton biomass-specific growth rate is calculated |
| 18 |
C | as a function of light, nutrient limitation, and |
| 19 |
C | temperature. |
| 20 |
C | - Biomass growth xxx |
| 21 |
C | o Organic matter export, remineralization, and recycling. |
| 22 |
C | - Sinking particulate flux and diel migration contribute to |
| 23 |
C | export. |
| 24 |
C | - Denitrification xxx |
| 25 |
C ================================================================= |
| 26 |
|
| 27 |
implicit none |
| 28 |
|
| 29 |
C === Global variables === |
| 30 |
C P_sm :: Small phytoplankton biomass |
| 31 |
C P_lg :: Large phytoplankton biomass |
| 32 |
C P_diaz :: Diazotroph phytoplankton biomass |
| 33 |
C irr_mem :: Phyto irradiance memory |
| 34 |
|
| 35 |
#include "SIZE.h" |
| 36 |
#include "DYNVARS.h" |
| 37 |
#include "EEPARAMS.h" |
| 38 |
#include "PARAMS.h" |
| 39 |
#include "GRID.h" |
| 40 |
#include "BLING_VARS.h" |
| 41 |
#include "PTRACERS_SIZE.h" |
| 42 |
#include "PTRACERS_PARAMS.h" |
| 43 |
#ifdef ALLOW_AUTODIFF |
| 44 |
# include "tamc.h" |
| 45 |
#endif |
| 46 |
|
| 47 |
C === Routine arguments === |
| 48 |
C bi,bj :: tile indices |
| 49 |
C iMin,iMax :: computation domain: 1rst index range |
| 50 |
C jMin,jMax :: computation domain: 2nd index range |
| 51 |
C myTime :: current time |
| 52 |
C myIter :: current timestep |
| 53 |
C myThid :: thread Id. number |
| 54 |
INTEGER bi, bj, imin, imax, jmin, jmax |
| 55 |
_RL myTime |
| 56 |
INTEGER myIter |
| 57 |
INTEGER myThid |
| 58 |
C === Input === |
| 59 |
C PTR_NO3 :: nitrate concentration |
| 60 |
C PTR_PO4 :: phosphate concentration |
| 61 |
C PTR_FE :: iron concentration |
| 62 |
C PTR_DON :: dissolved organic nitrogen concentration |
| 63 |
C PTR_DOP :: dissolved organic phosphorus concentration |
| 64 |
C PTR_O2 :: oxygen concentration |
| 65 |
_RL PTR_NO3(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 66 |
_RL PTR_PO4(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 67 |
_RL PTR_FE (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 68 |
_RL PTR_DON(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 69 |
_RL PTR_DOP(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 70 |
_RL PTR_O2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 71 |
C === Output === |
| 72 |
C G_xxx :: Tendency of xxx |
| 73 |
_RL G_NO3 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 74 |
_RL G_PO4 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 75 |
_RL G_FE (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 76 |
_RL G_O2 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 77 |
_RL G_DON (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 78 |
_RL G_DOP (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 79 |
_RL G_CACO3 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 80 |
|
| 81 |
#ifdef ALLOW_BLING |
| 82 |
C === Local variables === |
| 83 |
C i,j,k :: loop indices |
| 84 |
C irr_eff :: effective irradiance |
| 85 |
C NO3_lim :: nitrate limitation |
| 86 |
C PO4_lim :: phosphate limitation |
| 87 |
C Fe_lim :: iron limitation for phytoplankton |
| 88 |
C Fe_lim_diaz :: iron limitation for diazotrophs |
| 89 |
C alpha_Fe :: initial slope of the P-I curve |
| 90 |
C theta_Fe :: Chl:C ratio |
| 91 |
C theta_Fe_max :: Fe-replete maximum Chl:C ratio |
| 92 |
C irrk :: nut-limited efficiency of algal photosystems |
| 93 |
C Pc_m :: light-saturated max photosynthesis rate for phyt |
| 94 |
C Pc_m_diaz :: light-saturated max photosynthesis rate for diaz |
| 95 |
C Pc_tot :: carbon-specific photosynthesis rate |
| 96 |
C expkT :: temperature function |
| 97 |
C mu :: net carbon-specific growth rate for phyt |
| 98 |
C mu_diaz :: net carbon-specific growth rate for diaz |
| 99 |
C biomass_sm :: nitrogen concentration in small phyto biomass |
| 100 |
C biomass_lg :: nitrogen concentration in large phyto biomass |
| 101 |
C N_uptake :: nitrogen uptake |
| 102 |
C N_fix :: nitrogen fixation |
| 103 |
C P_uptake :: phosphorus uptake |
| 104 |
C POC_flux :: carbon export flux 3d field |
| 105 |
C PtoN :: variable ratio of phosphorus to nitrogen |
| 106 |
C FetoN :: variable ratio of iron to nitrogen |
| 107 |
C N_spm :: particulate sinking of nitrogen |
| 108 |
C P_spm :: particulate sinking of phosphorus |
| 109 |
C Fe_spm :: particulate sinking of iron |
| 110 |
C N_dvm :: vertical transport of nitrogen by DVM |
| 111 |
C P_dvm :: vertical transport of phosphorus by DVM |
| 112 |
C Fe_dvm :: vertical transport of iron by DVM |
| 113 |
C N_recycle :: recycling of newly-produced organic nitrogen |
| 114 |
C P_recycle :: recycling of newly-produced organic phosphorus |
| 115 |
C Fe_recycle :: recycling of newly-produced organic iron |
| 116 |
c xxx to be completed |
| 117 |
INTEGER i,j,k |
| 118 |
INTEGER tmp |
| 119 |
_RL irr_eff(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 120 |
_RL NO3_lim |
| 121 |
_RL PO4_lim |
| 122 |
_RL Fe_lim |
| 123 |
_RL Fe_lim_diaz |
| 124 |
_RL expkT |
| 125 |
_RL Pc_m |
| 126 |
_RL Pc_m_diaz |
| 127 |
_RL theta_Fe_max |
| 128 |
_RL theta_Fe |
| 129 |
_RL irrk |
| 130 |
_RL mu(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 131 |
_RL mu_diaz(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 132 |
_RL PtoN(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 133 |
_RL FetoN(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 134 |
_RL N_uptake(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 135 |
_RL N_fix(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 136 |
_RL P_uptake(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 137 |
_RL Fe_uptake(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 138 |
_RL frac_exp |
| 139 |
_RL N_spm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 140 |
_RL P_spm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 141 |
_RL Fe_spm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 142 |
_RL N_dvm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 143 |
_RL P_dvm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 144 |
_RL Fe_dvm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 145 |
_RL DON_prod(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 146 |
_RL DOP_prod(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 147 |
_RL N_recycle(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 148 |
_RL P_recycle(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 149 |
_RL Fe_recycle(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 150 |
_RL POC_flux(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 151 |
_RL NPP(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 152 |
_RL NCP(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 153 |
_RL CaCO3_prod(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 154 |
_RL PONflux_u |
| 155 |
_RL POPflux_u |
| 156 |
_RL PFEflux_u |
| 157 |
_RL CaCO3flux_u |
| 158 |
_RL PONflux_l |
| 159 |
_RL POPflux_l |
| 160 |
_RL PFEflux_l |
| 161 |
_RL CaCO3flux_l |
| 162 |
_RL depth_l |
| 163 |
_RL zremin |
| 164 |
_RL zremin_caco3 |
| 165 |
_RL wsink |
| 166 |
_RL POC_sed |
| 167 |
_RL Fe_sed(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 168 |
_RL NO3_sed(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 169 |
_RL PO4_sed(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 170 |
_RL O2_sed(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 171 |
_RL lig_stability |
| 172 |
_RL FreeFe |
| 173 |
_RL Fe_ads_inorg(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 174 |
_RL Fe_ads_org(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 175 |
_RL N_den_pelag(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 176 |
_RL N_den_benthic(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 177 |
_RL log_btm_flx |
| 178 |
_RL N_reminp(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 179 |
_RL P_reminp(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 180 |
_RL Fe_reminp(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 181 |
_RL CacO3_diss(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 182 |
_RL o2_upper |
| 183 |
_RL o2_lower |
| 184 |
_RL dz_upper |
| 185 |
_RL dz_lower |
| 186 |
_RL temp_upper |
| 187 |
_RL temp_lower |
| 188 |
_RL z_dvm_regr |
| 189 |
_RL frac_migr |
| 190 |
_RL fdvm_migr |
| 191 |
_RL fdvm_stat |
| 192 |
_RL fdvmn_vint |
| 193 |
_RL fdvmp_vint |
| 194 |
_RL fdvmfe_vint |
| 195 |
_RL z_dvm |
| 196 |
_RL N_remindvm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 197 |
_RL P_remindvm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 198 |
_RL Fe_remindvm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 199 |
_RL dvm(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 200 |
_RL mld(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 201 |
_RL Fe_burial(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 202 |
_RL x_erfcc,z_erfcc,t_erfcc,erfcc |
| 203 |
cxx order |
| 204 |
CEOP |
| 205 |
|
| 206 |
c --------------------------------------------------------------------- |
| 207 |
c Initialize output and diagnostics |
| 208 |
DO k=1,Nr |
| 209 |
DO j=jmin,jmax |
| 210 |
DO i=imin,imax |
| 211 |
G_NO3(i,j,k) = 0. _d 0 |
| 212 |
G_PO4(i,j,k) = 0. _d 0 |
| 213 |
G_FE(i,j,k) = 0. _d 0 |
| 214 |
G_O2(i,j,k) = 0. _d 0 |
| 215 |
G_DON(i,j,k) = 0. _d 0 |
| 216 |
G_DOP(i,j,k) = 0. _d 0 |
| 217 |
G_CaCO3(i,j,k) = 0. _d 0 |
| 218 |
N_uptake(i,j,k) = 0. _d 0 |
| 219 |
P_uptake(i,j,k) = 0. _d 0 |
| 220 |
Fe_uptake(i,j,k) = 0. _d 0 |
| 221 |
Fe_ads_org(i,j,k) = 0. _d 0 |
| 222 |
Fe_ads_inorg(i,j,k) = 0. _d 0 |
| 223 |
mu(i,j,k) = 0. _d 0 |
| 224 |
mu_diaz(i,j,k) = 0. _d 0 |
| 225 |
irr_eff(i,j,k) = 0. _d 0 |
| 226 |
PtoN(i,j,k) = 0. _d 0 |
| 227 |
FetoN(i,j,k) = 0. _d 0 |
| 228 |
N_fix(i,j,k) = 0. _d 0 |
| 229 |
N_spm(i,j,k) = 0. _d 0 |
| 230 |
P_spm(i,j,k) = 0. _d 0 |
| 231 |
Fe_spm(i,j,k) = 0. _d 0 |
| 232 |
dvm(i,j,k) = 0. _d 0 |
| 233 |
N_reminp(i,j,k) = 0. _d 0 |
| 234 |
P_reminp(i,j,k) = 0. _d 0 |
| 235 |
Fe_reminp(i,j,k) = 0. _d 0 |
| 236 |
N_recycle(i,j,k) = 0. _d 0 |
| 237 |
P_recycle(i,j,k) = 0. _d 0 |
| 238 |
Fe_recycle(i,j,k) = 0. _d 0 |
| 239 |
N_remindvm(i,j,k) = 0. _d 0 |
| 240 |
P_remindvm(i,j,k) = 0. _d 0 |
| 241 |
Fe_remindvm(i,j,k) = 0. _d 0 |
| 242 |
N_den_benthic(i,j,k)= 0. _d 0 |
| 243 |
N_den_pelag(i,j,k) = 0. _d 0 |
| 244 |
DON_prod(i,j,k) = 0. _d 0 |
| 245 |
DOP_prod(i,j,k) = 0. _d 0 |
| 246 |
CaCO3_prod(i,j,k) = 0. _d 0 |
| 247 |
CaCO3_diss(i,j,k) = 0. _d 0 |
| 248 |
POC_flux(i,j,k) = 0. _d 0 |
| 249 |
NPP(i,j,k) = 0. _d 0 |
| 250 |
NCP(i,j,k) = 0. _d 0 |
| 251 |
ENDDO |
| 252 |
ENDDO |
| 253 |
ENDDO |
| 254 |
DO j=jmin,jmax |
| 255 |
DO i=imin,imax |
| 256 |
Fe_burial(i,j) = 0. _d 0 |
| 257 |
NO3_sed(i,j) = 0. _d 0 |
| 258 |
PO4_sed(i,j) = 0. _d 0 |
| 259 |
O2_sed(i,j) = 0. _d 0 |
| 260 |
ENDDO |
| 261 |
ENDDO |
| 262 |
cxx order |
| 263 |
|
| 264 |
|
| 265 |
C --------------------------------------------------------------------- |
| 266 |
c DIEL VERTICAL MIGRATOR EXPORT |
| 267 |
c The effect of vertically-migrating animals on the export flux of organic |
| 268 |
c matter from the ocean surface is treated similarly to the scheme of |
| 269 |
c Bianchi et al., Nature Geoscience 2013. |
| 270 |
c This involves calculating the stationary depth of vertical migrators, using |
| 271 |
c an empirical multivariate regression, and ensuring that this remains |
| 272 |
c above the bottom as well as any suboxic waters. |
| 273 |
c The total DVM export flux is partitioned between a swimming migratory |
| 274 |
c component and the stationary component, and these are summed. |
| 275 |
|
| 276 |
|
| 277 |
|
| 278 |
C$TAF LOOP = parallel |
| 279 |
DO j=jmin,jmax |
| 280 |
C$TAF LOOP = parallel |
| 281 |
DO i=imin,imax |
| 282 |
|
| 283 |
|
| 284 |
C ! Initialize the working variables to zero |
| 285 |
o2_upper = 0. |
| 286 |
o2_lower = 0. |
| 287 |
dz_upper = 0. |
| 288 |
dz_lower = 0. |
| 289 |
temp_upper = 0. |
| 290 |
temp_lower = 0. |
| 291 |
z_dvm_regr = 0. |
| 292 |
frac_migr = 0. |
| 293 |
fdvm_migr = 0. |
| 294 |
fdvm_stat = 0. |
| 295 |
fdvmn_vint = 0. |
| 296 |
fdvmp_vint = 0. |
| 297 |
fdvmfe_vint = 0. |
| 298 |
|
| 299 |
DO k=1,Nr |
| 300 |
|
| 301 |
IF ( hFacC(i,j,k,bi,bj).gt.0. _d 0 ) THEN |
| 302 |
|
| 303 |
! Calculate the depth of migration based on linear regression. |
| 304 |
|
| 305 |
depth_l=-rF(k+1) |
| 306 |
|
| 307 |
! Average temperature and oxygen over upper 35 m, and 140-515m. Also convert O2 to mmol m-3. |
| 308 |
|
| 309 |
if ( abs(depth_l) .lt. 35.) then |
| 310 |
dz_upper = dz_upper + drf(k) |
| 311 |
temp_upper = temp_upper + theta(i,j,k,bi,bj)*drf(k) |
| 312 |
o2_upper = o2_upper + PTR_O2(i,j,k) * drf(k)*1.0 _d 3 |
| 313 |
endif |
| 314 |
if ( (abs(depth_l) .gt. 140.0 _d 0) .and. |
| 315 |
& (abs(depth_l) .lt. 515. _d 0)) then |
| 316 |
dz_lower = dz_lower + drf(k) |
| 317 |
temp_lower = temp_lower + theta(i,j,k,bi,bj)*drf(k) |
| 318 |
o2_lower = o2_lower + PTR_O2(i,j,k) * drf(k)*1.0 _d 3 |
| 319 |
endif |
| 320 |
|
| 321 |
ENDIF |
| 322 |
ENDDO |
| 323 |
|
| 324 |
o2_upper = o2_upper / (epsln + dz_upper) |
| 325 |
temp_upper = temp_upper / (epsln + dz_upper) |
| 326 |
o2_lower = o2_lower / (epsln + dz_lower) |
| 327 |
temp_lower = temp_lower / (epsln + dz_lower) |
| 328 |
|
| 329 |
! Calculate the regression, using the constants given in Bianchi et al. (2013). |
| 330 |
! The variable values are bounded to lie within reasonable ranges: |
| 331 |
! O2 gradient : [-10,300] mmol/m3 |
| 332 |
! Log10 Chl : [-1.8,0.85] log10(mg/m3) |
| 333 |
! mld : [0,500] m |
| 334 |
! T gradient : [-3,20] C |
| 335 |
|
| 336 |
C!! I'm replacing hblt_depth(i,j) with mld... not sure what hblt_depth is |
| 337 |
|
| 338 |
#ifdef BLING_ADJOINT_SAFE |
| 339 |
z_dvm = 300. _d 0 |
| 340 |
|
| 341 |
#else |
| 342 |
|
| 343 |
z_dvm_regr = 398. _d 0 |
| 344 |
& - 0.56 _d 0*min(300. _d 0,max(-10. _d 0,(o2_upper - o2_lower))) |
| 345 |
& - 115. _d 0*min(0.85 _d 0,max(-1.80 _d 0, |
| 346 |
& log10(max(chl(i,j,1,bi,bj),chl_min)))) |
| 347 |
& + 0.36 _d 0*min(500. _d 0,max(epsln,mld(i,j))) |
| 348 |
& - 2.40 _d 0*min(20. _d 0,max(-3. _d 0,(temp_upper-temp_lower))) |
| 349 |
|
| 350 |
c ! Limit the depth of migration in polar winter. |
| 351 |
c ! Use irr_mem since this is averaged over multiple days, dampening the diurnal cycle. |
| 352 |
c ! Tapers Z_DVM to the minimum when surface irradince is below a given threshold (here 10 W/m2). |
| 353 |
|
| 354 |
if ( irr_mem(i,j,1,bi,bj) .lt. 10. ) then |
| 355 |
z_dvm_regr = 150. _d 0 + (z_dvm_regr - 150. _d 0) * |
| 356 |
& irr_mem(i,j,1,bi,bj) / 10. _d 0 |
| 357 |
endif |
| 358 |
|
| 359 |
C Check for suboxic water within the column. If found, set dvm |
| 360 |
C stationary depth to 2 layers above it. This is not meant to |
| 361 |
C represent a cessation of downward migration, but rather the |
| 362 |
C requirement for aerobic DVM respiration to occur above the suboxic |
| 363 |
C water, where O2 is available. |
| 364 |
|
| 365 |
tmp = 0 |
| 366 |
DO k=1,Nr-2 |
| 367 |
|
| 368 |
IF ( (hFacC(i,j,k,bi,bj).gt.0. _d 0) .and. (tmp.eq.0)) THEN |
| 369 |
|
| 370 |
z_dvm = -rf(k+1) |
| 371 |
if (PTR_O2(i,j,k+2) .lt. (5. _d 0*oxic_min)) tmp = 1 |
| 372 |
|
| 373 |
ENDIF |
| 374 |
|
| 375 |
enddo |
| 376 |
|
| 377 |
C The stationary depth is constrained between 150 and 700, above any |
| 378 |
C anoxic waters found, and above the bottom. |
| 379 |
|
| 380 |
z_dvm = min(700. _d 0,max(150. _d 0,z_dvm_regr),z_dvm,-rf(k+1)) |
| 381 |
c!! bling%zbot(i,j,grid_kmt(i,j))) * grid_tmask(i,j,1) |
| 382 |
c!! what is grid_mkt?? |
| 383 |
|
| 384 |
#endif |
| 385 |
|
| 386 |
! Calculate the fraction of migratory respiration that occurs during upwards |
| 387 |
! and downwards swimming. The remainder is respired near the stationary depth. |
| 388 |
! Constants for swimming speed and resting time are hard-coded after Bianchi |
| 389 |
! et al, Nature Geoscience 2013. |
| 390 |
|
| 391 |
frac_migr = max( 0.0 _d 0, min( 1.0 _d 0, (2.0 _d 0 * z_dvm) / |
| 392 |
& (epsln + 0.05 _d 0 * 0.5 _d 0 * 86400. _d 0))) |
| 393 |
|
| 394 |
! Calculate the vertical profile shapes of DVM fluxes. These are given as |
| 395 |
! the downward organic flux due to migratory DVM remineralization, defined at |
| 396 |
! the bottom of each layer k. |
| 397 |
|
| 398 |
|
| 399 |
tmp = 0 |
| 400 |
DO k=1,Nr |
| 401 |
|
| 402 |
IF ( (hFacC(i,j,k,bi,bj).gt.0. _d 0) .and. (tmp.eq.0)) THEN |
| 403 |
|
| 404 |
! First, calculate the part due to active migration above the stationary depth. |
| 405 |
if (-rf(k+1) .lt. z_dvm) then |
| 406 |
fdvm_migr = frac_migr / (epsln + z_dvm - (-rf(2))) * |
| 407 |
& (z_dvm - (-rf(k+1)) ) |
| 408 |
else |
| 409 |
fdvm_migr = 0.0 |
| 410 |
endif |
| 411 |
|
| 412 |
! Then, calculate the part at the stationary depth. |
| 413 |
c fdvm_stat = (1. - frac_migr) / 2. * erfcc((-rf(k) - z_dvm) / |
| 414 |
c & ( (epsln + 2. * sigma_dvm**2.)**0.5)) |
| 415 |
|
| 416 |
|
| 417 |
c ! Approximation of the complementary error function |
| 418 |
c ! From Numerical Recipes (F90, Ch. 6, p. 216) |
| 419 |
c ! Returns the complementary error function erfc(x) |
| 420 |
c with fractional error everywhere less than 1.2e-7 |
| 421 |
x_erfcc = (-rf(k) - z_dvm) / |
| 422 |
& ( (epsln + 2. _d 0 * sigma_dvm**2. _d 0)**0.5) |
| 423 |
|
| 424 |
z_erfcc = abs(x_erfcc) |
| 425 |
|
| 426 |
t_erfcc = 1. _d 0/(1. _d 0+0.5 _d 0*z_erfcc) |
| 427 |
|
| 428 |
erfcc = t_erfcc*exp(-z_erfcc*z_erfcc-1.26551223+t_erfcc* |
| 429 |
& (1.00002368+t_erfcc*(0.37409196+t_erfcc* |
| 430 |
& (.09678418+t_erfcc*(-.18628806+t_erfcc*(.27886807+ |
| 431 |
& t_erfcc*(-1.13520398+t_erfcc*(1.48851587+ |
| 432 |
& t_erfcc*(-0.82215223+t_erfcc*0.17087277))))))))) |
| 433 |
|
| 434 |
if (x_erfcc .lt. 0.0) then |
| 435 |
erfcc = 2.0 - erfcc |
| 436 |
endif |
| 437 |
|
| 438 |
|
| 439 |
fdvm_stat = (1. _d 0 - frac_migr) / 2. _d 0 * erfcc |
| 440 |
|
| 441 |
C Add the shapes, resulting in the 3-d DVM flux operator. If the |
| 442 |
C current layer is the bottom layer, or the layer beneath the |
| 443 |
C underlying layer is suboxic, all fluxes at and below the current |
| 444 |
C layer remain at the initialized value of zero. This will cause all |
| 445 |
C remaining DVM remineralization to occur in this layer. |
| 446 |
IF (k.LT.NR-1) THEN |
| 447 |
if (PTR_O2(i,j,k+2) .lt. (5. _d 0*oxic_min)) tmp = 1 |
| 448 |
ENDIF |
| 449 |
c!! if (k .eq. grid_kmt(i,j)) exit |
| 450 |
dvm(i,j,k) = fdvm_migr + fdvm_stat |
| 451 |
|
| 452 |
ENDIF |
| 453 |
|
| 454 |
enddo |
| 455 |
|
| 456 |
c Sum up the total organic flux to be transported by DVM |
| 457 |
|
| 458 |
do k = 1, nr |
| 459 |
fdvmn_vint = fdvmn_vint + N_dvm(i,j,k) * drf(k) |
| 460 |
fdvmp_vint = fdvmp_vint + P_dvm(i,j,k) * drf(k) |
| 461 |
fdvmfe_vint = fdvmfe_vint + Fe_dvm(i,j,k) * drf(k) |
| 462 |
enddo |
| 463 |
|
| 464 |
c Calculate the remineralization terms as the divergence of the flux |
| 465 |
|
| 466 |
N_remindvm(i,j,1) = fdvmn_vint * (1 - dvm(i,j,1)) / |
| 467 |
& (epsln + drf(1)) |
| 468 |
P_remindvm(i,j,1) = fdvmp_vint * (1 - dvm(i,j,1)) / |
| 469 |
& (epsln + drf(1)) |
| 470 |
Fe_remindvm(i,j,1) = fdvmfe_vint * (1 - dvm(i,j,1)) / |
| 471 |
& (epsln + drf(1)) |
| 472 |
|
| 473 |
do k = 2, nr |
| 474 |
N_remindvm(i,j,k) = fdvmn_vint * |
| 475 |
& (dvm(i,j,k-1) - dvm(i,j,k)) / (epsln + drf(k)) |
| 476 |
P_remindvm(i,j,k) = fdvmp_vint * |
| 477 |
& (dvm(i,j,k-1) - dvm(i,j,k)) / (epsln + drf(k)) |
| 478 |
Fe_remindvm(i,j,k) = fdvmfe_vint * |
| 479 |
& (dvm(i,j,k-1) - dvm(i,j,k)) / (epsln + drf(k)) |
| 480 |
enddo |
| 481 |
|
| 482 |
enddo |
| 483 |
enddo |
| 484 |
|
| 485 |
c --------------------------------------------------------------------- |
| 486 |
|
| 487 |
#ifdef ALLOW_DIAGNOSTICS |
| 488 |
IF ( useDiagnostics ) THEN |
| 489 |
|
| 490 |
CALL DIAGNOSTICS_FILL(Fe_dvm,'BLGFEDVM',0,Nr,2,bi,bj,myThid) |
| 491 |
CALL DIAGNOSTICS_FILL(N_dvm,'BLGNDVM ',0,Nr,2,bi,bj,myThid) |
| 492 |
CALL DIAGNOSTICS_FILL(P_dvm,'BLGPDVM ',0,Nr,2,bi,bj,myThid) |
| 493 |
CALL DIAGNOSTICS_FILL(dvm,'BLGDVM ',0,Nr,2,bi,bj,myThid) |
| 494 |
|
| 495 |
ENDIF |
| 496 |
#endif /* ALLOW_DIAGNOSTICS */ |
| 497 |
|
| 498 |
#endif /* ALLOW_BLING */ |
| 499 |
|
| 500 |
RETURN |
| 501 |
END |